Русский: Анимация множества Жюлиа для квадратичного полинома fc(z)=z^2+C. Значения C для каждого кадра вычисляются по формуле: C=r*cos(a)+i*r*sin(a), где: a=(0..2*Pi), r=0,7885. Таким образом, параметр С описывает круг с радиусом r=0,7885 и центром в начале координат комплексной плоскости.
Смоделировано в Matlab R2011b используя алгоритм escape-time: A=10e6, max_iter=81. Цветовая схема - зеркалированный jet(40).
Українська: Анімація множини Жюліа для квадратичного полінома fc(z)=z^2+C. Значення C для кожного кадру обчислюються за формулою: C=r*cos(a)+i*r*sin(a), де: a=(0..2*Pi), r=0,7885. Таким чином, параметр С описує коло з радіусом r=0,7885 та центром в початку координат комплексної площини.
Змодельовано в Matlab R2011b за алгоритмом escape-time: A=10e6, max_iter=81. Кольорова схема - зеркальований jet(40).
English: The animation of the Julia set for the complex quadratic polinomial fc(z)=z^2+C. Values of C for each frame evaluates by equation: C=r*cos(a)+i*r*sin(a), where: a=(0..2*Pi), r=0.7885. Thus, parameter С outlines circle with a radius r=0.7885 and a center at origin of the complex plane.
Created in Matlab R2011b using escape-time algorithm:A=10e6, max_iter=81. Colormap - mirorred jet(40).
Polski: Animacja zbioru Julii dla wielomianu kwadratowego zmiennej zespolonej. Wartości dla każdej ramki są obliczane ze wzoru , gdzie , . A zatem, parametr opisuje okrąg o promieniu i środku w początku płaszczyzny zespolonej.
Stworzono w Matlabie R2011b przy użyciu algorytmu escape-time: A=10e6, max_iter=81. Mapa kolorów – odwrócony jet(40).
de partager – de copier, distribuer et transmettre cette œuvre
d’adapter – de modifier cette œuvre
Sous les conditions suivantes :
paternité – Vous devez donner les informations appropriées concernant l'auteur, fournir un lien vers la licence et indiquer si des modifications ont été faites. Vous pouvez faire cela par tout moyen raisonnable, mais en aucune façon suggérant que l’auteur vous soutient ou approuve l’utilisation que vous en faites.
partage à l’identique – Si vous modifiez, transformez, ou vous basez sur cette œuvre, vous devez distribuer votre contribution sous la même licence ou une licence compatible avec celle de l’original.