PG 1543+489: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Added doi-access. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 422/635
Remove all text that is just from catalogs
(2 intermediate revisions by 2 users not shown)
Line 1:
{{Short description|Quasar in the constellation of Boötes}}
<!-- Please do not remove or change this AfD message until the discussion has been closed. -->
{{Article for deletion/dated|page=PG 1543+489|timestamp=20240918164543|year=2024|month=September|day=18|substed=yes|help=off}}
<!-- Once discussion is closed, please place on talk page: {{Old AfD multi|page=PG 1543+489|date=18 September 2024|result='''keep'''}} -->
<!-- End of AfD message, feel free to edit beyond this point -->
{{Infobox galaxy|name=PG 1543+489|epoch=[[J2000.0]]|constellation name=[[Boötes]]|ra=15h 45m 30.24s|dec=+48d 46m 09.07s|z=0.399824|h_radial_v=119,864 [[kilometer per second|km/s]]|dist_ly=4.559 [[light-years|Gly]] (1379.8 [[Megaparsec|Mpc]])|appmag_v=0.051|appmag_b=0.067|sbrightness=16.5|type=Spiral; RQQ, AGN|notes=[[Luminous infrared galaxy]], [[Seyfert galaxy]]|names=[[IRAS]] F15439+4855, [[ROSAT|RX]] J1545.5+4846, [[Principal Galaxies Catalogue|PGC]] 2325245, INTREF 656, [[2MASS]]i J1545302+484609, [[XMM-Newton|2XMM]] J154530.3+484608, [[Quasar|QSO]] B1544+4855, 1AXG J154530+4845|image=File:SDSS image of PG 1543+489.jpg|caption=PG 1543+489 captured by [[Sloan Digital Sky Survey|SDSS]]}}
 
Line 5 ⟶ 9:
 
== Characteristics ==
PGThe 1543+489quasar is also classified as a radionarrow-quietline quasar[[Seyfert (RQQ) with weakgalaxy|Seyfert 1.3&nbsp;mm [[Emission spectrum|emissiongalaxy]],<ref>{{Cite journal |last1=ChiniYu |first1=R.Zhibo |last2=KreysaJiang |first2=E.Jiachen |last3=BiermannBambi |first3=P. L.Cosimo |datelast4=1989-07-01Gallo |titlefirst4=TheLuigi nature of radio-quiet quasarsC. |urllast5=https://ui.adsabs.harvard.edu/abs/1989A&A...219...87CGrupe |journalfirst5=Astronomy and AstrophysicsDirk |volumelast6=219Fabian |pagesfirst6=87–97Andrew |bibcode=1989A&AC...219...87C |issnlast7=0004-6361}}</ref><ref>{{Cite journalReynolds |last1first7=PollettaChristopher |first1=MS. |last2last8=CourvoisierBrandt |first2first8=T.William J. -L. |last3=Hooper |first3=E. J. |last4=Wilkes |first4=B. JN. |date=20002023-1007-01 |title=TheAn farXMM-infraredNewton emissionstudy of radiosix loudnarrow-line andSeyfert radio1 quietgalaxies quasarsat z |url=https://ui.adsabs.harvard.edu/abs/2000A&A...362. 0.35-0.75P92 |journal=AstronomyMonthly andNotices Astrophysicsof the Royal Astronomical Society |volume=362522 |issue=4 |pages=75–965456–5468 |arxivdoi=astro-ph10.1093/0006315mnras/stad1327 |doi-access=free |arxiv=2305.00991 |bibcode=2000A&A...362.2023MNRAS.522.75P5456Y |issn=00040035-63618711}}</ref> and soft X-ray spectra (<Gamma > g = 2.58 +/- 0.05 for z < 0.5).<ref>{{Cite journal |last1=YuanRakshit |first1=W.Suvendu |last2=BrinkmannStalin |first2=W.Chelliah Subramonian |last3=SiebertChand |first3=J.Hum |last4=VogesZhang |first4=W.Xue-Guang |date=19982018-0204-01 |title=Broad band energy distributionProperties of ROSATNarrow detectedline quasars.Seyfert II. Radio-quiet1 objectsgalaxies |url=https://ui.adsabs.harvard.edu/abs/1998A&A.2018BSRSL..33087..108Y379R |journal=AstronomyBulletin andde Astrophysicsla Société Royale des Sciences de Liège |volume=33087 |pages=108–122379–386 |arxivdoi=astro-ph10.25518/98050150037-9565.7796 |arxiv=1706.00797|bibcode=1998A&A2018BSRSL..87.330..108Y379R |issn=0004-6361}}</ref> It contains a hightype [[X-ray]]of luminosityAGN whichthat itshows wasall studiedproperties byof X-raynormal [[satellite]]sType like1 [[ROSAT]]<ref>{{CiteSeyfert journalgalaxies |last1=Laorbut |first1=Arihas |last2=Fiorepeculiar |first2=Fabriziocharacteristics |last3=Elvissuch |first3=Martinas |last4=Wilkesnarrowest |first4=Belinda J.