Jump to content

Hexagonal antiprism

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by A2569875 (talk | contribs) at 01:37, 24 February 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Uniform hexagonal antiprism
Type Prismatic uniform polyhedron
Elements F = 14, E = 24
V = 12 (χ = 2)
Faces by sides 12{3}+2{6}
Schläfli symbol s{2,12}
sr{2,6}
Wythoff symbol | 2 2 6
Coxeter diagram
Symmetry group D6d, [2+,12], (2*6), order 24
Rotation group D6, [6,2]+, (622), order 12
References U77(d)
Dual Hexagonal trapezohedron
Properties convex

Vertex figure
3.3.3.6

In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps.

If faces are all regular, it is a semiregular polyhedron.

Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3
Family of uniform n-gonal antiprisms
Antiprism name Digonal antiprism (Trigonal)
Triangular antiprism
(Tetragonal)
Square antiprism
Pentagonal antiprism Hexagonal antiprism Heptagonal antiprism ... Apeirogonal antiprism
Polyhedron image ...
Spherical tiling image Plane tiling image
Vertex config. 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 ... ∞.3.3.3
  • Weisstein, Eric W. "Antiprism". MathWorld.
  • Hexagonal Antiprism: Interactive Polyhedron model
  • Virtual Reality Polyhedra www.georgehart.com: The Encyclopedia of Polyhedra