Jump to content

Triticeae: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Evolution of the tribe: Typo fixing, replaced: favorablitiy → favorability
Citation bot (talk | contribs)
Altered title. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 341/2092
 
(2 intermediate revisions by 2 users not shown)
Line 49: Line 49:
===''Aegilops''===
===''Aegilops''===
*Various species (rarely identifiable to species in archaeological material) occur in pre-agrarian archaeobotanical remains from Near Eastern sites. Their edible grains were doubtless harvested as wild food resources.
*Various species (rarely identifiable to species in archaeological material) occur in pre-agrarian archaeobotanical remains from Near Eastern sites. Their edible grains were doubtless harvested as wild food resources.
* ''[[Aegilops speltoides|speltoides]]'' - [http://www.ibiblio.org/pfaf/cgi-bin/arr_html?Aegilops+speltoides ancient food grain], putative source of B genome in bread wheat{{Clarify|date=July 2009}} and G genome in ''T. timopheevii''{{Clarify|date=July 2009}}
* ''[[Aegilops speltoides|speltoides]]'' [http://www.ibiblio.org/pfaf/cgi-bin/arr_html?Aegilops+speltoides ancient food grain], putative source of B genome in bread wheat{{Clarify|date=July 2009}} and G genome in ''T. timopheevii''{{Clarify|date=July 2009}}
* ''[[Aegilops tauschii|tauschii]]'' - Source of D genome in wheat{{Clarify|date=July 2009}}
* ''[[Aegilops tauschii|tauschii]]'' Source of D genome in wheat{{Clarify|date=July 2009}}


===''Amblyopyrum''===
===''Amblyopyrum''===
* ''muticum'' - Source of T genome.
* ''muticum'' Source of T genome.


===''Elymus''===
===''Elymus''===
Various species are cultivated for pastoral purposes or to protect fallow
Various species are cultivated for pastoral purposes or to protect fallow
land from opportunistic or invasive species
land from opportunistic or invasive species
* ''[[Elymus canadensis|canadensis]]'' - [http://www.pfaf.org/database/plants.php?Elymus+canadensis edible, bread-flour capable, fiddly seeds]
* ''[[Elymus canadensis|canadensis]]'' [http://www.pfaf.org/database/plants.php?Elymus+canadensis edible, bread-flour capable, fiddly seeds]
* ''[[Elymus trachycaulus|trachycaulus]]'' - [http://www.hort.purdue.edu/newcrop/proceedings1999/v4-015b.html pastoral cultivar]
* ''[[Elymus trachycaulus|trachycaulus]]'' [http://www.hort.purdue.edu/newcrop/proceedings1999/v4-015b.html pastoral cultivar]


===''Hordeum''===
===''Hordeum''===
Many barley cultivars
Many barley cultivars
* ''[[Barley|vulgare]]'' - common barley (6 subspecies, ~100 cultivars)
* ''[[Barley|vulgare]]'' common barley (6 subspecies, ~100 cultivars)
* ''bulbosum'' - [http://www.pfaf.org/database/plants.php?Hordeum+bulbosum edible seeds]
* ''bulbosum'' [http://www.pfaf.org/database/plants.php?Hordeum+bulbosum edible seeds]
* ''[[Hordeum murinum|murinum]]'' (mouse barley) - [http://www.pfaf.org/database/plants.php?Hordeum+murinum cooked as piñole, bread-flour capable], medicinal: diuretic.
* ''[[Hordeum murinum|murinum]]'' (mouse barley) [http://www.pfaf.org/database/plants.php?Hordeum+murinum cooked as piñole, bread-flour capable], medicinal: diuretic.


