Norma (matematika)
Norma je pozitivně homogenní, subaditivní a pozitivně definitní funkce, která každému nenulovému vektoru z nějakého vektorového prostoru přiřazuje reálné číslo (tzv. délku nebo velikost), nulový vektor jako jediný má délku 0. Podobná je seminorma, u které se však nepožaduje pozitivní definitnost, takže se připouští, aby i nenulovým vektorům byla přiřazena nulová délka.
Definice
[editovat | editovat zdroj]Nechť V je vektorový prostor nad nějakým podtělesem F tělesa komplexních čísel a p je reálná funkce definovaná na V. Funkce p je seminorma na V, jestliže je
- pozitivně homogenní: p(a v) = |a| p(v), pro a ∈ F a v ∈ V;
- subaditivní: p(u + v) ≤ p(u) + p(v), pro u, v ∈ V.
Z předpokladu pozitivní homogenity plyne, že p(0) = 0 a následně ze subaditivity p(v) ≥ 0, pro všechna v ∈ V.
Norma je seminorma p, která je navíc pozitivně definitní:
- p(v) = 0 právě tehdy, když v = 0.
Pro normu se namísto p(v) zpravidla používá označení ||v||.
Příklady
[editovat | editovat zdroj]- Každá norma je seminorma.
- Absolutní hodnota je norma na reálných číslech.
- Každá lineární forma f na vektorovém prostoru definuje seminormu x → |f(x)|.
Eukleidovská norma
[editovat | editovat zdroj]Na prostoru lze definovat tzv. eukleidovskou normu vektoru x = (x1, x2, ..., xn) jako
Tato norma udává vzdálenost bodu x od počátku (což je důsledek Pythagorovy věty).
p-norma
[editovat | editovat zdroj]Nechť p ≥ 1 je reálné číslo.
Eukleidovská norma je speciálním případem této normy (pro p = 2).
Maximová norma
[editovat | editovat zdroj]Norma na prostoru se skalárním součinem
[editovat | editovat zdroj]Skalární součin indukuje přirozeným způsobem normu
Pro normu indukovanou skalárním součinem platí Cauchyho–Schwarzova nerovnost
Vlastnosti
[editovat | editovat zdroj]Tvar jednotkové kružnice (množiny vektorů velikosti 1) se liší v různých normách (viz ilustraci).
Normy ||•||α and ||•||β na vektorovém prostoru V se nazývají ekvivalentní, jestliže existují kladná reálná čísla C a D taková, že
pro všechna x ∈ V. Na vektorovém prostoru konečné dimenze jsou všechny normy ekvivalentní. Například normy ||•||1, ||•||2 a ||•||∞ jsou ekvivalentní na prostoru :
Ekvivalentní normy indukují tutéž topologii. Jsou-li dány dvě ekvivalentní normy na jednom prostoru, pak je spojitost funkcí i konvergence posloupností z tohoto prostoru v obou normách stejná.
Konvexní, vyvážené, pohlcující množiny
[editovat | editovat zdroj]Seminormy jsou úzce spjaty s konvexními, vyváženými, pohlcujícími množinami. Nechť p je seminorma na vektorovém prostoru V, pak pro libovolný skalár α jsou množiny {x : p(x) < α} a {x : p(x) ≤ α} konvexní, vyvážené a pohlcující.
Obráceně, ke každé konvexní, vyvážené, pohlcující podmnožině C prostoru V existuje seminorma μC známá jako Minkowského funkcionál množiny C, definovaná
Pro tuto seminormu platí
Související články
[editovat | editovat zdroj]Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu norma na Wikimedia Commons