Draft:Near-surface solar fusion/Quiz

The image shows the cooling post-flare arcade (rotated by -90 degrees so that north is to the right) 6h after the flare (at 00:11 UT on September 8. Credit: TRACE/NASA.

Near-surface solar fusion is a lecture. Although a research project on its own, it is also part of the radiation astronomy department course on the principles of radiation astronomy.

You are free to take this quiz based on near-surface solar fusion at any time.

To improve your scores, read and study the lecture, the links contained within, listed under See also, External links, and in the {{principles of radiation astronomy}} or {{radiation astronomy resources}} template. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

Suggestion: Have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

Enjoy learning by doing!

Quiz

edit

  

1 Complete the text:

Match up the item letter with each of the possibilities below:
Hydrogen - H, or D
Helium - He
Lithium - Li
Beryllium - Be
Boron - B
Carbon - C
Nitrogen - N
Oxygen - O
Fluorine - F
Neon - Ne
consumed in chromosphere fusion to produce lithium and neutrinos

.
isotope fusion in the chromosphere producing neutrinos

fusion in the chromosphere producing the most neutrinos

.
a factor of ~200 below meteorite abundance in the Sun's photosphere

.
detected with X-rays on the Moon

.
an organic form detected in Allan Hills 84001 probably from Mars

.
detected marginally on Venus with Chandra

.
found in the X-ray spectra of comets

.
consumed to produce beryllium and neutrinos

.
a surface impurity on meteorites

.

2 Complete the text:

Match up the type of stellar surface fusion with each of the possibilities below:
symbiotic nova - A
recurrent nova - B
flare star (flaring) - C
accretion - D
coronal loops - E
amplitude of between 9 and 11 magnitudes

.
a close companion star that overflows its Roche lobe

.
about every 20 years

.
unpredictable dramatic increases in brightness for a few minutes

.
the basic structure of the lower corona and transition region

3 Complete the text:

One example of a

nova is V1016 Cygni, whose

in 1971–2007 clearly indicated a

explosion.

4 The source above the photosphere of the Sun for reactions producing neutrinos is likely to be which of the following?

a neutrino emitting isotope created in the photosphere
the Small Magellanic Cloud
blue rays emitted by the photosphere through the reverse Compton effect
reactions during or preceding a solar flare
accretion of gas from its stellar companion

5 Yes or No, In a cyclotron on Earth 261Rg can be created using about 290 MeV to accelerate say 64Ni into bismuth, in a coronal loop or flare in the atmosphere of the Sun where up to about 400 MeV expenditures have been detected, nickel can be accelerated up to about 290 MeV into bismuth to create roentgenium.

Yes
No

6 Nuclear physics phenomena associated with the atmosphere of the Sun are

symbiotic novae
coronal loops acting like particle accelerators
nanoflares
high atmospheric pressure
deuterium
emitted neutrons

7 Which of the following is not a phenomenon usually associated with solar wanderers?

green aurora
oxygen
production of 7Be
carbon or C2
airglow
nitrogen
olivine

8 True or False, Elements above iron in atomic number cannot be created by accelerator fusion in the atmosphere of the Sun.

TRUE
FALSE

9 Which of the following is not characteristic of a neutrino?

neutrinos are affected by the weak nuclear force
produced by a positron annihilating an electron
a decay product of a neutron
produced by the near surface fusion on the Sun
may have a mass
comes in mutable varieties

10 True or False, Elements above iron or nickel in atomic number cannot be created by fusion in the core of the Sun.

TRUE
FALSE

11 Beta particles may be the key to?

12 True or False, Current (2014) neutrino detectors here on Earth are sophisticated enough to differentiate neutrinos generated in the core of the Sun from those generated above the photosphere of the Sun.

TRUE
FALSE

13 Which of the following are theoretical radiation astronomy phenomena associated with the Sun?

a core which emits neutrinos
a solar wind which emanates out the polar coronal holes
gravity
the barycenter for the solar system
polar coronal holes
coronal clouds
its position

14 Which of the following are radiation astronomy phenomena associated with the Sun?

ultraviolet emission
X-ray emission
gamma-ray emission
neutron emission
7Be emission
meteor emission

15 True or False, The dependence of the hydrogen fusion rate on temperature and pressure means that it is only when it is compressed and heated at the surface of the white dwarf to a temperature of some 20 million kelvin that a nuclear fusion reaction occurs.

TRUE
FALSE

16 Which of the following are theoretical radiation astronomy phenomena associated with a star?

possible orbits
a hyperbolic orbit
nuclear fusion at its core
nuclear fusion in its chromosphere
near the barycenter of its planetary system
accretion
electric arcs
impact craters
radar signature

17 Complete the text:

Match up the likely surface fusion activity with the image:
CME - A
coronal clouds - B
solar flare - C
neutrinos from the solar octant - D
coronal loops - E
prominences - F
File:Neusun1 superk1.jpg

.
 

.
 

.
 

.
 

File:Sun in X-rays Recovered.png

.


Hypotheses

edit
  1. Surface fusion occurs because the interstellar electron influx has high enough energy to cause fusion of lighter nuclei.

See also

edit
edit

{{Radiation astronomy resources}}{{Principles of radiation astronomy}}