Paralelismo (xeometría)
En xeometría, o paralelismo é unha relación que se establece entre calquera variedade linear de dimensión maior ou igual que 1 (rectas, planos, hiperplanos…). No plano cartesiano dúas rectas son paralelas se teñen a mesma pendente ou son perpendiculares a un dos eixes, por exemplo a función constante.
En xeometría afín, expresando unha variedade linear como V = p + E, con p punto e E espazo vectorial, dise que A = a + F é paralela a B = b + G se e só se F está contido en G ou G está contido en F, onde A e B son subvariedades lineares da mesma variedade linear V e F e G son subespazos vectoriales do mesmo espazo vectorial E. No plano (afín) (V = ), tradúcese do seguinte xeito: dúas rectas son paralelas se teñen un mesmo vector director.
Nun espazo afín tridimensional, unha recta e un plano poden ser paralelos, e a coincidencia de variedades lineares é un caso particular de paralelismo. Así, dúas rectas, contidas nun plano, son paralelas se son a mesma recta (rectas coincidentes) ou, polo contrario, non comparten ningún punto.
De xeito análogo, no espazo, dous planos son paralelos se son o mesmo plano ou se non comparten ningunha recta.
Rectas paralelas
[editar | editar a fonte]Dúas rectas son paralelas se os seus vectores directores son paralelos, é dicir, se son linearmente dependentes.
Tamén se denominan así aqueles pares de liñas que nunca se unen ou cruzan.
Axioma de unicidadee
[editar | editar a fonte]O axioma que distingue a xeometría euclidiana doutras xeometrías é o seguinte:
- Nun plano, por un punto exterior a unha recta pasa unha e só unha paralela a esa recta.
Propiedades
[editar | editar a fonte]Dado o conxunto P de rectas no plano, podemos definir a relación binaria: que representamos do seguinte modo:
Sendo a, b, c rectas no plano P, cúmprese:
- Reflexiva: Toda recta é paralela a ela mesma:
- Simétrica: se unha recta é paralela a outra, aquela é paralela á primeira:
Estas dúas propiedades dedúcense da intersección de conxuntos e non dependen do axioma de unicidade.
- Transitiva: se unha recta é paralela a outra, e esta á súa vez é paralela a unha terceira, a primeira é paralela á terceira:
Polo tanto a relación de paralelismo entre rectas do plano é unha relación de equivalencia. Estas mesmas propiedades pódense comprobar no conxunto de planos paralelos no espazo.
Teoremas
[editar | editar a fonte]- Nun plano, dúas rectas perpendiculares a unha terceira son paralelas entre elas.
- Nun plano, se unha recta corta outra recta, entón corta todas as paralelas desta.
As demostracións destes dous teoremas e da terceira propiedade empregan o axioma de unicidade.
Véxase tamén
[editar | editar a fonte]Outros artigos
[editar | editar a fonte]- Perpendicularidade
- Quinto postulado de Euclides
- Ángulos entre paralelas
- Rectas paralelas cortadas por unha secante
Bibliografía
[editar | editar a fonte]- Coxeter, H. S. M. (1961): Introduction to Geometry. Nova York: Wiley.
- Dieste, R. (1956): Nuevo tratado del paralelismo. Buenos Aires: Ed. Atlántida.
- Norden, A. P. (1958): Elementare Einführung in die Lobatschewskische Geometrie. Berlín: Deutscher Verlag der Wissenschaften.
- Santaló, L. (1961): Geometrías no euclidianas. Buenos Aires: EUDEBA.
Ligazóns externas
[editar | editar a fonte]- Paralelismo en MathWorld (en inglés)