===''Leymus''===
===''Leymus''===
* ''[[Leymus arenarius|arenarius]]'' (Lyme grass) - [http://www.pfaf.org/database/plants.php?Leymus+arenarius bread-flour capable, possible food additive]
* ''[[Leymus arenarius|arenarius]]'' (Lyme grass) [http://www.pfaf.org/database/plants.php?Leymus+arenarius bread-flour capable, possible food additive]
* ''[[Leymus racemosus|racemosus]]'' (Volga Wild Rye) - [http://www.pfaf.org/database/plants.php?Leymus+racemosus drought tolerant cereal, used in Russia]
* ''[[Leymus racemosus|racemosus]]'' (Volga Wild Rye) [http://www.pfaf.org/database/plants.php?Leymus+racemosus drought tolerant cereal, used in Russia]
* ''[[Leymus condensatus|condensatus]]'' (Giant Wild Rye) - [http://www.pfaf.org/database/plants.php?Leymus+condensatus Edible seeds, harvesting problematic small seeds]
* ''[[Leymus condensatus|condensatus]]'' (Giant Wild Rye) [http://www.pfaf.org/database/plants.php?Leymus+condensatus Edible seeds, harvesting problematic small seeds]
* ''[[Leymus triticoides|triticoides]]'' (Squaw grass) - [http://www.pfaf.org/database/plants.php?Leymus+triticoides used in North America, seed hairs must be singed]
* ''[[Leymus triticoides|triticoides]]'' (Squaw grass) [http://www.pfaf.org/database/plants.php?Leymus+triticoides used in North America, seed hairs must be singed]


===''Secale''===
===''Secale''===
Ryes
Ryes
* ''[[Rye|cereale]]'' (Cereal Rye) - Livestock feed and sour dough bread - 6 subspecies.
* ''[[Rye|cereale]]'' (Cereal Rye) Livestock feed and sour dough bread 6 subspecies.
* ''cornutum'' (spurred rye) - herbal medicine: [[ergot]] (ergot of spurred rye) at very low doses; <ref>{{cite journal | author = Eadie M | title = Ergot of rye-the first specific for migraine | journal = J Clin Neurosci | volume = 11 | issue = 1 | pages = 4–7 | year = 2004 | pmid = 14642357 | doi = 10.1016/j.jocn.2003.05.002| s2cid = 45659231 }}</ref> dangerously toxic as food.
* ''cornutum'' (spurred rye) herbal medicine: [[ergot]] (ergot of spurred rye) at very low doses; <ref>{{cite journal | author = Eadie M | title = Ergot of rye-the first specific for migraine | journal = J Clin Neurosci | volume = 11 | issue = 1 | pages = 4–7 | year = 2004 | pmid = 14642357 | doi = 10.1016/j.jocn.2003.05.002| s2cid = 45659231 }}</ref> dangerously toxic as food.
* ''strictum'' - [http://www.pfaf.org/database/plants.php?Secale+strictum+kuprijanovii actively cultivated]
* ''strictum'' - [http://www.pfaf.org/database/plants.php?Secale+strictum+kuprijanovii actively cultivated]
* ''sylvestre'' - (Tibetan Rye) - [http://www.pfaf.org/database/plants.php?Secale+sylvestre actively cultivated] in Tibet and China highlands.
* ''sylvestre'' - (Tibetan Rye) - [http://www.pfaf.org/database/plants.php?Secale+sylvestre actively cultivated] in Tibet and China highlands.
* ''vavilovii'' (Armenian Wild Rye) - [http://www.pfaf.org/database/plants.php?Secale+vavilovii edible seeds, thickener].
* ''vavilovii'' (Armenian Wild Rye) [http://www.pfaf.org/database/plants.php?Secale+vavilovii edible seeds, thickener].


===''Triticum''===
===''Triticum''===
(Wheat)
(Wheat)
* ''[[Common wheat|aestivum]]'' (bread wheat) - (AABBDD Genome)
* ''[[Common wheat|aestivum]]'' (bread wheat) (AABBDD Genome)
** ''compactum'' (club wheat)
** ''compactum'' (club wheat)
** ''macha'' (hulled)
** ''macha'' (hulled)
Line 97: Line 97:
** ''paleocolchicum''
** ''paleocolchicum''
** ''[[Triticum polonicum|polonicum]]'' (Polish wheat)
** ''[[Triticum polonicum|polonicum]]'' (Polish wheat)
** ''[[Khorasan wheat|turanicum]]''
** ''[[Khorasan wheat|turanicum]]'' (Khorasan wheat)


