Orbital pole: Difference between revisions

Content deleted Content added
No edit summary
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
(45 intermediate revisions by 26 users not shown)
Line 1:
{{Short description|Celestial coordinate system}}
{{merge|Ecliptic pole|discuss=Talk:Orbital_pole}}
{{UnreferencedMore stub|auto=yescitations needed|date=DecemberJanuary 20092021}}
[[File:Snapshot of the planetary orbital poles.png|right|300px|thumb|The north orbital poles of the [[Solar systemSystem]] planets all lie within [[Draco (constellation)|Draco]]. The central yellow dot in the centre isrepresents the [[Sun]]'s Northnorth pole. [[Jupiter]]'s north orbital pole is incolored orange, [[Mercury (planet)|Mercury]] in's pale blue, [[Venus]] in's green, [[Earth]] in's blue, [[Mars]] in's red, [[Saturn]]'s in violetmagenta, [[Uranus]] in's grey, and [[Neptune]] in's lavender. That of the [[Dwarfdwarf planet]] [[Pluto]] is shown as the dotless cross off in [[Cepheus (constellation)|Cepheus]].]]
 
An '''orbital pole''' is either endpoint at the ends of the '''orbital normal''', an imaginary [[line runningsegment]] that runs through thea center[[Focus (geometry)|focus]] of an [[orbit]] (of a revolving body like a [[planet]], [[Natural satellite|moon]] or [[satellite]]) and is [[perpendicular]] (or [[Normal (geometry)|normal]]) to the [[orbital plane,]]. projectedProjected onto the [[celestial sphere]]., Itorbital ispoles are similar in concept to a [[celestial pole]]s, but are based on the planetbody's orbit instead of theits planet's[[celestial rotationequator|equator]].
 
The [[north]] orbital pole of a celestialrevolving body is defined by the [[right-hand rule]]:. If you curve the fingers of yourthe right hand are curved along the [[retrograde and prograde motion|direction of orbital motion]], with yourthe thumb extended and oriented to be parallel to the orbital [[Axisaxis of rotation|axis]], then the direction yourthe thumb points is defined to be the orbital north.
 
The poles of [[Earth's orbit]] are referred to as the ''[[ecliptic]] poles''. For the remaining planets, the orbital pole in [[ecliptic coordinates]] is given by the [[longitude of the ascending node]] ({{math|☊}}) and [[inclination]] ({{mvar|i}}): {{nobr|{{math|''ℓ'' {{=}} ☊ − 90° }},}} {{nobr|{{math|''b'' {{=}} 90° − ''i''}} .}} In the following table, the planetary orbit poles are given in both celestial coordinates and the ecliptic coordinates for the Earth.
{{DEFAULTSORT:Orbital Pole}}
[[Category:Orbits]]
 
{|class=wikitable
{{Astronomy-stub}}
|-
! Object !! [[longitude of the ascending node|{{math|☊}}]]{{refn|name="jpl horizons web"}} !! [[inclination|{{mvar|i}}]]{{refn|name="jpl horizons web"}} !! [[ecliptic longitude|''Ecl.Lon.'']] !! [[ecliptic latitude|''Ecl.Lat.'']] !! [[Right ascension|RA ({{mvar|α}})]] !! [[Declination|Dec ({{mvar|δ}})]]
|- align="right"
| align="left" | [[Mercury (planet)|Mercury]] || 48.331° || 7.005° || 318.331° || 82.995° || align="left" | {{nobr|18{{sup|h}} 43{{sup|m}} 57.1{{sup|s}} }} || align="left" | {{nobr|+61° 26{{prime}} 52{{pprime}}}}
|- align="right"
| align="left" | [[Venus]] || 76.678° || 3.395° || 346.678° || 86.605° || align="left" | {{nobr|18{{sup|h}} 32{{sup|m}} 01.8{{sup|s}} }} || align="left" | {{nobr|+65° 34{{prime}} 01{{pprime}}}}
|- align="right"
| align="left" | [[Earth]]
| {{efn|name="coord singularity"}}140° || 0.0001° || {{efn|name="coord singularity"}}50° || 89.9999° || align="left" | {{nobr|18{{sup|h}} 00{{sup|m}} 00.0{{sup|s}} }} || align="left" | {{nobr|+66° 33{{prime}} 38.84{{pprime}}}}
|- align="right"
| align="left" | [[Mars]] || 49.562° || 1.850° || 319.562° || 88.150° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 29.7{{sup|s}} }} || align="left" | {{nobr|+65° 19{{prime}} 22{{pprime}}}}
|- align="right"
| align="left" | [[Ceres (dwarf planet)|Ceres]] || 80.494° || 10.583° || 350.494° || 79.417° || align="left" | {{nobr|19{{sup|h}} 33{{sup|m}} 33.1{{sup|s}} }} || align="left" | {{nobr|+62° 50{{prime}} 57{{pprime}}}}
|- align="right"
| align="left" | [[Jupiter]] || 100.492° || 1.305° || 10.492° || 88.695° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 00.8{{sup|s}} }} || align="left" | {{nobr|+66° 45{{prime}} 53{{pprime}}}}
|- align="right"
| align="left" | [[Saturn]] || 113.643° || 2.485° || 23.643° || 87.515° || align="left" | {{nobr|18{{sup|h}} 23{{sup|m}} 46.8{{sup|s}} }} || align="left" | {{nobr|+67° 26{{prime}} 55{{pprime}}}}
|- align="right"
| align="left" | [[Uranus]] || 73.989° || 0.773° || 343.989° || 89.227° || align="left" | {{nobr|18{{sup|h}} 07{{sup|m}} 24.1{{sup|s}} }} || align="left" | {{nobr|+66° 20{{prime}} 12{{pprime}}}}
|- align="right"
| align="left" | [[Neptune]] || 131.794° || 1.768° || 41.794° || 88.232° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 54.1{{sup|s}} }} || align="left" | {{nobr|+67° 42{{prime}} 08{{pprime}}}}
|- align="right"
| align="left" | [[Pluto]] || 110.287° || 17.151° || 20.287° || 72.849° || align="left" | {{nobr|20{{sup|h}} 56{{sup|m}} 3.7{{sup|s}} }} || align="left" | {{nobr|+66° 32{{prime}} 31{{pprime}}}}
|}
When a satellite orbits close to another large body, it can only maintain continuous observations in areas near its orbital poles. The continuous viewing zone (CVZ) of the [[Hubble Space Telescope]] lies inside roughly 24° of Hubble's orbital poles, which [[Precession|precess]] around the Earth's axis every 56 days.<ref>{{cite web |title=HST cycle&nbsp;26 primer orbital constraints |department=HST User Documentation |url=https://hst-docs.stsci.edu/hsp/past-hst-proposal-opportunities/the-hubble-space-telescope-primer-for-cycle-26/hst-cycle-26-primer-orbital-constraints |access-date=2022-07-16 |website=hst-docs.stsci.edu}}</ref>
 
