Oka coherence theorem
Appearance
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (July 2021) |
In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka (1950), states that the sheaf germs of holomorphic functions over a complex manifold is coherent.
See also
References
- Hörmander, Lars (1990), An introduction to complex analysis in several variables, Amsterdam: North-Holland, ISBN 978-0-444-88446-6, MR 0344507
- Oka, Kiyoshi (1950), "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques", Bulletin de la Société Mathématique de France, 78: 1–27, ISSN 0037-9484, MR 0035831
- Onishchik, A.L. (2001) [1994], "Coherent analytic sheaf", Encyclopedia of Mathematics, EMS Press
- Noguchi, Junjiro (2019), "A Weak Coherence Theorem and Remarks to the Oka Theory" (PDF), Kodai Math. J., 42 (3): 566–586, arXiv:1704.07726, doi:10.2996/kmj/1572487232, S2CID 119697608