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1 Motivations for modular tensor category

theory

1.1 Review: the bulk-boundary correspondence

(2+1)D TQFT

(1+1)D CFT

MTC

VOA

Figure 1: The bulk-boundary correspondence between topological quantum
field theory in a “bulk” region of 2-dimensional space and the 1-dimensional
conformal field theory describing physics on the boundary of the region.
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Conjecture 1 Every modular tensor category is the representation category
of some vertex operator algebra.

One goal of this course is to study a closely related problem.

Question 1 Does every vector-valued modular form come from a chiral con-
formal field theory?

1.2 MTCs as models for anyons in (2+1)D topological
phases of matter

Another way to get at the relationship between TQFT and MTCs is to
understand topological phases of matter.

These are materials which behave according to the laws of topological
quantum field theory in the low energy limit. When quantum systems of
physical bosons (or fermions) are confined to 2 spatial dimensions, (for ex-

ample by applying a strong magnetic field ~B to a sea of electrons), the ideal,
zero-temperature physics is described by a (2+1)D unitary (spin) TQFT.
The collective quantum system is then said to be in a bosonic (or fermionic)
(2+1)D topological phase of matter (TPM) and may support emergent quasi-
particles called anyons and a phenomenon known as ground state degeneracy.

1.2.1 Gapped (2+1)D TPM and quantum error correction

When the next excited states above the degenerate ground states are sep-
arated by a finite amount of energy ∆E, the system is said to be gapped.
Otherwise, there exist states with arbitrarily small energy above the ground
state, and it is gapless.

One thing that makes these topological phases of matter topological is
that they can support gaps which are large, in the sense that the separation
between ground states and excited states decays exponentially slowly in the
“size” of the system. For example, the distance between sites on a lattice, or
on the length scale of a topological nanowire.

We say that the ground states are topologically protected from the excited
states.

The physical theory of these anyons in the TPM is then given by a mod-
ular tensor category - objects are collections of anyons and morphisms are
anyon processes.
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We will see that the structure of a unitary modular tensor category
(UMTC) is precisely what is required to do topological quantum mechan-
ics on the Hilbert spaces of states of collections of anyons.

Further, a skeletal UMTC will be precisely what is required to do topo-
logical quantum mechanics on Hilbert spaces with bases.

There are several essentially equivalent ways to think about modular ten-
sor categories. Abstractly, an MTC will be a special kind of braided fusion
category.

2 Overview of MTC theory

We have several ways to think about an anyon model: as a category, as
some complex numbers satisfying certain equations, or as rules for drawing
pictures. We will work with these different formulations and the tools each
affords interchangeably.

2.1 Braided fusion categories

Definition 1 A modular tensor category is a nondegenerate ribbon fusion
category.

To unpack this definition, we need to understand all of the additional
structure that a MTC has on top of being a monoidal category.

Definition 2 A tensor category is a locally finite, C-linear, rigid monoidal
category with simple tensor unit.

Definition 3 A fusion category is a finite semisimple C-linear category.

Definition 4 A ribbon fusion category is a spherical braided fusion category.

Two MTCs are equivalent if they are related by a braided auto-equivalence
functor.
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2.2 6j braided fusion systems

In a way that categorifies the fact that every finite-dimensional vector space
is isomorphic to a finite-dimensional vector space with basis, every braided
fusion category (BFC) is equivalent to a skeletal braided fusion category.

A skeletal BFC category can be astracted as a finite set of symbols
{Nab

c , R
ab
c , [F

abc
d ]ef} satisfying a finite set of equations, with a notion of when

two solutions to these equations are equivalent. These are 6j-braided fusion
systems.

In the unitary case, writing down a specific set of solutions {Nab
c , R

ab
c , [F

abc
d ]ef}

entails “fixing a gauge”. Transforming the data to an equivalent set of data
is referred to as “using gauge freedom”.

