Jump to content

Pegasus (satellite): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
adds nationality
No edit summary
Line 2: Line 2:
[[Image:Pegasus satellite.jpg|thumb|250px|right|Pegasus Satellite]]
[[Image:Pegasus satellite.jpg|thumb|250px|right|Pegasus Satellite]]
[[File:Pegasus Deployment sequence.png|thumb|250px|right|Deployment of a Pegasus Satellite]]
[[File:Pegasus Deployment sequence.png|thumb|250px|right|Deployment of a Pegasus Satellite]]
The '''Pegasus satellite program''' was a series of three American [[satellite]]s launched in 1965 to study the frequency of [[micrometeorite]] impacts on spacecraft. All three Pegasus satellites were launched by [[Saturn I]] [[rocket]]s, and remained connected with the upper stage.
The '''Pegasus satellite program''' was a series of three American [[satellite]]s launched in 1965 to study the frequency of [[micrometeorite]] impacts on spacecraft. All three Pegasus satellites were launched by [[Saturn I]] [[rocket]]s, and remained connected with their upper stages.


The Pegasus satellite was named for the [[Pegasus|winged horse of Greek mythology]] and was first lofted into space by a NASA [[Saturn I]] rocket on February 16, 1965. Like its namesake, the Pegasus satellite was notable for its "wings", a pair of {{convert|96|ft|m|adj=on}}-long, {{convert|14|ft|m|adj=on}}-wide arrays of 104 panels fitted with sensors to detect punctures by micrometeoroids at high altitudes, in support of the [[Apollo Program]] to send manned lunar landing missions starting by 1970. Micrometeroids were believed to be potentially hazardous to the Apollo crew if they could puncture the spacecraft skin. The sensors successfully measured the frequency, size, direction and penetration of scores of micrometeoroid impacts. The satellite also carried sample protective shields mounted on the arrays.
The Pegasus satellite was named for the [[Pegasus|winged horse of Greek mythology]] and was first lofted into space by a NASA [[Saturn I]] rocket on February 16, 1965. Like its namesake, the Pegasus satellite was notable for its "wings", a pair of {{convert|96|ft|m|adj=on}}-long, {{convert|14|ft|m|adj=on}}-wide arrays of 104 panels fitted with sensors to detect punctures by micrometeoroids at high altitudes, in support of the [[Apollo Program]] to send manned lunar landing missions starting by 1970. Micrometeroids were believed to be potentially hazardous to the Apollo crew if they could puncture the spacecraft skin. The sensors successfully measured the frequency, size, direction and penetration of scores of micrometeoroid impacts. The satellite also carried sample protective shields mounted on the arrays.

Revision as of 02:26, 30 November 2011

Pegasus Satellite
Deployment of a Pegasus Satellite

The Pegasus satellite program was a series of three American satellites launched in 1965 to study the frequency of micrometeorite impacts on spacecraft. All three Pegasus satellites were launched by Saturn I rockets, and remained connected with their upper stages.

The Pegasus satellite was named for the winged horse of Greek mythology and was first lofted into space by a NASA Saturn I rocket on February 16, 1965. Like its namesake, the Pegasus satellite was notable for its "wings", a pair of 96-foot (29 m)-long, 14-foot (4.3 m)-wide arrays of 104 panels fitted with sensors to detect punctures by micrometeoroids at high altitudes, in support of the Apollo Program to send manned lunar landing missions starting by 1970. Micrometeroids were believed to be potentially hazardous to the Apollo crew if they could puncture the spacecraft skin. The sensors successfully measured the frequency, size, direction and penetration of scores of micrometeoroid impacts. The satellite also carried sample protective shields mounted on the arrays.

The NASA Marshall Space Flight Center was responsible for the design, production and operation of the three Pegasus satellites which were launched by Saturn I rocket test flights in 1965. At launch, a boilerplate Apollo Command/Service Module and launch escape system tower were atop the Saturn I, with the Pegasus experiment folded inside the Service Module. After first stage separation and second-stage ignition, the launch escape system was jettisoned. When the second stage attained orbit, the 10,000-pound Apollo boilerplate Command and Service modules were jettisoned into a separate orbit. Then a motor driven device extended the winglike panels on the Pegasus to a span of 96 feet (29 m). The Pegasus wings remained attached to the Saturn I's second stage as planned.

A television camera, mounted on the interior of the Service Module adapter, provided pictures of the satellite deploying in space and as one historian has written, "captured a vision of the eerie silent wings of Pegasus I as they haltingly deployed." The satellite exposed more than 2,300 square feet (210 m2) of instrumented surface, with thickness varying up to 0.016-inch (0.41 mm).

Ernst Stuhlinger, then director of the MSFC Research Projects Laboratory, noted that all three Pegasus missions provided more than data on micrometeoroid penetration. Scientists also were able to gather data regarding gyroscopic motion and orbital characteristics of rigid bodies in space, lifetimes of electronic components in the space environment, and thermal control systems and the degrading effects of space on thermal control coatings. Space historian Roger Bilstein reported that for physicists the Pegasus missions provided additional knowledge about the radiation environments of space, the Van Allen radiation belts and other phenomena.

Orbits

  • Pegasus 2
    • Launched: 25 May 1965
    • Launch vehicle: A-104
    • Orbital inclination: 31.7 degrees.
    • Perigee: 502 km
    • Apogee: 740 km
    • Launch weight: 10.46 tons.
    • Dry weight: 1451.5 kg
    • Decayed: 3 November 1979
    • International Designator: 1965-039A
  • Pegasus 3
    • Launched: 30 July 1965
    • Launch vehicle: A-105
    • Orbital inclination: 28.9 degrees.
    • Perigee: 441 km
    • Apogee: 449 km
    • Launch weight: 10.5 tons.
    • Dry weight: 1451.5 kg
    • Decayed: 4 August 1969
    • International Designator: 1965-060A