[[Balmer series|last5=McDowellBalmer |first5=Jonathanlines]] C. |date=March 1997 |title=The Soft X-Ray Properties ofwith a Complete[[Full Samplewidth ofat Optically Selected Quasars. II. Final Resultshalf maximum|url=http://dx.doi.org/10.1086/303696full |journal=Thewidth Astrophysicalat Journalhalf-maximum]] |volume=477(FWHM) |issue=1of |pages=93–1131630&nbsp;km |doi=10.1086/303696 |arxiv=astro-ph/9609164 |bibcode=1997ApJ...477...93L |issn=0004-637X}}s<sup>−1</refsup> and [[XMM-Newton]],<ref name=":01">{{Cite journal |last1=PiconcelliAoki |first1=E.Kentaro |last2=Jimenez-BailónKawaguchi |first2=E.Toshihiro |last3=GuainazziOhta |first3=M. |last4=Schartel |first4=N. |last5=Rodríguez-Pascual |first5=P. M. |last6=Santos-Lleó |first6=M.Kouji |date=2005-0301-0110 |title=The XMM-NewtonLargest viewBlueshifts of PGthe quasars.[O<scp>iii</scp>] I.Emission X-rayLine continuumin andTwo absorptionNarrow-Line Quasars |url=httpshttp://uidx.adsabsdoi.harvardorg/10.edu1086/abs/2005A&A...432...15P426075 |journal=AstronomyThe andAstrophysical AstrophysicsJournal |volume=432618 |issue=12 |pages=15–30601–608 |doi=10.10511086/0004-6361:20041621 |arxiv=astro-ph/0411051 |bibcode=2005A&A...432...15P426075 |issn=0004-6361637X}}</ref> who observed its continuum emission is modelled by a [[Power law|power-law]] component <Γ<sub>2-12</sub> <sub>keV</sub> > = 1.89±0.1 featuring a strong, broad excess that is below 2 [[Electronvolt|keV]].<ref name=":0" />
 
The quasar is also classified as a narrow-line [[Seyfert galaxy|Seyfert 1 galaxy]],<ref>{{Cite journal |last1=Yu |first1=Zhibo |last2=Jiang |first2=Jiachen |last3=Bambi |first3=Cosimo |last4=Gallo |first4=Luigi C. |last5=Grupe |first5=Dirk |last6=Fabian |first6=Andrew C. |last7=Reynolds |first7=Christopher S. |last8=Brandt |first8=William N. |date=2023-07-01 |title=An XMM-Newton study of six narrow-line Seyfert 1 galaxies at z = 0.35-0.92 |journal=Monthly Notices of the Royal Astronomical Society |volume=522 |issue=4 |pages=5456–5468 |doi=10.1093/mnras/stad1327 |doi-access=free |arxiv=2305.00991 |bibcode=2023MNRAS.522.5456Y |issn=0035-8711}}</ref><ref>{{Cite journal |last1=Rakshit |first1=Suvendu |last2=Stalin |first2=Chelliah Subramonian |last3=Chand |first3=Hum |last4=Zhang |first4=Xue-Guang |date=2018-04-01 |title=Properties of Narrow line Seyfert 1 galaxies |url=https://ui.adsabs.harvard.edu/abs/2018BSRSL..87..379R |journal=Bulletin de la Societe Royale des Sciences de Liege |volume=87 |pages=379–386 |doi=10.25518/0037-9565.7796 |arxiv=1706.00797|bibcode=2018BSRSL..87..379R }}</ref> a type of AGN that shows all properties of normal Type 1 Seyfert galaxies but has peculiar characteristics such as narrowest [[Balmer series|Balmer lines]] with a [[Full width at half maximum|full width at half-maximum]] (FWHM) of 1630&nbsp;km s<sup>−1</sup>,<ref name=":1">{{Cite journal |last1=Aoki |first1=Kentaro |last2=Kawaguchi |first2=Toshihiro |last3=Ohta |first3=Kouji |date=2005-01-10 |title=The Largest Blueshifts of the [O<scp>iii</scp>] Emission Line in Two Narrow-Line Quasars |url=http://dx.doi.org/10.1086/426075 |journal=The Astrophysical Journal |volume=618 |issue=2 |pages=601–608 |doi=10.1086/426075 |issn=0004-637X}}</ref> strong [[Ferrous|Fe II]] emission, and extreme properties presented in the X-rays.