==Ecliptic Pole==
[[mr:धृव]]
The [[ecliptic]] is the plane on which [[Earth's orbit|Earth orbits]] the [[Sun]]. The ecliptic poles are the two points where the ecliptic axis, the imaginary line [[perpendicular]] to the ecliptic, [[intersection (Euclidean geometry)|intersects]] the [[celestial sphere]].
 
The two ecliptic poles are mapped below.
{|class=wikitable
|[[File:North ecliptic pole.png|320px]]<BR>The north ecliptic pole is in [[Draco (constellation)|Draco]].
|[[File:South ecliptic pole.png|320px]]<BR>The south ecliptic pole is in [[Dorado]].
|}
 
Due to [[axial precession]], either [[celestial pole]] completes a circuit around the nearer ecliptic pole every 25,800 years.
 
{{as of|1 January 2000}}, the positions of the ecliptic poles expressed in [[equatorial coordinate system|equatorial coordinates]], as a consequence of Earth's [[axial tilt]], are the following:
*North: [[right ascension]] {{RA|18|0|0.0}} (exact), [[declination]] {{DEC|+66|33|38.55}}
*South: right ascension {{RA|6|0|0.0}} (exact), declination {{DEC|-66|33|38.55}}
The North Ecliptic Pole is located near the [[Cat's Eye Nebula]] and the South Ecliptic Pole is located near the [[Large Magellanic Cloud]].
 
It is impossible anywhere on Earth for either ecliptic pole to be at the [[zenith]] in the [[night sky]]. By definition, the ecliptic poles are located 90° from the [[position of the Sun|Sun's position]]. Therefore, whenever and wherever either ecliptic pole is directly overhead, the Sun must be on the [[horizon]]. The ecliptic poles can contact the zenith only within the [[Arctic Circle|Arctic]] and [[Antarctic Circle|Antarctic]] circles.
 
The [[galactic coordinates]] of the North ecliptic pole can be calculated as {{nobr|{{math|''ℓ'' {{=}} 96.38°}},}} {{nobr|{{math|''b'' {{=}} 29.81°}} }} (see [[celestial coordinate system]]).
 
==See also==
*[[Celestial pole]]
*[[Polar alignment]]
*[[Pole star]]
*[[Poles of astronomical bodies]]
 
==Notes & References==
{{notelist|refs=
{{efn|name="coord singularity"|When inclination is very near 0, the location of nodes is somewhat uncertain, and is less useful to orient the orbit. Likewise when latitude is very near a pole (±90°), the longitude is less certain or useful.}}
}}
{{Reflist|refs=
<ref name="jpl horizons web">Data from {{Cite web|title=HORIZONS Web-Interface|url=https://ssd.jpl.nasa.gov/horizons.cgi?s_type=1|access-date=2020-09-01|website=[[Jet Propulsion Laboratory|JPL]] Solar System Dynamics|publisher=[[NASA]]}} Used "Ephemeris Type: Orbital Elements", "Time Span: discrete time=2451545", "Center: Sun (body center)", and selected each object's barycenter. Results are instantaneous osculating values at the precise J2000 epoch, and referenced to the ecliptic.</ref>
}}
 
{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}
{{DEFAULTSORT:Orbital Pole}}
[[Category:Orbits|Pole]]
[[Category:Astronomical coordinate systems]]