3 Modular tensor category dictionary
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Anyon
model

Unitary modular tensor cate-
gory (UMTC)

6j-braided fusion
system

Graphical calculus

Algebraic
theory of
anyons in
a (2+1)D
TPM

Non-degenerate ribbon fusion cate-
gory

(C,⊕,⊗,1, α, c, φ)

Complex numbers

{Nab
c , R

ab
c , [F

abc
d ]nm}

satisfying certain equations

Admissibly labeled
trivalent graphs satis-
fying local relations

Anyon
types

Isomorphism classes of simple ob-
jects Irr(C)

Label set L
a

Vacuum Monoidal unit 1 is simple

1 ∈ L 1

Time evo-
lution ida ∈ Hom(a, a)

Hom(a, b) = 0 if a � b
Na1
a = N1a

a = 1

for all a ∈ L

a

Quantum
superposi-
tion

C is an abelian category with C-
linear bifunctor

⊕ : C × C → C

with bilinear composition so that
Hom(X, Y ) is a C-vector space

Formal C-linear addi-
tion of diagrams

Fusion Bifunctor ⊗ : C × C → C so that
Hom(X, Y ) is a C-vector space

Fusion coefficientsNab
c

Nab
c = dim (Hom(c, a⊗ b))

Admissibly labeled
trivalent graph

a b

c

6



Anyon
model

Unitary modular tensor cate-
gory (UMTC)

6j-braided fusion
system

Graphical calculus

Change of
basis on
state space

Monoidal structure

αX,Y,Z : (X⊗Y )⊗Z → X⊗ (Y ⊗Z)

αW,X,Y⊗Z ◦ αW⊗X,Y,Z (1)

=
(
idW ⊗αX,Y,Z

)
◦ αW,X⊗Y,Z ◦

(
αW,X,Y ⊗ idZ

)
(2)

Fusion associative on
level of isomorphism
classes∑
e

Nab
e N

ec
d =

∑
f

Naf
d N bc

f .

[F abc
d ]nm satisfying

Triangle axiom F abc
d = I when any of
a, b, or c are 1.
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Anyon
model

Unitary modular tensor cat-
egory (UMTC)

6j-braided fusion
system

Graphical calcu-
lus

Generation
coeva : 1→ a⊗ a∗

coev′a : 1→ a∗ ⊗ a

For all a ∈ L, there
exists a unique a∗ ∈
L such that Naa∗

1 =
Na∗a

1 = 1

a a∗

Annihilation
eva : a⊗ a∗ → 1

ev′a : a∗ ⊗ a→ 1
a a∗

Time reversal Rigidity: the evaluation and co-
evaluation morphisms satisfy

(idX ⊗ evX)◦αX,X∗,X ◦(coevX ⊗ idX) = idX

(evX ⊗ idX∗ )◦α−1(X∗, X,X∗)◦(idX∗ ⊗ coevX)

and similarly for coev′ and ev′.

For any a ∈ L,(
[F a∗aa∗
a∗ ]−1

)
11

= [F aa∗a
a ]11

Dual morphisms

Rigidity axiom
(Take f = id)

“lines can be
straighted”

Hilbert space
of states

Spherical pivotal structure on C
Isomorphisms

φX : X → X∗∗

satisfying φX⊗Y = φX ⊗ φY and
f ∗∗ = f for morphisms f : X →
Y

TrR(f) = ev ◦(φX⊗ idX∗ )◦(f⊗ idX∗ )◦coevX

and similarly for TrL. Spherical if

TrL(f) = TrR(f)

For each a ∈ L, there
exist a root of unity ta
called the pivotal coef-
ficient so that

t1 = 1

ta∗ = t−1a

t−1a t−1b tc = [F abc
1 ]a∗,c[F

bc∗a
1 ]a∗a[F

c∗ab
1 ]b∗b

The pivotal coeffi-
cients are spherical if
ta ∈ {±1}.

Diagrammatic left
and right traces
equal

=

“Diagrams live on a
sphere”
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Anyon
model

Unitary modular ten-
sor category (UMTC)

6j-braided fusion sys-
tem

Graphical calculus

Anyonic
quantum
systems
evolve
under
exchange

Braiding morphisms

cX,Y : X ⊗ Y → Y ⊗X

R-symbols Rab
c Crossings can be re-

solved.

b

b

a

a

=
∑

c

√
dc
dadb

Rab
c

a b

c

b a

a a

c

= Rab
c

c

a b

and similarly for R−1.

