Orbital pole: Difference between revisions

Content deleted Content added
→‎Ecliptic pole: Fixed grammar
Tags: Mobile edit Mobile app edit
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
 
(39 intermediate revisions by 23 users not shown)
Line 1:
{{Short description|Celestial coordinate system}}
{{Unreferenced stub|auto=yes|date=December 2009}}
{{More citations needed|date=January 2021}}
[[File:Snapshot of the planetary orbital poles.png|right|300px|thumb|The north orbital poles of the [[Solar System]] planets all lie within [[Draco (constellation)|Draco]]. The central yellow dot in the centre isrepresents the [[Sun]]'s north pole. [[Jupiter]]'s north orbital pole is incolored orange, [[Mercury (planet)|Mercury]] in's pale blue, [[Venus]] in's green, [[Earth]] in's blue, [[Mars]] in's red, [[Saturn]]'s in violetmagenta, [[Uranus]] in's grey, and [[Neptune]] in's lavender. TheThat of the [[dwarf planet]] [[Pluto]] is shown as the dotless cross off in [[Cepheus (constellation)|Cepheus]].]]
 
An '''orbital pole''' is either endpoint at the ends of the '''orbital normal''', an imaginary [[line runningsegment]] that runs through thea center[[Focus (geometry)|focus]] of an [[orbit]] (of a revolving body) like a [[planet]], [[Natural satellite|moon]] or [[satellite]]) and is [[perpendicular]] (or [[Normal (geometry)|normal]]) to the [[orbital plane]], and. projectedProjected onto the [[celestial sphere]]., Itorbital ispoles are similar in concept to a [[celestial pole]]s, but are based on the [[planet]]body's orbit instead of theits planet's[[celestial rotationequator|equator]].
 
The [[north]] orbital pole of a celestialrevolving body is defined by the [[right-hand rule]]:. If you curve the fingers of yourthe right hand are curved along the [[retrograde and prograde motion|direction of orbital motion]], with yourthe thumb extended and oriented to be parallel to the orbital [[Axisaxis of rotation|axis]], then the direction yourthe thumb points is defined to be the orbital north.
 
The poles of [[Earth's orbit]] are referred to as the ''[[ecliptic]] poles''. For the remaining planets, the orbital pole in [[ecliptic coordinates]] is given by the [[longitude of the ascending node]] ({{math|☊}}) and [[inclination]] ({{mvar|i}}): {{nobr|{{math|''ℓ'' {{=}} ☊ − 90° }},}} {{nobr|{{math|''b'' {{=}} 90° − ''i''}} .}} In the following table, the planetary orbit poles are given in both celestial coordinates and the ecliptic coordinates for the Earth.
The orbital pole of the earth is referred to as the '''Ecliptic pole'''.
 
{|class=wikitable
==Ecliptic pole==
|-
The '''ecliptic poles''' are the two points on the [[celestial sphere]] where the imaginary line (ecliptic axis) [[perpendicular]] to the [[ecliptic]] plane intersects, on which [[Earth's orbit|Earth orbits]] the [[Sun]].
! Object !! [[longitude of the ascending node|{{math|☊}}]]{{refn|name="jpl horizons web"}} !! [[inclination|{{mvar|i}}]]{{refn|name="jpl horizons web"}} !! [[ecliptic longitude|''Ecl.Lon.'']] !! [[ecliptic latitude|''Ecl.Lat.'']] !! [[Right ascension|RA ({{mvar|α}})]] !! [[Declination|Dec ({{mvar|δ}})]]
|- align="right"
| align="left" | [[Mercury (planet)|Mercury]] || 48.331° || 7.005° || 318.331° || 82.995° || align="left" | {{nobr|18{{sup|h}} 43{{sup|m}} 57.1{{sup|s}} }} || align="left" | {{nobr|+61° 26{{prime}} 52{{pprime}}}}
|- align="right"
| align="left" | [[Venus]] || 76.678° || 3.395° || 346.678° || 86.605° || align="left" | {{nobr|18{{sup|h}} 32{{sup|m}} 01.8{{sup|s}} }} || align="left" | {{nobr|+65° 34{{prime}} 01{{pprime}}}}
|- align="right"
| align="left" | [[Earth]]
| {{efn|name="coord singularity"}}140° || 0.0001° || {{efn|name="coord singularity"}}50° || 89.9999° || align="left" | {{nobr|18{{sup|h}} 00{{sup|m}} 00.0{{sup|s}} }} || align="left" | {{nobr|+66° 33{{prime}} 38.84{{pprime}}}}
|- align="right"
| align="left" | [[Mars]] || 49.562° || 1.850° || 319.562° || 88.150° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 29.7{{sup|s}} }} || align="left" | {{nobr|+65° 19{{prime}} 22{{pprime}}}}
|- align="right"
| align="left" | [[Ceres (dwarf planet)|Ceres]] || 80.494° || 10.583° || 350.494° || 79.417° || align="left" | {{nobr|19{{sup|h}} 33{{sup|m}} 33.1{{sup|s}} }} || align="left" | {{nobr|+62° 50{{prime}} 57{{pprime}}}}
|- align="right"
| align="left" | [[Jupiter]] || 100.492° || 1.305° || 10.492° || 88.695° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 00.8{{sup|s}} }} || align="left" | {{nobr|+66° 45{{prime}} 53{{pprime}}}}
|- align="right"
| align="left" | [[Saturn]] || 113.643° || 2.485° || 23.643° || 87.515° || align="left" | {{nobr|18{{sup|h}} 23{{sup|m}} 46.8{{sup|s}} }} || align="left" | {{nobr|+67° 26{{prime}} 55{{pprime}}}}
|- align="right"
| align="left" | [[Uranus]] || 73.989° || 0.773° || 343.989° || 89.227° || align="left" | {{nobr|18{{sup|h}} 07{{sup|m}} 24.1{{sup|s}} }} || align="left" | {{nobr|+66° 20{{prime}} 12{{pprime}}}}
|- align="right"
| align="left" | [[Neptune]] || 131.794° || 1.768° || 41.794° || 88.232° || align="left" | {{nobr|18{{sup|h}} 13{{sup|m}} 54.1{{sup|s}} }} || align="left" | {{nobr|+67° 42{{prime}} 08{{pprime}}}}
|- align="right"
| align="left" | [[Pluto]] || 110.287° || 17.151° || 20.287° || 72.849° || align="left" | {{nobr|20{{sup|h}} 56{{sup|m}} 3.7{{sup|s}} }} || align="left" | {{nobr|+66° 32{{prime}} 31{{pprime}}}}
|}
When a satellite orbits close to another large body, it can only maintain continuous observations in areas near its orbital poles. The continuous viewing zone (CVZ) of the [[Hubble Space Telescope]] lies inside roughly 24° of Hubble's orbital poles, which [[Precession|precess]] around the Earth's axis every 56 days.<ref>{{cite web |title=HST cycle&nbsp;26 primer orbital constraints |department=HST User Documentation |url=https://hst-docs.stsci.edu/hsp/past-hst-proposal-opportunities/the-hubble-space-telescope-primer-for-cycle-26/hst-cycle-26-primer-orbital-constraints |access-date=2022-07-16 |website=hst-docs.stsci.edu}}</ref>
 
