Cristalización
La cristalización es un proceso físico por el cual se forma un sólido, el cristal, a partir de un gas, un líquido o una disolución, en el que los iones, átomos o moléculas están altamente organizados, al establecerse enlaces formando una red cristalina. La cristalización se emplea con bastante frecuencia en química para purificar una sustancia sólida.[1]
La cristalización se produce en dos pasos principales. El primero es la nucleación, la aparición de una fase cristalina a partir de un líquido sobreenfriado o de un solvente supersaturado. El segundo paso se conoce como crecimiento cristalino, que es el aumento en el tamaño de las partículas y conduce a un estado cristalino. Una característica importante de este paso es que las partículas sueltas forman capas en la superficie del cristal y se alojan en inconsistencias abiertas como poros, grietas, etc.
La mayoría de minerales y moléculas orgánicas cristalizan fácilmente, y los cristales resultantes son generalmente de buena calidad, es decir, sin defectos visibles. Sin embargo, las partículas bioquímicas más grandes, como las proteínas, son a menudo difíciles de cristalizar. La facilidad con la que las moléculas cristalizarán fuertemente depende de la intensidad de las fuerzas atómicas (en el caso de sustancias minerales), fuerzas intermoleculares (sustancias orgánicas y bioquímicas) o fuerzas intramoleculares (sustancias bioquímicas).
La cristalización es también una técnica de separación química sólido-líquido, en la que se produce la transferencia de masa de un soluto de la solución líquida a una fase cristalina sólida pura. En ingeniería química, la cristalización ocurre en un cristalizador. La cristalización está por tanto relacionada con la precipitación, aunque el resultado no es amorfo o desordenado, sino un cristal.
Enfriamiento de una disolución concentrada
Si se prepara una disolución concentrada a altas temperaturas y se enfría, se forma una disolución sobresaturada, que es aquella que tiene, momentáneamente, más soluto disuelto que el admisible por la disolución a esa temperatura en condiciones de equilibrio. Posteriormente, se puede conseguir que la disolución cristalice mediante un enfriamiento controlado. Esto se realiza para que los cristales tengan un tamaño medio, ya que si los cristales son muy pequeños las impurezas quedan depositadas en la superficie de toda la masa, y si los cristales son muy grandes las impurezas quedan atrapadas dentro de las redes cristalinas. Esencialmente cristaliza el compuesto principal, y las que se enriquecen con las impurezas presentes en la mezcla inicial al no alcanzar su límite de solubilidad.[2]
Para que se pueda emplear este método de purificación debe haber una variación importante de la solubilidad con la temperatura, lo que no siempre es el caso. La sal marina (NaCl), por ejemplo, tiene este efecto.
Cambio de disolvente
Preparando una disolución concentrada de una sustancia en un buen disolvente y añadiendo un disolvente, pero que es miscible con el primero, el principal del sólido disuelto empieza a precipitar, y las aguas madres se enriquecen relativamente en las impurezas. Por ejemplo, puede separarse ácido benzoico de una disolución de este en acetona agregando agua.
Evaporación del disolvente
De manera análoga, evaporando el disolvente de una disolución se puede conseguir que empiecen a cristalizar los sólidos que estaban disueltos cuando se alcanzan los límites de sus solubilidades. Este método ha sido utilizado durante milenios en la fabricación de sal a partir de salmuera o agua marina, etc.
Sublimación
En algunos compuestos la presión de vapor de un sólido puede llegar a ser lo bastante elevada como para evaporar cantidades notables de este compuesto sin alcanzar su punto de fusión (sublimación). Los vapores formados condensan en zonas más frías ofrecidas por ejemplo en forma de un "dedo frío", pasando habitualmente directamente del estado gaseoso al sólido, (sublimación regresiva) separándose, de esta manera, de las posibles impurezas. Siguiendo este procedimiento se pueden obtener sólidos puros de sustancias que subliman con facilidad como la cafeína, el azufre elemental, el ácido salicílico, el yodo, etc.
Enfriamiento selectivo de un sólido fundido
Para purificar un sólido cristalino este puede fundirse. Del líquido obtenido cristaliza, en primer lugar, el sólido puro, enriqueciéndose, la fase líquida, de las impurezs presentes en el sólido original. Por ejemplo, este es el método que se utiliza en la obtención de silicio ultra puro para la fabricación de sustratos u obleas en la industria de los semiconductores. Al material sólido (silicio sin purificar que se obtiene previamente en un horno eléctrico de inducción) se le da forma cilíndrica. Luego se lleva a cabo una fusión por zonas sobre el cilindro. Se comienza fundiendo una franja o sección del cilindro por un extremo y se desplaza dicha zona a lo largo de este hasta llegar al otro extremo. Como las impurezas son solubles en el fundido se van separando del sólido y arrastrándose hacia el otro extremo. Este proceso de fusión zonal puede hacerse varias veces para asegurarse que el grado de pureza sea el deseado. Finalmente, se corta el extremo en el que se han acumulado las impurezas y se separa del resto. La ventaja de este proceso es que controlando adecuadamente la temperatura y la velocidad a la que la franja de fundido se desplaza por la pieza cilíndrica, se puede obtener un material que es un monocristal de silicio que presenta las caras de la red cristalina orientadas en la manera deseada.
Crecimiento cristalino
Para obtener cristales grandes de productos poco solubles se han desarrollado otras técnicas. Por ejemplo, se puede hacer difundir dos compuestos de partida en una matriz gelatinosa. Así el compuesto se forma lentamente dando lugar a cristales mayores. Sin embargo, por lo general, cuanto más lento es el proceso de cristalización tanto mejor suele ser el resultado con respecto a la limpieza de los productos de partida y tanto mayor suelen ser los cristales formados.
La forma y el tamaño de los cristales pueden ser influenciados a aparte por condicionantes como el disolvente o la concentración de los compuestos, añadiendo trazas de otros componentes como proteínas (esta es la manera con que los moluscos, las diatomeas, los corales, etc., consiguen depositar sus conchas o esqueletos de calcita o cuarzo en la forma deseada).
La teoría más aceptada para este fenómeno es que el crecimiento cristalino se realiza formando capas monomoleculares alrededor de germen de cristalización o de un cristalito inicial. Nuevas moléculas se adhieren preferentemente en la cara donde su adhesión libera más energía. Las diferencias energéticas suelen ser pequeñas y pueden ser modificadas por la presencia de dichas impurezas o cambiando las condiciones de cristalización.
En multitud de aplicaciones se puede necesitar la obtención de cristales con una determinada forma y/o tamaño como: la determinación de la estructura química mediante difracción de rayos X, la nanotecnología, la obtención de películas especialmente sensibles constituidas por cristales de sales de plata planos orientados perpendicularmente a la luz de incidencia, la preparación de los principios activos de los fármacos, etc.
Recristalización
Se repite el proceso de cristalización en una disolución en la que ya se había hecho dicho proceso. Las aguas que quedan aún contienen soluto disuelto que puede cristalizarse. Para un proceso de cristalización más rápido, aplicar un núcleo de cristalización.
Referencias
- ↑ «Universidad de Burgos». Archivado desde el original el 23 de octubre de 2014. Consultado el 18 de octubre de 2015.
- ↑ Universidad de Barcelona