From Wikipedia, the free encyclopedia
Triangular function
The triangular function (also known as the triangle function , hat function , or tent function ) is defined either as:
tri
(
t
)
=
∧
(
t
)
=
d
e
f
max
(
1
−
|
t
|
,
0
)
=
{
1
−
|
t
|
,
|
t
|
<
1
0
,
otherwise
{\displaystyle {\begin{aligned}\operatorname {tri} (t)=\land (t)\quad &{\overset {\underset {\mathrm {def} }{}}{=}}\ \max(1-|t|,0)\\&={\begin{cases}1-|t|,&|t|<1\\0,&{\mbox{otherwise}}\end{cases}}\end{aligned}}}
or, equivalently, as the convolution of two identical unit rectangular functions :
tri
(
t
)
=
rect
(
t
)
∗
rect
(
t
)
=
d
e
f
∫
−
∞
∞
r
e
c
t
(
τ
)
⋅
r
e
c
t
(
t
−
τ
)
d
τ
=
∫
−
∞
∞
r
e
c
t
(
τ
)
⋅
r
e
c
t
(
τ
−
t
)
d
τ
.
{\displaystyle {\begin{aligned}\operatorname {tri} (t)=\operatorname {rect} (t)*\operatorname {rect} (t)\quad &{\overset {\underset {\mathrm {def} }{}}{=}}\int _{-\infty }^{\infty }\mathrm {rect} (\tau )\cdot \mathrm {rect} (t-\tau )\ d\tau \\&=\int _{-\infty }^{\infty }\mathrm {rect} (\tau )\cdot \mathrm {rect} (\tau -t)\ d\tau .\end{aligned}}}
The triangular function can also be represented as the product of the rectangular and absolute value functions:
tri
(
t
)
=
rect
(
t
)
(
−
|
t
|
+
1
)
{\displaystyle \operatorname {tri} (t)=\operatorname {rect} (t)\left(-\left|t\right|+1\right)}
The function is useful in signal processing and communication systems engineering as a representation of an idealized signal, and as a prototype or kernel from which more realistic signals can be derived. It also has applications in pulse code modulation as a pulse shape for transmitting digital signals and as a matched filter for receiving the signals. It is also equivalent to the triangular window sometimes called the Bartlett window .
Scaling
For any parameter,
a
≠
0
{\displaystyle a\neq 0\,}
:
tri
(
t
/
a
)
=
∫
−
∞
∞
r
e
c
t
(
τ
)
⋅
r
e
c
t
(
τ
−
t
/
a
)
d
τ
=
{
1
−
|
t
/
a
|
,
|
t
|
<
|
a
|
0
,
otherwise
.
{\displaystyle {\begin{aligned}\operatorname {tri} (t/a)&=\int _{-\infty }^{\infty }\mathrm {rect} (\tau )\cdot \mathrm {rect} (\tau -t/a)\ d\tau \\&={\begin{cases}1-|t/a|,&|t|<|a|\\0,&{\mbox{otherwise}}.\end{cases}}\end{aligned}}}
The transform is easily determined using the convolution property of Fourier transforms and the Fourier transform of the rectangular function :
F
{
tri
(
t
)
}
=
F
{
rect
(
t
)
∗
rect
(
t
)
}
=
F
{
rect
(
t
)
}
⋅
F
{
rect
(
t
)
}
=
F
{
rect
(
t
)
}
2
=
s
i
n
c
2
(
f
)
.
{\displaystyle {\begin{aligned}{\mathcal {F}}\{\operatorname {tri} (t)\}&={\mathcal {F}}\{\operatorname {rect} (t)*\operatorname {rect} (t)\}\\&={\mathcal {F}}\{\operatorname {rect} (t)\}\cdot {\mathcal {F}}\{\operatorname {rect} (t)\}\\&={\mathcal {F}}\{\operatorname {rect} (t)\}^{2}\\&=\mathrm {sinc} ^{2}(f).\end{aligned}}}
See also