<ref>{{Cite journal |last1=Tarchi |first1=A. |last2=Castangia |first2=P. |last3=Columbano |first3=A. |last4=Panessa |first4=F. |last5=Braatz |first5=J. A. |date=August 2011 |title=Narrow-line Seyfert 1 galaxies: an amasing class of AGN |url=http://dx.doi.org/10.1051/0004-6361/201117213 |journal=Astronomy & Astrophysics |volume=532 |pages=A125 |doi=10.1051/0004-6361/201117213 |arxiv=1107.5155 |bibcode=2011A&A...532A.125T |issn=0004-6361}}</ref> The measured hard power-law continua in PG 1543+489 is said to have [[photon]] indices spanning the range 1.6-2.5 with a mean of 2.1, found only slightly [[Slope|steeper]] than the norm for 'broad-line' Seyfert 1s. Furthermore, it shows a soft excess typically modelled as [[Black body|blackbody emission]] (T_bb~100-300eV) that is superposed on the underlying power law.<ref>{{Cite journal |last1=Vaughan |first1=S. |last2=Reeves |first2=J. |last3=Warwick |first3=R. |last4=Edelson |first4=R. |date=1999-10-01 |title=X-ray spectral complexity in narrow-line Seyfert 1 galaxies |journal=Monthly Notices of the Royal Astronomical Society |volume=309 |issue=1 |pages=113–124 |doi=10.1046/j.1365-8711.1999.02811.x |doi-access=free |bibcode=1999MNRAS.309..113V |issn=0035-8711}}</ref> According to data collected from ROSAT, the [[Photonics|photon]] index of the power law is between 2 and 3 for PG 1543+489, with an absorption of cold [[Interstellar medium|interstellar gas]].<ref>{{Cite journal |last1=Gondhalekar |first1=P. M. |last2=Rouillon-Foley |first2=C. |last3=Kellett |first3=B. J. |date=1997-06-11 |title=Soft X-ray colours of Seyfert 1 galaxies and quasars |journal=Monthly Notices of the Royal Astronomical Society |volume=288 |issue=1 |pages=260–266 |doi=10.1093/mnras/288.1.260 |doi-access=free |issn=0035-8711}}</ref>
 
Apart from its Seyfert properties, PG 1543+489 is also classified as an [[luminous infrared galaxy]] with its [[luminosity]] going up as high as L<sub>IR</sub> > 10<sup>11</sup> L_sun, as observed in the 2-10 keV [[Band diagram|energy band]] through new and [[Archival processing|archival data]]. According to observations by [[BeppoSAX]], the source in PG 1543+489 is completely [[Compton scattering|Compton]] thick (N_H > 10<sup>25</sup> cm<sup>−2</sup>).<ref>{{Cite journal |last1=Risaliti |first1=G. |last2=Gilli |first2=R. |last3=Maiolino |first3=R. |last4=Salvati |first4=M. |date=2000-05-01 |title=The hard X-ray emission of luminous infrared galaxies |url=https://ui.adsabs.harvard.edu/abs/2000A&A...357...13R |journal=Astronomy and Astrophysics |volume=357 |pages=13–23 |arxiv=astro-ph/0002460 |bibcode=2000A&A...357...13R |issn=0004-6361}}</ref>
 
== Observations ==
