Asszociativitás
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A matematikában az asszociativitás vagy csoportosíthatóság a kétváltozós (binér/bináris) matematikai műveletek egy tulajdonsága, fontos algebrai azonosság: ha egy tetszőleges halmaz és egy rajta értelmezett kétváltozós művelet (szokásos jelölés tetszőleges elemekre a helyett ); ezt akkor mondjuk asszociatívnak, ha tetszőleges elemeire teljesül:[1]
Ez a függvény fordított lengyel jelöléssel (RPN — Reverse Polish Notation) így írható:
Például a természetes, valós vagy akár a komplex számokon értelmezett szokásos összeadás és szorzás mind asszociatív: , szorzás esetében . (Itt mindkét példa esetében tetszőleges természetes, egész, racionális, valós vagy akár komplex szám.)
Azokat az matematikai struktúrákat, melyek művelete asszociatív, félcsoportoknak nevezzük.
Az általánosított asszociativitás tétele
szerkesztésAz asszociativitás fenti követelménye valójában csak speciális esete a következő tulajdonságnak:
Tétel: Ugyanazt jelentik (ekvivalensek) a következő állítások:
- Az A halmazon értelmezett kétváltozós művelet asszociatív;
- Tetszőleges db. (nem feltétlenül különböző) elemekre az műveletsorozat bármilyen szabályos zárójelezéssel ugyanazt a rögzített elemet adja; itt .[2]
- Legyenek tetszőleges A-beli véges sorozatok, ekkor , ahol a sorozatok A-beli produktumát (elemeinek sorrendben való összeszorzását), míg az adott sorrendben való „egyesítésüket” jelöli.
Egységelemes félcsoportban megengedhetjük azt is, hogy a fent említett sorozatok üresek legyenek, azaz nulla tagjuk legyen.
(A fenti állítások igazolása értelemszerűen végzett teljes indukcióval történhet.)
Asszociativitás és Cayley-tábla: a Light-teszt
szerkesztésEgy művelet asszociativitása a művelettáblájáról (Cayley-tábla) általában nem olvasható le olyan könnyen, mint például a kommutativitás. Az asszociativitás megállapítására át kell alakítani a táblázatot, erre alkalmas az ún. Light-féle eljárás.
Megjegyzés a halmazműveletek asszociativitásáról
szerkesztésBár nincs szakkönyv, amely ne tekintené-nevezné a halmazműveleteket asszociatívnak, hiszen formálisan érvényes (az unió „asszociativitása”) és is (a metszetképzés „asszociativitása”), meg kell jegyeznünk, hogy az asszociativitás fogalma csak műveletekre van definiálva, a halmazműveletek pedig nem szigorú értelemben vett matematikai műveletek, hiszen műveletet csak valamilyen alaphalmaz felett értelmezhetünk (az összes halmaz halmazáról viszont, aminek a halmazműveletek alaphalmazának kellene lennie, ellentmondásossága miatt nem beszélhetünk). Azok a szakkönyvek, amelyek a halmazműveleteket valamely U halmaz hatványhalmazának elemeire, azaz egy U részhalmazaira szorítkozva definiálják, matematikai szempontból teljesen kifogástalanul járnak el, és ez esetben valóban beszélhetünk a halmazműveletek asszociativitásáról.
További információk
szerkesztésLásd még
szerkesztésJegyzetek
szerkesztés- ↑ Megjegyzés: helyett egyszerűen is írható annak a szokásos zárójelezési konvenciónak az értelmében, miszerint a zárójelek nélküli, egy műveletet tartalmazó műveletsorozatokat balról jobbra kell kiolvasni és csoportosítani (tehát például automatikusan így zárójelezendő: ).
- ↑ E tétel az kikötés nélkül is értelmes, és – a lehetséges nem-triviális szabályos zárójelezések kisszámú (1) volta miatt esetében – automatikusan igaz.