Exchange
compatible
with fusion

Braiding given by family
of natural isomorphisms

cX,Y : X ⊗ Y → Y ⊗X

Rab
c satisfies hexagon equa-

tions

Rac
m [Facb

d ]nmR
bc
n (3)

=
∑
l

[F cab
d ]lmR

lc
d [Fabc

d ]nl (4)

and

(Rca
m )−1[Facb

d ]nm(Rcb
n )−1 (5)

=
∑
l

[F cab
d ]lm(Rcl

d )−1[Fabc
d ]nl (6)

Hexagons commute.

and similarly for R−1.
Can put
TPM on
surface Σg

Non-degenerate ribbon fu-
sion category C (Modular
tensor category)

S-matrix is non-singular

Unitarity Conjugation on Hom
spaces: for every
f ∈ Hom(X, Y ), there
exists f̄ ∈ Hom(Y,X)
which is conjugate linear,

¯̄f = f, ¯f ⊗ g = f̄⊗ḡ, ¯f ◦ g = ḡ◦f̄

coevX = ev′X , evX = coev′X , cX,Y = c−1X,Y , θX = θ−1X

Tr(f ◦ f) ≥ 0 for all f

Rab
c , [F

abc
d ] unitary with re-

spect to conjugate transpo-
sition of matrices, S-matrix
unitary, da ≥ 1 for all a ∈ L

Conjugation is
horizontal reflec-
tion of diagrams
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4 Examples

Example 1 (Semion topological order)

Anyons L = {1, s}
Fusion s⊗ s = 1
R-symbols Rss

1 = i
F -symbols F sss

s = −1

Quantum dimensions ds = 1

D =
√

2
Twists θs = i

S-matrix S = 1√
2

(
1 1
1 −1

)

Example 2 (Fibonacci topological order)

Anyons L = {1, τ}
Fusion τ ⊗ τ = 1⊕ τ
R-symbols Rττ

1 = e−4πi/5

Rττ
τ = e3πi/5

F -symbols F τττ
τ =

(
φ−1 φ−1/2

φ−1/2 −φ−1
)

Quantum dimensions dτ = φ
D =

√
2 + φ

Twists θτ = e4πi/5

S-matrix S = 1√
2+φ

(
1 φ
φ −1

)
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5 Invariants of UMTCs/(Symbols invariant

under skeletalization)

Next we introduce several important invariants of a UMTC C. These quan-
tities are preserved by braided-tensor autoequivalence functors of C. In par-
ticular, given a skeletal UMTC, such quantities will be independent of the
specific set of solutions {Nab

c , R
ab
c , [F

abc
d ]nm} to the consistency equations.

In this section we will denote the rank of the UMTC by rank(C) = |L| =
n.

5.1 Quantum dimensions

The traces of the identity morphisms on simple objects ida give invariants
called quantum dimensions da.

Tr(ida) = a = da.

The quantum dimensions satisfy d1 = 1 and da = da∗ for all a ∈ L.

A related invariant of UMTCs is the global quantum dimension D, which
is the positive square root

D =

√∑
a

d2a.

5.2 Twists

The trace of the braiding isomorphism of a simple object with itself is an
invariant.

Tr(caa) = a =
∑
c

Raa
c

a a

c

a a

=
∑
c

√
dc
d2a
Raa
c

√
dadadc =

∑
c

dcR
aa
c

Dividing by the quantum dimension of the anyon a gives the invariant θa,
called the topological twist of a.

θa =
1

da a =
∑
c

dc
da
Raa
c
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The twists can be organized into the diagonal T -matrix

Tab = θaδab

It is a theorem due to Vafa that each θi is a root of unity. Put θi = e2πi/ri .
Then it follows that

|T | = lcm(r1, r2, . . . , rn).

5.2.1 The ribbon property

The R-symbols and twists satisfy the equation∑
c

Rab
c R

ba
c =

θc
θaθb

.

5.3 The central charge

Define
p± =

∑
i

θ±1i d2i .

When C is an MTC,
p+/D = e2πic/8

for some c ∈ Q, known as the central charge of C. The topological central
charge ctop of B is

ctop = c mod 8.

5.4 S-matrix

Another important invariant is given by the trace of the double braiding:

Sab = Tr(cb,a∗ ◦ ca∗,b) =
1

D
a b
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Exercise 1 Use the graphical calculus and the ribbon property to show
that

Sab =
1

D
∑
c

Na∗b
c

θc
θaθb

dc.

6 The modular data and modular represen-

tation

Taken together, the set of matrices {S, T} is called the modular data of a
modular tensor category.

6.1 The modular representation

Let C be the charge conjugation matrix

Cab =

{
1 b = a∗

0 b 6= a∗
.