Researchers reanalyzed [[Infrared|mid-infrared]] (5-40 μm) Spitzer spectra of 86 low-redshift (z < 0.5) Palomar-Green quasars for nature of [[polycyclic aromatic hydrocarbon]] (PAH) emission and its utility as a [[Star formation|star formation rate]] (SFR) indicator. Upon decomposing the [[Spectral line|spectra]] with their recently developed template-fitting technique to measure PAH [[flux]]es and its [[Limit inferior and limit superior|upper limits]], by interpreting a mock spectra simulating the effects of AGN [[Dilution (equation)|dilution]], they found the PAHs weak in some sources considered as gas-rich forming [[star]]s. This shows PG 1543+489 is a powerful quasar destroying the PAH [[molecule]]s. Moreover, the [[Luminosity|bolometric luminosity]] of PG 1543+489 is ≲1046 erg s<sup>−1</sup> suggesting PAHs can also trace star formation activities but increasingly underestimates the SFR, typically by ~0.5 dex. In comparison to low-luminosity AGNs and [[Starburst galaxy|starburst galaxies]], PG 1543+489 has a PAH 11.3 μm/7.7 μm ratio but with a characteristically lower ratios of 6.2 μm/7.7 μm, 8.6 μm/7.7 μm, and 11.3 μm/17.0 μm, indicating the quasar as a powerful AGN does descry small grains but enhances the PAH [[ionization]] fraction.<ref>{{Cite journal |last1=Xie |first1=Yanxia |last2=Ho |first2=Luis C. |date=2022-02-01 |title=The Ionization and Destruction of Polycyclic Aromatic Hydrocarbons in Powerful Quasars |journal=The Astrophysical Journal |volume=925 |issue=2 |pages=218 |doi=10.3847/1538-4357/ac32e2 |doi-access=free |arxiv=2110.09705 |bibcode=2022ApJ...925..218X |issn=0004-637X}}</ref>
 
Researchers also found a peculiar feature in PG 1543+489. The quasar shows a [[blueshift]] of the [O III] 5007 Å line that is 1150&nbsp;km s<sup>−1</sup> with respect to the systemic [[velocity]] of the galaxy as well as the blue [[asymmetry]] of its profile.<ref name=":1" /> The large [O III] blueshift or so-called 'blue outliers' by researchers, is found theoretically interpreted by the end result of intense outflows whose receding parts are obscured by an optically thick [[Accretion disk|accretion disc]]<ref>{{Cite journal |last1=Zamanov |first1=R. |last2=Marziani |first2=P. |last3=Sulentic |first3=J. W. |last4=Calvani |first4=M. |last5=Dultzin-Hacyan |first5=D. |last6=Bachev |first6=R. |date=2002-09-01 |title=Kinematic Linkage between the Broad- and Narrow-Line-emitting Gas in Active Galactic Nuclei |url=https://ui.adsabs.harvard.edu/abs/2002ApJ...576L...9Z |journal=The Astrophysical Journal |volume=576 |issue=1 |pages=L9–L13 |doi=10.1086/342783 |arxiv=astro-ph/0207387 |bibcode=2002ApJ...576L...9Z |issn=0004-637X}}</ref> or possibly a scenario which the [[Active galactic nucleus|narrow-line region]] clouds are entrained by [[Acceleration|decelerating]] winds, potentially associated with the high Eddington ratio typical of the 'blue outliers'.<ref>{{Citation |last1=Pronik |first1=V. I. |title=The Excitation Mechanism of Metastable Levels and Variability of Oxygen Forbidden Lines 4959+5007 Å [OIII] in the Seyfert Nuclei |date=1987 |work=Observational Evidence of Activity in Galaxies |pages=227–233 |url=http://dx.doi.org/10.1007/978-94-009-3851-9_36 |access-date=2024-06-20 |place=Dordrecht |publisher=Springer Netherlands |isbn=978-90-277-2474-8 |last2=Pronik |first2=I. I.|doi=10.1007/978-94-009-3851-9_36 |doi-broken-date=2024-06-21 }}</ref><ref>{{Cite journal |last1=Vignali |first1=Cristian |last2=Piconcelli |first2=Enrico |last3=Bianchi |first3=Stefano |last4=Miniutti |first4=Giovanni |date=2008-08-01 |title=On the peculiar properties of the narrow-line quasar PG 1543+489 |journal=Monthly Notices of the Royal Astronomical Society |volume=388 |issue=2 |pages=761–769 |doi=10.1111/j.1365-2966.2008.13438.x |doi-access=free |arxiv=0805.1227 |bibcode=2008MNRAS.388..761V |issn=0035-8711}}</ref>
 
== Absorption system ==