==Genetics==
==Genetics==
Line 256: Line 256:


==Triticeae and health==
==Triticeae and health==
Glutens (storage proteins) in the Triticeae tribe have been linked to [[gluten sensitivity|gluten-sensitive diseases]]. While it was once believed that oats carried similar potentials, recent studies indicate that most [[oat sensitivity]] is the result of contamination.{{citation needed|date=June 2016}} [[Triticeae glutens]] studies are important in determining the links between gluten and gastrointestinal, allergic, and autoimmune diseases.<ref name="pmid17376046">{{cite journal |vauthors=Silano M, Dessì M, De Vincenzi M, Cornell H |title=In vitro tests indicate that certain varieties of oats may be harmful to patients with coeliac disease |journal=J. Gastroenterol. Hepatol. |volume=22 |issue=4 |pages=528–31 |year=2007 |pmid=17376046 |doi=10.1111/j.1440-1746.2006.04512.x|s2cid=38754601 }}</ref> Some of the recently discovered biochemical and immunochemical properties of these proteins suggest they evolved for protection against dedicated or continuous consumption by mammalian seed-eaters.<ref name="pmid17544966">{{cite journal |vauthors=Mamone G, Ferranti P, Rossi M, etal |title=Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease |journal= Journal of Chromatography B|volume= 855|issue= 2|year=2007 |pmid=17544966 |doi=10.1016/j.jchromb.2007.05.009 |pages=236–41}}</ref><ref name="pmid16212427">{{cite journal |vauthors=Shan L, Qiao SW, Arentz-Hansen H, etal |title=Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten: Implications for Celiac Sprue |journal=J. Proteome Res. |volume=4 |issue=5 |pages=1732–41 |year=2005 |pmid=16212427 |doi=10.1021/pr050173t |pmc=1343496}}</ref> One recent publication even raises doubts about wheat's safety for anyone to eat.<ref name="pmid17519496">{{cite journal |vauthors=Bernardo D, Garrote JA, Fernández-Salazar L, Riestra S, Arranz E |title=Is gliadin really safe for non‐coeliac individuals? Production of interleukin 15 in biopsy culture from non‐coeliac individuals challenged with gliadin peptides |journal=Gut |volume=56 |issue=6 |pages=889–90 |year=2007 |pmid=17519496 |doi=10.1136/gut.2006.118265 |pmc=1954879}}</ref> Overlapping properties with regard to food preparation{{clarify|date=June 2016}} have made these proteins much more useful as cereal cultivars, and a balanced perspective suggests a variable tolerance to Triticeae glutens reflects early childhood environment and genetic predisposition.<ref name="pmid17616789">{{cite journal |vauthors=Collin P, Mäki M, Kaukinen K | title = Safe gluten threshold for patients with celiac disease: some patients are more tolerant than others | journal = Am. J. Clin. Nutr. | volume = 86 | issue = 1 | pages = 260; author reply 260–1 | year = 2007 | pmid = 17616789 | doi = 10.1093/ajcn/86.1.260| doi-access = free }}</ref><ref name="pmid17664902">{{cite book | author = Guandalini S | title = Issues in Complementary Feeding | chapter = The influence of gluten: weaning recommendations for healthy children and children at risk for celiac disease | journal = Nestlé Nutrition Workshop Series. Paediatric Programme | volume = 60 | pages = 139–55 | year = 2007 | pmid = 17664902 | doi = 10.1159/000106366 | series = Nestlé Nutrition Workshop Series: Pediatric Program | isbn = 978-3-8055-8283-4 }}</ref><ref name="pmid10441179">{{cite journal |vauthors=Bao F, Yu L, Babu S, etal | title = One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies | journal = J. Autoimmun. | volume = 13 | issue = 1 | pages = 143–8 | year = 1999 | pmid = 10441179 | doi = 10.1006/jaut.1999.0303}}</ref><ref name="pmid12050583">{{cite journal |vauthors=Zubillaga P, Vidales MC, Zubillaga I, Ormaechea V, García-Urkía N, Vitoria JC | title = HLA-DQA1 and HLA-DQB1 genetic markers and clinical presentation in celiac disease | journal = J. Pediatr. Gastroenterol. Nutr. | volume = 34 | issue = 5 | pages = 548–54 | year = 2002 | pmid = 12050583 | doi =10.1097/00005176-200205000-00014 | s2cid = 46271326 | doi-access = free }}</ref>