Observe that C2 = I, since the dual of an anyon a∗ is a.

Theorem 1 [2] The matrices S and T satisfy the equations

(ST )3 = ΘC (7)

S2 = C (8)

C2 = In (9)

where

Θ =
1

D
∑
a∈C

d2aθa = e2πic/8.

Recall c is the central charge of C.

It follows that the map ρ : PSL(2,Z)→ U(n) that sends(
0 −1
1 0

)
7→ S
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(
1 1
1 0

)
7→ T

is a linear representation of PSL(2,Z), and hence a projective representation
of SL(2,Z). Thus every UMTC gives a projective representation of the map-
ping class group of the torus SL(2,Z). More generally, the non-degeneracy
of the S-matrix means that we get projective representations of all mapping
class groups.

Example 3 Let C be the semion theory with S = 1√
2

(
1 1
1 −1

)
and T =(

1 0
0 i

)
. (See Zhenghan’s lecture notes from April 3rd with the representation

corresponding to A= (2).) Defining η = e2πic/8 and sending T 7→ T̃ = η−1/3T ,
one has a linear representation of SL(2,Z).

Theorem 2 [2] The image of the modular representation coming from a
UMTC C has finite image.

7 Representations of B3 from UMTCs

7.1 The n-strand braid group

The n-strand braid group Bn has presentation

.

The n braid group can be understood diagrammatically by identifying its
elements as elementary braid diagrams on n-strands. We use the following
conventions.
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id 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

σi 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

σ−1i 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

Multiplication is given by stacking of diagrams, and we take the convention
that b1 · b2 is b1 stacked on top of b2.

b1 · b2 = b1

· · ·

· · ·

· b2

· · ·

· · ·

=
b2

b1

· · ·

· · ·

· · ·

The far commutativity and braid relations then correspond to braid-
isotopy and the Reidemeister III move.

picture of far commutativity coming soon

· · · · · ·

1 2 i i+ 1 i+ 2 n− 1 n

= · · · · · ·

1 2 i i+ 1 i+ 2 n− 1 n

7.2 Action of Bn on Hom(i, a⊗n)

Recall from the two previous lectures the Hilbert space of states associated
to a collection of n anyons of type a with total charge i, which we denote
here by V a⊗n

i .
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a a a a
· · ·

Hom(i, a⊗ a⊗ · · · ⊗ a) ∼= V a⊗n

i .

The n-strand braid group acts on this vector space, and an explicit matrix
representation can be found by stacking braid diagrams on a chosen fusion
tree basis and resolving using the R- and F -moves of the graphical calculus.
See the next section for a concrete example.

8 The action of B3 on state spaces of three

anyons

In this course we will primarily be interested in representations of the 3-
strand braid group B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉. Observe that the far
commutativity relation does not apply because none of the strands are ever
more than one strand apart.

Hom(i, a⊗ a⊗ a) ∼= C





a a

µ

νc

i

a

Naa
c ·N ca

i 6= 0, 1 ≤ µ ≤ Naa
c , 1 ≤ ν ≤ N ca

i




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For multiplicity-free theories, this simplifies to

Hom(i, a⊗ a⊗ a) ∼= C





a a

c

i

a

Naa
c ·N ca

i 6= 0




Below we use the notation |a, a, a; i; c〉 to indicate the fusion tree basis

vector of V a⊗3

i with internal edge labeled by c ∈ L.

To understand the group action of B3 on V a⊗3
i , it suffices to understand

how the generators σ1 and σ2 act.
With the left-associated basis, the braid that results from stacking σ1 can

be resolved with a single R-move.

σ1 · |a, a, a; i; c〉 =

c

i

= Raa
c

c

i

= Rab
c |a, a, a; i; c〉

It follows that the matrix representation of σ1 is diagonal in the left
associated basis:

ρ(σ1) = diag(Raa
c1
, Raa

c2
, . . . Raa

cd
)

As for the second generator, we have
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σ2 · |a, a, a; i; c〉 =

a a a

c

i

=
∑

d[F
aaa
i ]d,c

a a a

d

i

=
∑

d[F
aaa
i ]d,cR

aa
d

a aa

d

i

=
∑

d,e[F
aaa
i ]d,cR

aa
d [F aaa

i ]−1e,d

a aa

d

i

=
∑

d,e[F
aaa
i ]d,cR

aa
d [F aaa

i ]−1e,d |a, a, a; i; e〉

Exercise 2 Show that

ρ(σ2) = [F aaa
i ]−1ρ(σ1)[F

aaa
i ]

and use this to show that the representation of B3 on the morphism spaces
Hom(i, a⊗ a⊗ a) of a UMTC is unitary.