Through observations from [[Hubble Space Telescope]], researchers were able to find an [[Absorption line|absorption-line]] system at z = 0.07489. Looking at it, they found the [[Line of sight|sightline]] passes within ρ = 66 kpc of an edge-on 2{L}* [[Disc galaxy|disk galaxy]] at a similar redshift, belonging to four other galaxies in the group within ρ = 160 kpc. From the absorption-line system, they detected H I [log N(H I/cm-2) = 19.12 ± 0.04] as well as N I, Mg II, Si II, and Si III, from which we measure a gas-phase abundance of [N/H] = -1.0 ± 0.1. The [[photoionization]] models indicate that the [[nitrogen]]-to-[[silicon]] relative abundance is solar, yet [[magnesium]] is found underabundant by a factor of ≈2. By extracting out its rotational curve and reporting [[emission-line]] spectroscopy of the nearby galaxy, researchers suggests the [[metallicity]] is ≈8× higher compared to [N/H] in the absorber. Interestingly, the absorber velocities in the galaxy suggests gas at ρ = 66 kpc is corotating with the galaxy's [[stellar disk]], possibly with an inflow component. Although indicating the sub-damped [[Lyman-alpha|Lyα]] absorber system is responsible in causing cold [[Accretion (astrophysics)|accretion]] flow, the absorber abundance patterns are quite peculiar. Researchers hypothesized gas was probably ejected from its home galaxy or result of [[Glossary of astronomy|tidal debris]] from interactions between the group galaxies, with solar nitrogen abundance, but mixed with the gas in the [[Warm–hot intergalactic medium|circumgalactic medium]] or group. If the gas is bound to the nearby galaxy, this system may become an example of the gas "recycling" as predicted by theoretical galaxy [[simulation]]s.<ref>{{Cite journal |last1=Frye |first1=Brenda L. |last2=Bowen |first2=David V. |last3=Tripp |first3=Todd M. |last4=Jenkins |first4=Edward B. |last5=Pettini |first5=Max |last6=Ellison |first6=Sara L. |date=2019-02-01 |title=A Sub-damped Lyα Absorber with Unusual Abundances: Evidence of Gas Recycling in a Low-redshift Galaxy Group |journal=The Astrophysical Journal |volume=872 |issue=2 |pages=129 |doi=10.3847/1538-4357/ab0083 |doi-access=free |arxiv=1901.08147 |bibcode=2019ApJ...872..129F |issn=0004-637X}}</ref>
 
== Dampen Lyα absorber ==
The Lyα absorber in PG 1543+489 has [[H I region|H I]] column [[density]] of N<sub>H</sub> I ≥slant 10<sup>20.3</sup> cm<sup>−2</sup>, implying there is an [[Incidence geometry|incidence]] per absorption length, X = 0.017<sub>-0.008</sub><sup>+0.014</sup> at [[median]] survey path redshift of z = 0.623. According to researchers, the estimated H I [[mass]] density in PG 1543+489 at z~ 0.6, is of ρ<sub>H</sub> I <sup>DLA</sup> = 0.25-<sub>0.12</sub><sup>+0.20</sup>× 10<sup>8</sup> M⊙ Mpc<sup>−3</sup>. This is found significantly lower compared to previous estimates from targeted DLA surveys with Hubble Space Telescope, but consistent with results from low-z H I 21&nbsp;cm [[observation]]s, suggesting that the neutral [[gas]] density of the [[universe]] has been decreasing over the past 10 billion years.<ref>{{Cite journal |last1=Neeleman |first1=Marcel |last2=Prochaska |first2=J. Xavier |last3=Ribaudo |first3=Joseph |last4=Lehner |first4=Nicolas |last5=Howk |first5=J. Christopher |last6=Rafelski |first6=Marc |last7=Kanekar |first7=Nissim |date=2016-02-01 |title=The H I Content of the Universe Over the Past 10 GYRS |journal=The Astrophysical Journal |volume=818 |issue=2 |pages=113 |doi=10.3847/0004-637X/818/2/113 |doi-access=free |arxiv=1601.01691 |bibcode=2016ApJ...818..113N |issn=0004-637X}}</ref>
 
