整閉整域
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
可換環論において、整閉整域(せいへいせいいき、英: Integrally closed domain)とは、商体の中で整閉な整域のことである。すなわち、整域 A の商体 K の元 x がモニックな多項式関係 を満たせば x ∈ A が導かれるとき、A を整閉整域という。
例
編集性質
編集整域 A について次は同値:
- A は整閉
- 任意の素イデアルによる局所化は整閉
- 任意の極大イデアルによる局所化は整閉
正規環
編集任意の素イデアルによる局所化が整閉整域であるような環を正規環 (normal ring) と呼ぶ著者もいる(例えば、セール、グロタンディーク、松村)。
参考文献
編集- 堀田良之『可換環と体』岩波書店、2006年。ISBN 4-00-005198-9。
- 松村英之『可換環論』共立出版、東京、1980年。ISBN 4-320-01658-0。