Jump to content

E

From Wikipedia, the free encyclopedia
(Redirected from E7 1/2)

In mathematics, the Lie algebra E is a subalgebra of E8 containing E7 defined by Landsberg and Manivel in order to fill the "hole" in a dimension formula for the exceptional series En of simple Lie algebras. This hole was observed by Cvitanovic, Deligne, Cohen and de Man. E has dimension 190, and is not simple: as a representation of its subalgebra E7, it splits as E7 ⊕ (56) ⊕ R, where (56) is the 56-dimensional irreducible representation of E7. This representation has an invariant symplectic form, and this symplectic form equips (56) ⊕ R with the structure of a Heisenberg algebra; this Heisenberg algebra is the nilradical in E.

See also

[edit]

References

[edit]
  • A.M. Cohen, R. de Man, "Computational evidence for Deligne's conjecture regarding exceptional Lie groups", Comptes rendus de l'Académie des Sciences, Série I 322 (1996) 427–432.
  • P. Deligne, "La série exceptionnelle de groupes de Lie", Comptes rendus de l'Académie des Sciences, Série I 322 (1996) 321–326.
  • P. Deligne, R. de Man, "La série exceptionnelle de groupes de Lie II", Comptes rendus de l'Académie des Sciences, Série I 323 (1996) 577–582.
  • Landsberg, J. M.; Manivel, L. (2006), "The sextonions and E", Advances in Mathematics, 201 (1): 143–179, arXiv:math.RT/0402157, doi:10.1016/j.aim.2005.02.001, MR 2204753