== Host galaxy ==
The [[host galaxy]] of PG 1543+489 is a [[spiral galaxy]]<ref>{{Cite journal |last1=Dunlop |first1=J. S. |last2=McLure |first2=R. J. |last3=Kukula |first3=M. J. |last4=Baum |first4=S. A. |last5=O'Dea |first5=C. P. |last6=Hughes |first6=D. H. |date=2003-04-01 |title=Quasars, their host galaxies and their central black holes |journal=Monthly Notices of the Royal Astronomical Society |volume=340 |issue=4 |pages=1095–1135 |doi=10.1046/j.1365-8711.2003.06333.x |doi-access=free |arxiv=astro-ph/0108397 |bibcode=2003MNRAS.340.1095D |issn=0035-8711}}</ref><ref>{{Citation |last1=Percival |first1=W. J. |title=The Host Galaxies of Luminous Radio-Quiet Quasars |date=2001 |work=QSO Hosts and Their Environments |pages=21–26 |url=http://dx.doi.org/10.1007/978-1-4615-0695-9_3 |access-date=2024-06-20 |place=Boston, MA |publisher=Springer US |isbn=978-1-4613-5199-3 |last2=Miller |first2=L. |last3=McLure |first3=R. J. |last4=Dunlop |first4=J. S.|doi=10.1007/978-1-4615-0695-9_3 }}</ref><ref>{{Cite journal |last1=Hutchings |first1=J. B. |last2=Janson |first2=T. |last3=Neff |first3=S. G. |date=1989-07-01 |title=What Is the Difference between Radio-loud and Radio-quiet Objects? |url=https://ui.adsabs.harvard.edu/abs/1989ApJ...342..660H |journal=The Astrophysical Journal |volume=342 |pages=660 |doi=10.1086/167626 |bibcode=1989ApJ...342..660H |issn=0004-637X}}</ref> with a gas fraction similar to massive [[early-type galaxies]]<ref>{{Cite journal |last1=Shangguan |first1=Jinyi |last2=Ho |first2=Luis C. |last3=Xie |first3=Yanxia |date=2018-02-01 |title=On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars |journal=The Astrophysical Journal |volume=854 |issue=2 |pages=158 |doi=10.3847/1538-4357/aaa9be |doi-access=free |arxiv=1802.08364 |bibcode=2018ApJ...854..158S |issn=0004-637X}}</ref> and an estimated ongoing star formation rate of ~1-250 M⊙ yr<sup>−1</sup> according to researchers analyzing 1-500 μm [[spectral energy distribution]]s whom they found the total [[infrared]] emission yields 8-1000 μm.<ref>{{Cite journal |last1=Xie |first1=Yanxia |last2=Ho |first2=Luis C. |last3=Zhuang |first3=Ming-Yang |last4=Shangguan |first4=Jinyi |date=2021-04-01 |title=The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars |journal=The Astrophysical Journal |volume=910 |issue=2 |pages=124 |doi=10.3847/1538-4357/abe404 |doi-access=free |arxiv=2102.02695 |bibcode=2021ApJ...910..124X |issn=0004-637X}}</ref> This makes PG 1543+489 a starburst galaxy given the [[Stellar population|star population]] is an average age of ~200 Myr and such stars showing [[stellar wind]]s can affect the circumgalactic medium out to a large [[radius]] as 200 kpc.<ref>{{Cite journal |last1=Borthakur |first1=Sanchayeeta |last2=Heckman |first2=Timothy |last3=Strickland |first3=David |last4=Wild |first4=Vivienne |last5=Schiminovich |first5=David |date=2013-05-01 |title=The Impact of Starbursts on the Circumgalactic Medium |url=https://ui.adsabs.harvard.edu/abs/2013ApJ...768...18B |journal=The Astrophysical Journal |volume=768 |issue=1 |pages=18 |doi=10.1088/0004-637X/768/1/18 |arxiv=1303.1183 |bibcode=2013ApJ...768...18B |issn=0004-637X}}</ref>
 
