Jump to content

Oka coherence theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Silvermatsu (talk | contribs) at 03:53, 14 November 2021 (top). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka (1950), states that the sheaf germs of holomorphic functions over a complex manifold is coherent.

See also

References

  • Hörmander, Lars (1990), An introduction to complex analysis in several variables, Amsterdam: North-Holland, ISBN 978-0-444-88446-6, MR 0344507
  • Oka, Kiyoshi (1950), "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques", Bulletin de la Société Mathématique de France, 78: 1–27, ISSN 0037-9484, MR 0035831
  • Onishchik, A.L. (2001) [1994], "Coherent analytic sheaf", Encyclopedia of Mathematics, EMS Press
  • Noguchi, Junjiro (2019), "A Weak Coherence Theorem and Remarks to the Oka Theory" (PDF), Kodai Math. J., 42 (3): 566–586, arXiv:1704.07726, doi:10.2996/kmj/1572487232, S2CID 119697608