18



The image of the 3-strand braid group associated to n anyons of type a
with total charge i in a UMTC C = {Nab

c , R
ab
c , [F

abc
d ]ef} is generated by the

two matrices ρ(σ1) and ρ(σ2).
Whether the subgroup of d × d unitary matrices realized by braiding

anyons is finite, infinite, or dense depends on the UMTC at hand.

9 Examples

9.1 Semion UMTC

Since s ⊗ s ⊗ s = s, the total charge is fixed to be s and there is only one
admissibly labeled fusion tree from s to s⊗ s⊗ s.

s s

1

s

s

So dim(V s⊗3

s ) = 1 and we get a 1-dimensional representation of B3.
One can check that ρ(σ1) = Rss

1 = i and ρ(σ2)[F
sss
s ]11R

ss
1 ([F sss

s ]−1)11 = i.
While as a linear representation the image is isomorphic to Z4, the pro-

jective image (up to a U(1) factor) is trivial.

9.2 Fibonacci UMTC

The fusion rule τ ⊗ τ = 1⊕ τ allows for two possibilities for the total charge
of three Fibonacci anyons, either 1 or τ . One can check that the vector space
Hom(1, τ ⊗ τ ⊗ τ) is 1-dimensional, and Hom(τ, τ ⊗ τ ⊗ τ) is 2-dimensional.

A left-associated fusion basis is given by

τ τ

1

τ

τ

,

τ τ

τ

τ

τ


.
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With respect to this basis the matrix representation of B3 is determined
by

ρ(σ1) =

(
e−4πi/5 0

0 e3πi/5

)

ρ(σ2) =

(
φ−1e4πi/5 φ−1/2e−3πi/5

φ−1/2e−3πi/5 −φ−1
)

Theorem 3 (Freedman, Larsen, Wang) The Fibonacci representation on
V τ⊗3

τ is dense in U(2):
ρ(B3) ⊃ U(2).
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10 Glossary

Anyon Quasiparticle excitation in a gapped (2+1)D topological phase of
matter, modeled mathematically by a simple object in a UMTC.

Anyon type Also called the topological charge of an anyon, corresponds to the
isomorphism class of a simple object in a UMTC.

Braid groups Bn The n-strand braid group Bn is the fundamental group of the n-
punctured disk. Since the evolution of the quantum state of a
collection of anyons under exchange depends only on the topology
of the spacetime trajectories of the anyons, there is an action of the
n-strand braid group on the Hilbert space of states associated to a
collection of n anyons of type a.

Boson (physical) A particle is a boson if its exchange statistics are trivial, i.e. per-
forming a full exchange does not change the state. A bosonic
(2+1)D TPM is a TPM whose underlying physical particles are
bosons, as opposed to fermions.

Boson (emergent) An anyon in a (2+1)D topological phase of matter anyon is a boson
if its exchange statistics are trivial, i.e. performing a full exchange
does not change the state. A simple object b in a UMTC is a boson
if it has trivial quantum dimensions and twists, db = 1 and θb = 1.

BFC Braided fusion category
Central charge An invariant of a RFC which is determined by the quantum di-

mensions and twists. For MTCs the central charge measures the
framing anomaly of the corresponding (2+1)D TQFT.

CFT Conformal field theory
Fermion (physical) A particle is a fermion if performing a full exchange of two such

particles changes the state by -1.
Fermion (emergent) An abelian anyon in a (2+1)D TPM is a fermion its exchange statis-

tics are -1. An anyon f in a UMTC is a fermion if df = 1 and
θf = −1.

Modular data The modular data of an MTC is the set {Sab, Ta} consisting of the
invariants associated to the Hopf link and the once-twisted unknot
respectively.

MTC Modular tensor category
SFC Spherical fusion category
TO Topological order
TPM Topological phase of matter
TQC Topological quantum computation
TQFT Topological quantum field theory
UMTC Unitary modular tensor category
χCFT Chiral conformal field theory
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