In additional, the host galaxy has a dusty [[torus]] surrounding its AGN whom it contributes significant fraction (~70%) of total infrared (1-1000 μm) luminosity.<ref>{{Cite journal |last1=Zhuang |first1=Ming-Yang |last2=Ho |first2=Luis C. |last3=Shangguan |first3=Jinyi |date=2018-08-01 |title=The Infrared Emission and Opening Angle of the Torus in Quasars |journal=The Astrophysical Journal |volume=862 |issue=2 |pages=118 |doi=10.3847/1538-4357/aacc2d |doi-access=free |arxiv=1806.03783 |bibcode=2018ApJ...862..118Z |issn=0004-637X}}</ref> Apart from that, the torus also contains tidally disrupted clumps that represents the source of the broad-line region gas.<ref>{{Cite journal |last1=Wang |first1=Jian-Min |last2=Du |first2=Pu |last3=Brotherton |first3=Michael S. |last4=Hu |first4=Chen |last5=Songsheng |first5=Yu-Yang |last6=Li |first6=Yan-Rong |last7=Shi |first7=Yong |last8=Zhang |first8=Zhi-Xiang |date=2017-10-01 |title=Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei |url=https://ui.adsabs.harvard.edu/abs/2017NatAs...1..775W |journal=Nature Astronomy |volume=1 |issue=11 |pages=775–783 |doi=10.1038/s41550-017-0264-4 |arxiv=1710.03419 |bibcode=2017NatAs...1..775W |issn=2397-3366}}</ref> In the case of [[Messier 77|NGC 1068]], another Seyfert galaxy, PG 1543+489 is suggested a small amount of [[Cosmic dust|dust]] might exist inside its inner edges of the torus and usually dominated by its [[Far infrared|far-infrared]] luminosity. If this theory is correct, then it might be considered a "type 2" obscured quasar<ref>{{Cite journal |last1=Pier |first1=Edward A. |last2=Krolik |first2=Julian H. |date=1993-12-01 |title=Infrared Spectra of Obscuring Dust Tori around Active Galactic Nuclei. II. Comparison with Observations |url=https://ui.adsabs.harvard.edu/abs/1993ApJ...418..673P |journal=The Astrophysical Journal |volume=418 |pages=673 |doi=10.1086/173427 |bibcode=1993ApJ...418..673P |issn=0004-637X}}</ref> rather than a type 1 quasar.
 
According to researchers, the host galaxy is in the midst of a transitional stage between an ultraluminous infrared galaxy and quasar, which the stage normally lasts <~300 Myr.<ref name=":2">{{Cite journal |last1=Canalizo |first1=Gabriela |last2=Stockton |first2=Alan |date=2001-07-10 |title=Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Mergers |url=http://dx.doi.org/10.1086/321520 |journal=The Astrophysical Journal |volume=555 |issue=2 |pages=719–743 |doi=10.1086/321520 |arxiv=astro-ph/0103332 |bibcode=2001ApJ...555..719C |issn=0004-637X}}</ref> The host galaxy is also found near a companion galaxy with a separation of p' ≃ 2-113 h-1 kpc.<ref>{{Cite journal |last1=Bowen |first1=David V. |last2=Blades |first2=J. Chris |last3=Pettini |first3=Max |date=1995-08-01 |title=Interstellar MG II Absorption Lines from Low-Redshift Galaxies |url=https://ui.adsabs.harvard.edu/abs/1995ApJ...448..634B |journal=The Astrophysical Journal |volume=448 |pages=634 |doi=10.1086/175993 |bibcode=1995ApJ...448..634B |issn=0004-637X}}</ref> With bridge of gas connecting both objects and post-starburst populations, all of this properties suggested a strong [[Interacting galaxy|interaction]] between PG 1543+489 and its companion galaxy. In a short period of time, these galaxies will eventually [[Galaxy merger|merge]].<ref name=":2" />
 
== Black hole ==