Glutens (storage proteins) in the Triticeae tribe have been linked to [[gluten sensitivity|gluten-sensitive diseases]]. While it was once believed that oats carried similar potentials, recent studies indicate that most [[oat sensitivity]] is the result of contamination.{{citation needed|date=June 2016}} [[Triticeae glutens]] studies are important in determining the links between gluten and gastrointestinal, allergic, and autoimmune diseases.<ref name="pmid17376046">{{cite journal |vauthors=Silano M, Dessì M, De Vincenzi M, Cornell H |title=In vitro tests indicate that certain varieties of oats may be harmful to patients with coeliac disease |journal=J. Gastroenterol. Hepatol. |volume=22 |issue=4 |pages=528–31 |year=2007 |pmid=17376046 |doi=10.1111/j.1440-1746.2006.04512.x|s2cid=38754601 }}</ref> Some of the recently discovered biochemical and immunochemical properties of these proteins suggest they evolved for protection against dedicated or continuous consumption by mammalian seed-eaters.<ref name="pmid17544966">{{cite journal |vauthors=Mamone G, Ferranti P, Rossi M, etal |title=Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease |journal= Journal of Chromatography B|volume= 855|issue= 2|year=2007 |pmid=17544966 |doi=10.1016/j.jchromb.2007.05.009 |pages=236–41}}</ref><ref name="pmid16212427">{{cite journal |vauthors=Shan L, Qiao SW, Arentz-Hansen H, etal |title=Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten: Implications for Celiac Sprue |journal=J. Proteome Res. |volume=4 |issue=5 |pages=1732–41 |year=2005 |pmid=16212427 |doi=10.1021/pr050173t |pmc=1343496}}</ref> One recent publication even raises doubts about wheat's safety for anyone to eat.<ref name="pmid17519496">{{cite journal |vauthors=Bernardo D, Garrote JA, Fernández-Salazar L, Riestra S, Arranz E |title=Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides |journal=Gut |volume=56 |issue=6 |pages=889–90 |year=2007 |pmid=17519496 |doi=10.1136/gut.2006.118265 |pmc=1954879}}</ref> Overlapping properties with regard to food preparation{{clarify|date=June 2016}} have made these proteins much more useful as cereal cultivars, and a balanced perspective suggests a variable tolerance to Triticeae glutens reflects early childhood environment and genetic predisposition.<ref name="pmid17616789">{{cite journal |vauthors=Collin P, Mäki M, Kaukinen K | title = Safe gluten threshold for patients with celiac disease: some patients are more tolerant than others | journal = Am. J. Clin. Nutr. | volume = 86 | issue = 1 | pages = 260; author reply 260–1 | year = 2007 | pmid = 17616789 | doi = 10.1093/ajcn/86.1.260| doi-access = free }}</ref><ref name="pmid17664902">{{cite book | author = Guandalini S | title = Issues in Complementary Feeding | chapter = The influence of gluten: weaning recommendations for healthy children and children at risk for celiac disease | journal = Nestlé Nutrition Workshop Series. Paediatric Programme | volume = 60 | pages = 139–55 | year = 2007 | pmid = 17664902 | doi = 10.1159/000106366 | series = Nestlé Nutrition Workshop Series: Pediatric Program | isbn = 978-3-8055-8283-4 }}</ref><ref name="pmid10441179">{{cite journal |vauthors=Bao F, Yu L, Babu S, etal | title = One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies | journal = J. Autoimmun. | volume = 13 | issue = 1 | pages = 143–8 | year = 1999 | pmid = 10441179 | doi = 10.1006/jaut.1999.0303}}</ref><ref name="pmid12050583">{{cite journal |vauthors=Zubillaga P, Vidales MC, Zubillaga I, Ormaechea V, García-Urkía N, Vitoria JC | title = HLA-DQA1 and HLA-DQB1 genetic markers and clinical presentation in celiac disease | journal = J. Pediatr. Gastroenterol. Nutr. | volume = 34 | issue = 5 | pages = 548–54 | year = 2002 | pmid = 12050583 | doi =10.1097/00005176-200205000-00014 | s2cid = 46271326 | doi-access = free }}</ref>


