رفع أسي
الرَّفْع الأُسِّيّ[1] أو الرفع إلى أس أو الترقية إلى أس (بالإنجليزية: Exponentiation) هو تكرار ضرب العدد في نفسه عدة مرات مثل: 3×3×3 أو 1×1×1×1×1 ولكنها يتم اختصار هذه العملية في صيغة بسيطة فمثلا 3×3×3×3 = وتقرأ ثلاثة أُس أربعة وتسمى 3 بالأساس و 4 بالأس.[2][3][4]
صنف فرعي من | |
---|---|
الاستعمال | |
لديه جزء أو أجزاء | |
النقيض |
تماما كما يساوي ضرب عدد ما في عدد آخر ما الجمع المتكرر التالي:
الأساس والأس
عدلالأساس
عدلويسمى أيضا المبنى. وهو العدد الذي يتم تكراره في عملية الضرب المتكرر، فعلى سبيل المثال أساسها يساوى 3 لأن الثلاثة هي العدد الذي تم تكريره.
الأس
عدلالأُسّ (الجمع: إساس)[5] هي قوة العدد أو عدد مرات تكراره فمثلا أسها يساوى 3 لأن الأساس الذي يساوى 6 قد تم تكريرها ثلاثة مرات.
ملحوظات
عدل- تُقرأ العملية كما يلي : 8 أس 9 أو القوة التاسعة للعدد 8 أو 8 مرفوعة للقوة 9.
- لا داعٍ لكتابة الواحد إذا كان الواحد أسا لعدد ما لأن أي عدد مرفوع له أس واحد يساوي نفس العدد. على سبيل المثال .
متطابقات وخصائص
عدلللضرب المتكرر عدة قواعد ومنها :
- عند ضرب عددين أو أكثر ذى أساسات متساوية فإن الناتج يكون نفس الأساس مرفوع له مجموع الآساس,:
- عند قسمة عددين أو أكثر ذى أساسات متساوية فإن الناتج يكون نفس الأساس مرفوع له حاصل طرح الآساس
- إذا كان هناك عدد مرفوع لأس والكل مرفوع لأس آخر فإن الناتج يكون نفس العدد مرفوع له حاصل ضرب الأسين.:
- إذا كان هنالك عددين أو أكثر ذي أساسات غير متساوية وآساس متساوية فإن الناتج يكون حاصل ضرب الأساسين مرفوع للأس
الأس عددًا صحيحًا
عدلالأس عددًا صحيحًا موجبًا
عدلوعلاقة الاستدعاء الذاتي التالية:
الأس مساويًا للصفر
عدلإذا كان الأس يساوي 0 فإن قيمة هذا العدد تساوي 1 إلا إذا كان الأساس صفرا.
انظر إلى جداء فارغ.
إذا كان الأساس صفرًا والأس صفرًا، تكون القيمة غير معرفة.
الأس عددًا صحيحًا سالبًا
عدلإذا كانت قيمة الأس سالبة يتم قسمة (الأساس أس صفر) على (الأساس أس موجب قيمة الاس السالب)
حالات خاصة للآساس
عدلقوى عشرة
عدلانظر كتابة علمية
قوى اثنين
عدلقوة العدد اثنين أو الضرب المتكرر للعدد اثنين مهمة جداً في علم الحاسوب، كما أنها تظهر في نظرية المجموعات حيث مجموعة المجموعات الجزئية لمجموعة ما لها عدد من العناصر مساو ل 2n.
الأس عددًا كسريًا
عدلانظر إلى جذر نوني.
الأس عددًا عقديًا والأساس عددًا حقيقيًا موجبًا
عدلإذا كان b عددا حقيقيا موجبا، وكان z عددا عقديا ما، فإن bz تعرف كما يلي:
التعريف باستعمال المتسلسلات
عدلدالة الأس، كونها تساوي مشتقتها، وكونها تحققق ، يجعل من متسلسلة تايلور التي تعرفها، تكتب كما يلي:
التعريف باستعمال النهايات
عدلفي لغات البرمجة
عدل- في لغة البرمجة سي وC++، يرمز إلى دالة الرفع كما يلي :
pow(x, y)
. - في #C، يرمز إلى دالة الرفع كما يلي :
Math.Pow(x, y)
. math:pow(X, Y)
: إرلانج.Math.pow(x, y)
: Java.[Math]::Pow(x, y)
: باورشل.(expt x y)
: كومون ليسب.
اقرأ أيضًا
عدلمراجع
عدل- ^ أفرام بوروفسكي؛ جوناثان بوروين (1995)، معجم الرياضيات: إنكليزي - فرنسي - عربي، المعاجم الأكاديمية المتخصصة (بالعربية والإنجليزية والفرنسية)، ترجمة: علي مصطفى بن الأشهر، مراجعة: محمد الدبس، بيروت: أكاديميا إنترناشيونال، ج. 2، ص. 227، OCLC:822262215، QID:Q121833036
- ^ page 299. From page 299: " ... Et aa, ou a2, pour multiplier a par soy mesme; Et a3, pour le multiplier encore une fois par a, & ainsi a l'infini ; ... " ( ... and aa, or a2, in order to multiply a by itself; and a3, in order to multiply it once more by a, and thus to infinity ; ... ) نسخة محفوظة 08 أكتوبر 2017 على موقع واي باك مشين.
- ^ Achatz، Thomas (2005). Technical Shop Mathematics (ط. 3rd). Industrial Press. ص. 101. ISBN:0-8311-3086-5. مؤرشف من الأصل في 2020-01-25.
{{استشهاد بكتاب}}
:|archive-date=
/|archive-url=
timestamp mismatch (مساعدة) - ^ Nicolas Bourbaki (1970). Algèbre. Springer.
- ^ [أ] أحمد شفيق الخطيب (2018). معجم المصطلحات العلمية والفنية والهندسية الجديد: إنجليزي - عربي موضح بالرسوم (بالعربية والإنجليزية) (ط. 1). بيروت: مكتبة لبنان ناشرون. ص. 445. ISBN:978-9953-33-197-3. OCLC:1043304467. OL:19871709M. QID:Q12244028.
[ب] مجد الدين الفيروزآبادي (2005)، القاموس المحيط، إشراف: محمد نعيم العرقسوسي. تحقيق: محمد نعيم العرقسوسي (ط. 8)، بيروت: مؤسسة الرسالة، ص. 530، OCLC:224868904، QID:Q120833288