The [[supermassive black hole]] in PG 1543+489 has an estimated [[solar mass]] of 1–2.4 × 10<sup>8</sup>M<sub>⊙</sub><ref>{{Cite journal |last1=D'Elia |first1=Valerio |last2=Padovani |first2=Paolo |last3=Landt |first3=Hermine |date=2003-03-01 |title=The disc-jet relation in strong-lined blazars |journal=Monthly Notices of the Royal Astronomical Society |volume=339 |issue=4 |pages=1081–1094 |doi=10.1046/j.1365-8711.2003.06255.x |doi-access=free |arxiv=astro-ph/0211147 |bibcode=2003MNRAS.339.1081D |issn=0035-8711}}</ref> through optical and ultraviolet mass scaling by researchers, with a larger [[M–sigma relation|black hole mass]] expected by using a spectral energy distribution (SED) fitting approach.<ref name=":0" /> The black hole is found to grow at a rapid rate<ref>{{Cite journal |last1=Lani |first1=Caterina |last2=Netzer |first2=Hagai |last3=Lutz |first3=Dieter |date=2017-10-01 |title=Intrinsic AGN SED & black hole growth in the Palomar-Green quasars |journal=Monthly Notices of the Royal Astronomical Society |volume=471 |issue=1 |pages=59–79 |doi=10.1093/mnras/stx1374 |doi-access=free |arxiv=1705.06747 |bibcode=2017MNRAS.471...59L |issn=0035-8711}}</ref> with a high [[Eddington luminosity|Eddington]] ratio [defined as ''L''<sub>bol</sub>/''L''<sub>Edd</sub>, where ''L''<sub>bol</sub> is the bolometric luminosity and ''L''<sub>Edd</sub>= (1.3–3.1) × 10<sup>46</sup> erg s<sup>−1</sup> is the Eddington luminosity] of ≈1.3–3.7 vs ≈2.3,<ref>{{Cite journal |last1=Baskin |first1=Alexei |last2=Laor |first2=Ari |date=January 2005 |title=What controls the C iv line profile in active galactic nuclei? |journal=Monthly Notices of the Royal Astronomical Society |volume=356 |issue=3 |pages=1029–1044 |doi=10.1111/j.1365-2966.2004.08525.x |doi-access=free |arxiv=astro-ph/0409196 |bibcode=2005MNRAS.356.1029B |issn=0035-8711}}</ref> according to researchers who adopted the [[bolometric correction]] for quasars.<ref>{{Cite journal |last1=Richards |first1=Gordon T. |last2=Lacy |first2=Mark |last3=Storrie-Lombardi |first3=Lisa J. |last4=Hall |first4=Patrick B. |last5=Gallagher |first5=S. C. |last6=Hines |first6=Dean C. |last7=Fan |first7=Xiaohui |last8=Papovich |first8=Casey |last9=Vanden Berk |first9=Daniel E. |last10=Trammell |first10=George B. |last11=Schneider |first11=Donald P. |last12=Vestergaard |first12=Marianne |last13=York |first13=Donald G. |last14=Jester |first14=Sebastian |last15=Anderson |first15=Scott F. |date=2006-10-01 |title=Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars |url=https://ui.adsabs.harvard.edu/abs/2006ApJS..166..470R |journal=The Astrophysical Journal Supplement Series |volume=166 |issue=2 |pages=470–497 |doi=10.1086/506525 |arxiv=astro-ph/0601558 |bibcode=2006ApJS..166..470R |issn=0067-0049}}</ref> This values are higher as expected compared to previous estimations from the observed 2–10 keV luminosity ≈1.1 × 10<sup>44</sup> erg s<sup>−1</sup> using the average spectral energy distribution of broad-line quasars which is ≈0.1–0.3.<ref>{{Cite journal |last1=Elvis |first1=Martin |last2=Wilkes |first2=Belinda J. |last3=McDowell |first3=Jonathan C. |last4=Green |first4=Richard F. |last5=Bechtold |first5=Jill |last6=Willner |first6=S. P. |last7=Oey |first7=M. S. |last8=Polomski |first8=Elisha |last9=Cutri |first9=Roc |date=1994-11-01 |title=Atlas of Quasar Energy Distributions |url=https://ui.adsabs.harvard.edu/abs/1994ApJS...95....1E |journal=The Astrophysical Journal Supplement Series |volume=95 |pages=1 |doi=10.1086/192093 |bibcode=1994ApJS...95....1E |issn=0067-0049}}</ref>
 
== References ==