Homotopieäquivalenz

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 28. Oktober 2012 um 08:27 Uhr durch Suhagja (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Eine Homotopieäquivalenz ist ein zentraler Begriff im mathematischen Teilgebiet Topologie: eine stetige Abbildung zwischen zwei Objekten, die eine "Umkehrabbildung bis auf Homotopie" besitzt.

Zwei Räume heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz zwischen ihnen gibt. Homotopieäquivalenz definiert eine schwächere Äquivalenzrelation als Homöomorphismus. Topologie handelt zwar eigentlich von Eigenschaften, die unter Homöomorphismen invariant sind, viele topologische Invarianten sind aber auch invariant unter Homotopieäquivalenz.

Während man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen (aber nicht Zerschneiden) vorstellt, ist bei Homotopieäquivalenzen anschaulich gesprochen auch das Aufdicken und Zusammenquetschen zulässig.

Definition

Eine stetige Abbildung zwischen topologischen Räumen und ist eine Homotopieäquivalenz, wenn es eine stetige Abbildung gibt, so dass die Verknüpfungen und jeweils homotop zu den Identitätsabbildungen von bzw. sind. Die Abbildung heißt Homotopie-Inverse von , sie ist i.A. nicht eindeutig bestimmt.

Zwei topologische Räume und heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz gibt.

Spezialfälle

Die schwarzen Unterräume sind jeweils Deformationsretrakte.
  • Jeder Homöomorphismus ist eine Homotopieäquivalenz.
  • Ein Unterraum ist ein Deformationsretrakt von , wenn die Inklusion eine Homotopieäquivalenz ist und es eine Homotopie-Inverse mit gibt.

Schwache Homotopieäquivalenz

Seien und topologische Räume, und , und sei

eine stetige Abbildung mit . Dann hat man für alle n ≥ 0 einen Homomorphismus der Homotopiegruppen

heißt schwache Homotopieäquivalenz wenn alle Isomorphismen sind.

Zwei topologische Räume und heißen schwach homotopieäquivalent, wenn es eine schwache Homotopieäquivalenz gibt.


Kettenhomotopieäquivalenz

Zwei Kettenkomplexe und heißen kettenhomotopieäquivalent, wenn es Kettenhomomorphismen

gibt, so dass und kettenhomotop zu den Identitäts-Abbildungen sind.

Eine Kettenhomotopieäquivalenz zwischen zwei Kettenkomplexen induziert einen Isomorphismus der Homologiegruppen.

Eine Homotopieäquivalen zwischen topologischen Räumen induziert eine Kettenhomotopieäquivalenz ihrer singulären Kettenkomplexe.