==References==
==References==
Line 265: Line 265:
* [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=147389 Pubmed:Triticeae]
* [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=147389 Pubmed:Triticeae]
* [http://www.pfaf.org/database/search_use.php Database of Edible Seed Plants]
* [http://www.pfaf.org/database/search_use.php Database of Edible Seed Plants]
* [https://web.archive.org/web/20060616092948/http://www.ipgri.cgiar.org/publications/HTMLPublications/47/ch01.htm#TopOfPage International Center for Agricultural Research in the Dry Areas (ICARDA)] - An excellent resource for the ancestral genetics of Triticeae.
* [https://web.archive.org/web/20060616092948/http://www.ipgri.cgiar.org/publications/HTMLPublications/47/ch01.htm#TopOfPage International Center for Agricultural Research in the Dry Areas (ICARDA)] An excellent resource for the ancestral genetics of Triticeae.
* [https://web.archive.org/web/20050209101650/http://www.ksu.edu/wgrc/Taxonomy/compaeg.html Aegilops (genome) Comparative Classification Table]
* [https://web.archive.org/web/20050209101650/http://www.ksu.edu/wgrc/Taxonomy/compaeg.html Aegilops (genome) Comparative Classification Table]
* [https://web.archive.org/web/20050308102427/http://www.ksu.edu/wgrc/Taxonomy/comptri.html Triticum (genome) Comparative Classification Table]
* [https://web.archive.org/web/20050308102427/http://www.ksu.edu/wgrc/Taxonomy/comptri.html Triticum (genome) Comparative Classification Table]

Latest revision as of 02:33, 1 May 2024

Triticeae
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Clade: BOP clade
Subfamily: Pooideae
Supertribe: Triticodae
Tribe: Triticeae
L.
Genera

See text.

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat (see wheat taxonomy), barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

Genera of Triticeae

[edit]

Genera recognized in Triticeae according to Robert Soreng et al.:[1]

Cultivated or edible species

[edit]
4 different commercial forms of Triticeae cultivars. Clockwise from top: common wheat flour, European spelt, barley corns, rolled rye

Aegilops

[edit]

Amblyopyrum

[edit]
  • muticum – Source of T genome.

Elymus

[edit]

Various species are cultivated for pastoral purposes or to protect fallow land from opportunistic or invasive species

Hordeum

[edit]

Many barley cultivars

Leymus

[edit]

Secale

[edit]

Ryes

Triticum

[edit]

(Wheat)

  • aestivum (bread wheat) – (AABBDD Genome)
    • compactum (club wheat)
    • macha (hulled)
    • spelta (hulled, spelt)
    • sphaerococcum (shot wheat)
  • monococcum (Einkorn wheat) (A Genome)
  • timopheevii (Sanduri wheat)
  • turgidum (poulard wheat) (AABB Genome)[3]