==Ecliptic polePole==
The [[ecliptic]] is the plane on which [[Earth's orbit|Earth orbits]] the [[Sun]]. The ecliptic poles are the two points where the ecliptic axis, the imaginary line [[perpendicular]] to the ecliptic, [[intersection (Euclidean geometry)|intersects]] the [[celestial sphere]].
 
The two ecliptic poles are mapped below.
{|class=wikitable
|[[File:North ecliptic pole.png|320px]]<BR>The Northnorth Eclipticecliptic Polepole is in [[Draco (constellation)|Draco]].
|[[File:South ecliptic pole.png|320px]]<BR>The Southsouth Eclipticecliptic Polepole is in [[Dorado]].
|}
 
Due to [[axial precession]], either [[celestial pole]] completes a circuit around the nearer ecliptic pole every 25,800 years.
 
{{as of|1 January 2000}}, the positions of the celestialecliptic poles expressed in [[equatorial coordinate system|equatorial coordinates]], as a consequence of Earth's [[axial tilt]], are the following:
* North: [[right ascension]] {{RA|18|0|0.0}} (exact), [[declination]] {{DEC|+66|33|38.55}}
* South: right ascension {{RA|6|0|0.0}} (exact), declination {{DEC|-66|33|38.55}}
The North Ecliptic Pole is located near the [[Cat's Eye Nebula]] and the South Ecliptic Pole is located near the [[Large Magellanic Cloud]].
 
It is impossible anywhere on Earth for either ecliptic pole to be at the [[zenith]] in the [[night sky]]. By definition, the ecliptic poles are located 90° from the [[position of the Sun|Sun's position]]. Therefore, whenever and wherever either ecliptic pole is directly overhead, the Sun must be on the [[horizon]]. The ecliptic poles can contact the zenith only inwithin the [[Arctic Circle|Arctic]] and [[Antarctic Circle|Antarctic]] circles.
 
The [[galactic coordinates]] of the North ecliptic pole can be calculated as {{nobr|{{math|''ℓ'' {{=}} 96.38°}},}} {{nobr|{{math|''b'' {{=}} 29.81°}} }} (see [[celestial coordinate system]]).
 
==See also==
*[[Celestial pole]]
*[[Polar alignment]]
*[[Pole star]]
*[[Poles of astronomical bodies]]
 
==Notes & References==
{{notelist|refs=
{{efn|name="coord singularity"|When inclination is very near 0, the location of nodes is somewhat uncertain, and is less useful to orient the orbit. Likewise when latitude is very near a pole (±90°), the longitude is less certain or useful.}}
}}
{{Reflist|refs=
<ref name="jpl horizons web">Data from {{Cite web|title=HORIZONS Web-Interface|url=https://ssd.jpl.nasa.gov/horizons.cgi?s_type=1|access-date=2020-09-01|website=[[Jet Propulsion Laboratory|JPL]] Solar System Dynamics|publisher=[[NASA]]}} Used "Ephemeris Type: Orbital Elements", "Time Span: discrete time=2451545", "Center: Sun (body center)", and selected each object's barycenter. Results are instantaneous osculating values at the precise J2000 epoch, and referenced to the ecliptic.</ref>
}}
 
{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}
{{DEFAULTSORT:Orbital Pole}}
[[Category:Orbits|Pole]]
[[Category:CelestialAstronomical coordinate systemsystems]]
 
[[mr:धृव]]