Content deleted Content added
hype |
rm "extraordinary" and wild claims |
||
Line 349:
====Better surface adsorption====
Atomically thin boron nitride has been found to have better surface adsorption capabilities than bulk hexagonal boron nitride.<ref>{{Cite journal|last1=Cai|first1=Qiran|last2=Du|first2=Aijun|last3=Gao|first3=Guoping|last4=Mateti|first4=Srikanth|last5=Cowie|first5=Bruce C. C.|last6=Qian|first6=Dong|last7=Zhang|first7=Shuang|last8=Lu|first8=Yuerui|last9=Fu|first9=Lan|date=2016-08-29|title=Molecule-Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption|journal=Advanced Functional Materials|volume=26|issue=45|pages=8202–8210|doi=10.1002/adfm.201603160|arxiv=1612.02883|bibcode=2016arXiv161202883C|s2cid=13800939}}</ref> According to theoretical and experimental studies, atomically thin boron nitride as an adsorbent experiences conformational changes upon surface adsorption of molecules, increasing adsorption energy and efficiency. The synergic effect of the atomic thickness, high flexibility, stronger surface adsorption capability, electrical insulation, impermeability, high thermal and chemical stability of BN nanosheets can increase the [[Raman spectroscopy|Raman sensitivity]] by up to two orders, and in the meantime attain long-term stability and
====Dielectric properties====
Line 362:
[[nanomesh|Boron nitride nanomesh]] is a nanostructured two-dimensional material. It consists of a single BN layer, which forms by [[self-assembly]] a highly regular mesh after high-temperature exposure of a clean [[rhodium]]<ref name="corso04">{{cite journal | author = Corso, M. | title = Boron Nitride Nanomesh | journal = Science | volume = 303 | pages = 217–220 | doi = 10.1126/science.1091979 | year = 2004 | pmid = 14716010 | issue = 5655 |bibcode = 2004Sci...303..217C | s2cid = 11964344 |display-authors=etal}}</ref> or [[ruthenium]]<ref name="goriachko07">{{cite journal | author = Goriachko, A. | title = Self-Assembly of a Hexagonal Boron Nitride Nanomesh on Ru(0001) | journal = Langmuir | volume = 23 | issue = 6 | pages = 2928–2931 | doi = 10.1021/la062990t | pmid = 17286422 | year = 2007 |display-authors=etal}}</ref> surface to [[borazine]] under [[ultra-high vacuum]]. The nanomesh looks like an assembly of hexagonal pores. The distance between two pore centers is 3.2 nm and the pore diameter is ~2 nm. Other terms for this material are boronitrene or white graphene.<ref>[http://jacobs.physik.uni-saarland.de/forschung/Graphene.htm Graphene and Boronitrene (White Graphene)]. physik.uni-saarland.de</ref>
The boron nitride nanomesh is air-stable<ref name="bunk07">{{cite journal | author = Bunk, O. | title = Surface X-Ray Diffraction Study of Boron-Nitride Nanomesh in Air | journal = Surface Science | volume = 601 | pages = L7–L10 | doi = 10.1016/j.susc.2006.11.018 | year = 2007 | issue = 2 |bibcode = 2007SurSc.601L...7B | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A18158 |display-authors=etal}}</ref> and compatible with some liquids.<ref name="berner07">{{cite journal | author = Berner, S. | title = Boron Nitride Nanomesh: Functionality from a Corrugated Monolayer | journal = Angewandte Chemie International Edition | volume = 46 | issue = 27 | pages = 5115–5119 | doi = 10.1002/anie.200700234 | pmid = 17538919 | year = 2007 |display-authors=etal}}</ref><ref name="widmer07">{{cite journal | author = Widmer, R. | title = Electrolytic ''in situ'' STM Investigation of h-BN-Nanomesh |url=http://webmail.physik.unizh.ch/groups/osterwalder/zz_publications_old/EC_Widmer.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://webmail.physik.unizh.ch/groups/osterwalder/zz_publications_old/EC_Widmer.pdf |archive-date=2022-10-09 |url-status=live| journal = Electrochemical Communications | volume = 9 | pages = 2484–2488 | doi = 10.1016/j.elecom.2007.07.019 | year = 2007 | issue = 10 |display-authors=etal}}</ref> up to temperatures of 800 °C.<ref name="corso04"/>
[[File:Flame test of buckypapers.jpg|thumb|upright=1.5|BN nanotubes are flame resistant, as shown in this comparative test of airplanes made of cellullose, carbon [[buckypaper]] and BN nanotube buckypaper.<ref name="BNpaper">{{cite journal|doi=10.1039/C5RA02988K |title=Polymer nanocomposites from free-standing, macroscopic boron nitride nanotube assemblies |journal=RSC Adv |volume=5 |issue=51 |pages=41186 |year=2015 |last1=Kim |first1=Keun Su |last2=Jakubinek |first2=Michael B. |last3=Martinez-Rubi |first3=Yadienka |last4=Ashrafi |first4=Behnam |last5=Guan |first5=Jingwen |last6=O'Neill |first6=K. |last7=Plunkett |first7=Mark |last8=Hrdina |first8=Amy |last9=Lin |first9=Shuqiong |last10=Dénommée |first10=Stéphane |last11=Kingston |first11=Christopher |last12=Simard |first12=Benoit |bibcode=2015RSCAd...541186K }}</ref>]] ===Boron nitride nanotubes===
|