Genetics

[edit]
Genomes of some Triticeae genera and species
Genera & Species 1st 2nd 3rd
Triticum boeoticum AA
Triticum monococcum AMAM
Triticum urartu AUAU
Aegilops speltoides var. speltoides BB
Aegilops caudata CC
Aegilops tauschii DD
Lophopyrum elongatum EE
Hordeum vulgare HH
Thinopyrum bessarabicum JJ
Aegilops comosa MM
Aegilops uniaristata NN
Henrardia persica OO
Agropyrum cristatum PP
Secale cereale RR
Aegilops bicornis SS
Amblyopyrum muticum TT
Aegilops umbellulata UU
Dasypyrum VV
Psathyrostachys NsNs
Pseudoroegneria StSt
Triticum zhukovskyi AA AMAM GG
Triticum turgidum AA BB
Triticum aestivum AA BB DD
Triticum timopheevii AA GG
Aegilops cylindrica CC DD
Stenostachys sp. HH WW
Elmyus canadensis HH StSt
Elmyus abolinii YY StSt
Thinopyrum Vjd =(V/J/D) JJ StSt VjdVjd
Leymus tricoides NsNs XmXm

Triticeae and its sister tribe Bromeae (bromes or cheat grasses) when joined form a sister clade with Poeae and Aveneae (Oats). Inter-generic gene flow characterized these taxa from the early stages. For example, Poeae and Aveneae share a mtDNA genetic marker with barley and 10 other members of Triticeae, whereas all 19 genera of Triticeae bear a wheat marker along with Bromeae.[4]

Genera within Triticeae contain diploid, allotetraploid and/or allohexaploid genomes, the capacity to form allopolyploid genomes varies within the tribe. In this tribe, the majority of diploid species tested are closely related to Aegilops, the more distal members (earliest branch points) include Hordeum (Barley), Eremian, Psathyrostachys. The broad distribution of cultivars within the Tribe and the properties of the proteins have implication in the treatment of certain digestive diseases and autoimmune disorders.[citation needed]

Evolution of the tribe

[edit]

One of the earliest branches in Triticeae, to Pseudoroegeneria, produces the genome StSt and another Hordeum then genome = HH. Allotetraploid combinations of Pseudoroegeneria and Hordeum and are seen in Elmyus (HHStSt),[5] but also shows introgression from Australian and Agropyron wheatgrasses.[6] Elymus contains mostly Pseudoroegeneria mtDNA.[7]

Many genera and species of Triticeae are allopolyploids, having more chromosomes than seen in typical diploids. Typical allopolyploids are tetraploid or hexaploid, XXYY or XXYYZZ. The creation of polyploid species results from natural random events tolerated by polyploid-capable plants. Natural allopolyploid plants may have selective advantages and some may permit the recombination of distantly related genetic material. Poulard wheat is an example of a stable allotetraploid wheat.[citation needed]

The Secale (domesticated rye) may be a very early branch from the goat grass clad (or goat grasses are a branch of early rye grasses), as branch these are almost contemporary with the branching between monoploid wheat and Aegilops tauschii. Studies in Anatolia now suggest Rye (Secale) was cultivated, but not domesticated, prior to the holocene and to evidence for the cultivation of wheat. As climate changed the favorability of Secale declined. At that time other strains of barley and wheat may have been cultivated, but humans did little to change them.[citation needed]

Goat grasses and the evolution of bread wheat

[edit]

Evolution of Bread Wheat

Tetraploidization in wild emmer wheat

[edit]

Aegilops appears to be basal to several taxa such as Triticum, Amblyopyrum, and Crithopsis. Certain species such as Aegilops speltoides could potentially represent core variants of the taxa. The generic placement may be more a matter of nomenclature. Genera Aegilops and Triticum are very closely related; as the adjacent image illustrates, the Aegilops species occupy most of the basal branch points in bread wheat evolution indicating that genus Triticum evolved from Aegilops after an estimated 4 million years ago.[8] The divergence of the genomes is followed by allotetraploidization of a speltoid goatgrass x basal wheat species Triticum boeoticum with strains in the middle eastern region giving rise to cultivated emmer wheat.[9]

Hexaploidization of tetraploid wheat

[edit]

