„Homotopieäquivalenz“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[ungesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Zeile 57: Zeile 57:


Für jede [[Homologietheorie]] gilt nach dem ''Homotopieaxiom'':
Für jede [[Homologietheorie]] gilt nach dem ''Homotopieaxiom'':
: Es seien <math>f,g: (X,A) \rightarrow (Y,B)</math> zwei stetige Abbildung, die [[Homotopie|homotop]] sind. Dann sind die beiden induzierten Gruppenhomomorphismen <math>f_*,g_*: H_n(X,A)\rightarrow H_n(Y,B)</math> identisch.
: Es seien <math>f,g: (X,A) \rightarrow (Y,B)</math> zwei stetige Abbildungen, die [[Homotopie|homotop]] sind. Dann sind die beiden induzierten Gruppenhomomorphismen <math>f_*,g_*: H_n(X,A)\rightarrow H_n(Y,B)</math> identisch.


Daraus folgt insbesondere, dass eine Homotopieäquivalenz einen Isomorphismus für jede (verallgemeinerte) Homologietheorie induziert. (Analog für Kohomologietheorien.)
Daraus folgt insbesondere, dass eine Homotopieäquivalenz einen Isomorphismus für jede (verallgemeinerte) Homologietheorie induziert. (Analog für Kohomologietheorien.)


Aus dem Satz von [[Witold Hurewicz|Hurewicz]] folgt, dass jede schwache Homtopieäquivalenz einen Isomorphismus der [[Singuläre Homologie|singulären Homologiegruppen]] (und singulären Kohomologiegruppen) induziert.
Aus dem Satz von [[Witold Hurewicz|Hurewicz]] folgt, dass jede schwache Homotopieäquivalenz einen Isomorphismus der [[Singuläre Homologie|singulären Homologiegruppen]] (und singulären Kohomologiegruppen) induziert.


== Literatur ==
== Literatur ==

Version vom 15. November 2012, 17:01 Uhr

Eine Homotopieäquivalenz ist ein zentraler Begriff im mathematischen Teilgebiet Topologie: eine stetige Abbildung zwischen zwei Objekten, die eine "Umkehrabbildung bis auf Homotopie" besitzt.

Zwei Räume heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz zwischen ihnen gibt. Homotopieäquivalenz definiert eine schwächere Äquivalenzrelation als Homöomorphismus. Topologie handelt zwar eigentlich von Eigenschaften, die unter Homöomorphismen invariant sind, viele topologische Invarianten sind aber auch invariant unter Homotopieäquivalenz.

Während man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen (aber nicht Zerschneiden) vorstellt, ist bei Homotopieäquivalenzen anschaulich gesprochen auch das Aufdicken und Zusammenquetschen zulässig.

Definition

Eine stetige Abbildung zwischen topologischen Räumen und ist eine Homotopieäquivalenz, wenn es eine stetige Abbildung gibt, so dass die Verknüpfungen und jeweils homotop zu den Identitätsabbildungen von bzw. sind. Die Abbildung heißt Homotopie-Inverse von , sie ist i.A. nicht eindeutig bestimmt.

Zwei topologische Räume und heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz gibt.

Spezialfälle

Die schwarzen Unterräume sind jeweils Deformationsretrakte.
  • Jeder Homöomorphismus ist eine Homotopieäquivalenz.
  • Ein Unterraum ist ein Deformationsretrakt von , wenn die Inklusion eine Homotopieäquivalenz ist und es eine Homotopie-Inverse mit gibt.
  • Ein topologischer Raum heißt kontrahierbar oder zusammenziehbar, wenn er homotopieäquivalent zum Punkt ist.

Schwache Homotopieäquivalenz

Seien und topologische Räume, und , und sei

eine stetige Abbildung mit . Dann hat man für alle n ≥ 0 einen Homomorphismus der Homotopiegruppen

heißt schwache Homotopieäquivalenz wenn alle Isomorphismen sind.

Zwei topologische Räume und heißen schwach homotopieäquivalent, wenn es eine schwache Homotopieäquivalenz gibt.

Satz von Whitehead

J. H. C. Whitehead bewies 1949 folgenden Satz:

Jede schwache Homotopieäquivalenz zwischen zusammenhängenden CW-Komplexen ist eine Homotopieäquivalenz.

Es trifft jedoch nicht zu, dass es zwischen Räumen mit isomorphen Homotopiegruppen immer eine (schwache) Homotopieäquivalenz gibt. Zum Beispiel sind

und

zusammenhängende CW-Komplexe mit isomorphen Homotopiegruppen. Falls zum Beispiel ungerade und gerade ist, ist aber

und ,

weshalb die beiden Räume nicht (schwach) homotopieäquivalent sein können.

Für topologische Räume, die keine CW-Komplexe sind, gilt der Satz von Whitehead i.A. nicht. Der Raum, den man als Vereinigung von

mit einem (0,-1) und (1,sin(1)) verbindenden Kreisbogen erhält, ist kein CW-Komplex, alle seine Homotopiegruppen sind trivial, die konstante Abbildung auf einen Punkt ist also eine schwache Homotopieäquivalenz, sie ist aber keine Homotopieäquivalenz. Der Raum ist nicht kontrahierbar.

Kettenhomotopieäquivalenz

Zwei Kettenkomplexe und heißen kettenhomotopieäquivalent, wenn es Kettenhomomorphismen

gibt, so dass und kettenhomotop zu den Identitäts-Abbildungen sind.

Eine Kettenhomotopieäquivalenz zwischen zwei Kettenkomplexen induziert einen Isomorphismus der Homologiegruppen.

Eine Homotopieäquivalenz zwischen topologischen Räumen induziert eine Kettenhomotopieäquivalenz ihrer singulären Kettenkomplexe.

Homologietheorien

Für jede Homologietheorie gilt nach dem Homotopieaxiom:

Es seien zwei stetige Abbildungen, die homotop sind. Dann sind die beiden induzierten Gruppenhomomorphismen identisch.

Daraus folgt insbesondere, dass eine Homotopieäquivalenz einen Isomorphismus für jede (verallgemeinerte) Homologietheorie induziert. (Analog für Kohomologietheorien.)

Aus dem Satz von Hurewicz folgt, dass jede schwache Homotopieäquivalenz einen Isomorphismus der singulären Homologiegruppen (und singulären Kohomologiegruppen) induziert.

Literatur

  • A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. xii+544 pp. ISBN 0-521-79160-X und ISBN 0-521-79540-0
  • J. H. C. Whitehead, Combinatorial homotopy. I., Bull. Amer. Math. Soc., 55 (1949), 213–245
  • J. H. C. Whitehead, Combinatorial homotopy. II., Bull. Amer. Math. Soc., 55 (1949), 453–496