Hybridization of tetraploid wheat with Ae. tauschii produced a hulled wheat similar to spelt, suggesting T. spelta is basal. The tauschii species can be subdivided into subspecies tauschii (eastern Turkey to China or Pakistan) and strangulata (Caucasus to S. Caspian, N. Iran). The D genome of bread wheat is closer to A.t. strangulata than A.t. tauschii. It is suggested that Ae. tauschii underwent rapid selective evolution prior to combining with tetraploid wheat.[citation needed]

Wild Triticeae use by humans

[edit]

Intense use of wild Triticeae can be seen in the Levant as early as 23,000 years ago.[10] This site, Ohala II (Israel), also shows that Triticeae grains were processed and cooked.[11] Many cultivars appear to have been domesticated in the region of the upper Fertile Crescent, Levant and central Anatolia.[12][13] More recent evidence suggests that cultivation of wheat from emmer's wheat required a longer period with wild seeding maintaining a presence in archaeological finds.[14]

Pastoral grasses

[edit]

Triticeae has a pastoral component that some contend goes back to the Neolithic period and is referred to as the Garden Hunting Hypothesis. In this hypothesis grains could be planted or shared for the purpose of attracting game animals so that they could be hunted close to settlements.[citation needed]

Today, rye and other Triticeae cultivars are used to graze animals, particularly cattle. Rye grasses in the New World have been used selectively as fodder, but also to protect grasslands without the introduction of invasive Old World species.[citation needed]

Triticeae and health

[edit]

Glutens (storage proteins) in the Triticeae tribe have been linked to gluten-sensitive diseases. While it was once believed that oats carried similar potentials, recent studies indicate that most oat sensitivity is the result of contamination.[citation needed] Triticeae glutens studies are important in determining the links between gluten and gastrointestinal, allergic, and autoimmune diseases.[15] Some of the recently discovered biochemical and immunochemical properties of these proteins suggest they evolved for protection against dedicated or continuous consumption by mammalian seed-eaters.[16][17] One recent publication even raises doubts about wheat's safety for anyone to eat.[18] Overlapping properties with regard to food preparation[clarification needed] have made these proteins much more useful as cereal cultivars, and a balanced perspective suggests a variable tolerance to Triticeae glutens reflects early childhood environment and genetic predisposition.[19][20][21][22]

References

[edit]
  1. ^ Soreng, Robert J.; Peterson, Paul M.; Romaschenko, Konstantin; Davidse, Gerrit; Teisher, Jordan K.; Clark, Lynn G.; Barberá, Patricia; Gillespie, Lynn J.; Zuloaga, Fernando O. (2017). "A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications". Journal of Systematics and Evolution. 55 (4): 259–290. doi:10.1111/jse.12262. hdl:10261/240149. ISSN 1674-4918.
  2. ^ Eadie M (2004). "Ergot of rye-the first specific for migraine". J Clin Neurosci. 11 (1): 4–7. doi:10.1016/j.jocn.2003.05.002. PMID 14642357. S2CID 45659231.
  3. ^ Oliver, R.E.; Cai, X.; Friesen, T.L.; Halley, S.; Stack, R.W.; Xu, S.S. (2008). "Evaluation of Fusarium Head Blight Resistance in Tetraploid Wheat (Triticum turgidum L.)". Crop Science. 48 (1): 213–222. doi:10.2135/cropsci2007.03.0129.
  4. ^ Kubo N, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K (2005). "Structural and distributional variation of mitochondrial rps2 genes in the tribe Triticeae (Poaceae)". Theor Appl Genet. 110 (6): 995–1002. doi:10.1007/s00122-004-1839-x. PMID 15754209. S2CID 20620721.
  5. ^ Mason-Gamer R (2004). "Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass". Syst Biol. 53 (1): 25–37. doi:10.1080/10635150490424402. PMID 14965898.
  6. ^ Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu B (2006). "Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences". New Phytol. 170 (2): 411–20. doi:10.1111/j.1469-8137.2006.01665.x. PMID 16608465.
  7. ^ Mason-Gamer R, Orme N, Anderson C (2002). "Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets". Genome. 45 (6): 991–1002. doi:10.1139/g02-065. PMID 12502243.
  8. ^ Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006). "Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat". Mol Biol Evol. 23 (7): 1386–1396. doi:10.1093/molbev/msl004. PMID 16675504.
  9. ^ Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997). "Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting". Science. 278 (5341): 1312–1314. Bibcode:1997Sci...278.1312H. doi:10.1126/science.278.5341.1312.
  10. ^ Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O (2004). "The broad spectrum revisited: Evidence from plant remains". Proc Natl Acad Sci USA. 101 (26): 9551–5. Bibcode:2004PNAS..101.9551W. doi:10.1073/pnas.0402362101. PMC 470712. PMID 15210984.
  11. ^ Piperno D, Weiss E, Holst I, Nadel D (2004). "Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis". Nature. 430 (7000): 670–3. Bibcode:2004Natur.430..670P. doi:10.1038/nature02734. PMID 15295598. S2CID 4431395.
  12. ^ Lev-Yadun S, Gopher A, Abbo S (2000). "The Cradle of Agriculture". Science. 288 (5471): 1602–1603. doi:10.1126/science.288.5471.1602. PMID 10858140. S2CID 86661579.
  13. ^ Weiss E, Kislev ME, Hartmann A (2006). "(Perspectives-Anthropology:) Autonomous Cultivation Before Domestication". Science. 312 (5780): 1608–1610. doi:10.1126/science.1127235. PMID 16778044. S2CID 83125044.
  14. ^ Balter M (2007). "Seeking Agriculture's Ancient Roots". Science. 316 (5833): 1830–1835. doi:10.1126/science.316.5833.1830. PMID 17600193. S2CID 128452153.
  15. ^ Silano M, Dessì M, De Vincenzi M, Cornell H (2007). "In vitro tests indicate that certain varieties of oats may be harmful to patients with coeliac disease". J. Gastroenterol. Hepatol. 22 (4): 528–31. doi:10.1111/j.1440-1746.2006.04512.x. PMID 17376046. S2CID 38754601.
  16. ^ Mamone G, Ferranti P, Rossi M, et al. (2007). "Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease". Journal of Chromatography B. 855 (2): 236–41. doi:10.1016/j.jchromb.2007.05.009. PMID 17544966.
  17. ^ Shan L, Qiao SW, Arentz-Hansen H, et al. (2005). "Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten: Implications for Celiac Sprue". J. Proteome Res. 4 (5): 1732–41. doi:10.1021/pr050173t. PMC 1343496. PMID 16212427.
  18. ^ Bernardo D, Garrote JA, Fernández-Salazar L, Riestra S, Arranz E (2007). "Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides". Gut. 56 (6): 889–90. doi:10.1136/gut.2006.118265. PMC 1954879. PMID 17519496.
  19. ^ Collin P, Mäki M, Kaukinen K (2007). "Safe gluten threshold for patients with celiac disease: some patients are more tolerant than others". Am. J. Clin. Nutr. 86 (1): 260, author reply 260–1. doi:10.1093/ajcn/86.1.260. PMID 17616789.
  20. ^ Guandalini S (2007). "The influence of gluten: weaning recommendations for healthy children and children at risk for celiac disease". Issues in Complementary Feeding. Nestlé Nutrition Workshop Series: Pediatric Program. Vol. 60. pp. 139–55. doi:10.1159/000106366. ISBN 978-3-8055-8283-4. PMID 17664902. {{cite book}}: |journal= ignored (help)
  21. ^ Bao F, Yu L, Babu S, et al. (1999). "One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies". J. Autoimmun. 13 (1): 143–8. doi:10.1006/jaut.1999.0303. PMID 10441179.
  22. ^ Zubillaga P, Vidales MC, Zubillaga I, Ormaechea V, García-Urkía N, Vitoria JC (2002). "HLA-DQA1 and HLA-DQB1 genetic markers and clinical presentation in celiac disease". J. Pediatr. Gastroenterol. Nutr. 34 (5): 548–54. doi:10.1097/00005176-200205000-00014. PMID 12050583. S2CID 46271326.
[edit]