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Abstract

James Robin Wootton, �Dissecting Topological Quantum Computation�,

Ph.D. thesis, University of Leeds, May 2010.

Anyons are quasiparticles that may be realized in two dimensional systems. They

come in two types, the simpler Abelian anyons and the more complex non-Abelian

anyons. Both of these have been considered as a means for quantum computation,

but non-Abelian anyons are usually assumed to be better suited to the task. Here

we challenge this view, demonstrating that Abelian anyon models have as much

potential as some simple non-Abelian models.

First the means to perform quantum computation with Abelian anyon models is

considered. These models, like many non-Abelian models, cannot realize universal

quantum computation by braiding alone. Non-topological operations must be used

in addition, whose complexity depends on the physical means by which the anyons

are realized. Here we consider anyons based on spin lattice models, with single spin

measurements playing the role of non-topological operations. The computational

power achieved by various kinds of measurement is explored and the requirements

for universality are determined. The possibility to simulate non-Abelian anyons

using Abelian ones is then considered. Finally, a non-Abelian quantum memory is

dissected in order to determine the means by which it provides fault-tolerant storage

of information. This understanding is then employed to build equivalent quantum

memories with Abelian anyon models. The methodology provides with the means

to demonstrate that Abelian models have the capability to simulate non-Abelian

anyons, and to realize the same computational power and fault-tolerance as non-
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Abelian models.

Apart from the intellectual interest in relating topological models with each

other, and of understanding the properties of non-Abelian anyons in terms of the

simpler Abelian ones, these results can also be applied in the lab. The simpler struc-

ture of Abelian anyons means that their physical realization is more straightforward.

The demonstration of non-Abelian properties with Abelian models therefore allows

features of non-Abelian anyons to be realized with present and near future tech-

nology. Based on this possibility, proposals are made here for proof of principle

experiments.
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Chapter 1

Introduction

This thesis is about anyons, Abelian and non-Abelian, and their use in quantum

computation. I1 aim to demonstrate the power of Abelian anyons, showing that these

humble quasiparticles have the same potential for fault-tolerant universal quantum

computation as their non-Abelian counterparts. Not only this, they do so without

demanding as much from the experimentalist.

In order to achieve this aim I take a spin lattice model used to realize non-Abelian

anyons, pull it apart to see how it works, and then put it back together again. In

doing so I �nd that the non-Abelian group structure underlying these models is an

unnecessary complication. It can be removed without compromising fault-tolerance

or computational power, while making the models more tractable theoretically and

experimentally.

But before we embark upon this study, there are questions that must be an-

swered. What are anyons? What does it mean when we say they are Abelian or

non-Abelian? And what does either have to do with quantum computation? The

particles known as anyons are those that are neither bosons or fermions, but which

can have any exchange statistics, hence `any'-ons2 [5, 6]. The so-called Abelian

anyons are straightforward generalizations of their bosonic and fermionic cousins,

1Or `we' as I will refer to myself in the following chapters, having no stomach for the �rst person

singular in academic writing.
2It troubles me sometimes, in the depths of the night, that I have spent four years working in a

�eld based upon a bad pun.
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Chapter 1. Introduction

since their exchange can yield only a phase factor. For non-Abelian anyons, however,

exchanges can yield unitary operations.

It was Kitaev who realized that the properties of non-Abelian anyons make

them well suited to the job of quantum computation [7]. The space on which the

exchange operations act, known as the fusion space, is inaccessible to local or LOCC

operations. This makes it the perfect place to store quantum information away from

environmental noise. The implementation of gates by braiding the anyons is also

robust against errors, since the fusion space is only sensitive to the topology of their

paths. These encouraging properties led to the founding of a new �eld of research,

that of topological quantum computation [8].

But what topology giveth, it also taketh away. Though it supplies us with

intrinsically resilient quantum computation, it does not allow anyons to exist in our

three-dimensional universe. Hence, rather than just catching a few wild anyons and

harnessing them for the next generation of computers, we must endeavour to create

them as quasiparticles in two-dimensional systems. The fractional quantum Hall

e�ect was the �rst means found to do this [9�11], with spin lattice models proposed

some years later [7, 12, 13].

The last decade has seen an explosion of work in the �eld of anyons. Their

abstract theory has been explored and extended [14�18], and a large number of

models have been catalogued [19]. The systems on which they may be realized have

been probed extensively [20�27], with experiments explicitly demonstrating Abelian

anyons [28�32] and providing evidence for non-Abelian ones [33]. Their uses for

quantum computation have been explored [34�43], and e�cient algorithms have

been designed [8, 44]. Numerous reviews have also been written [45�47]. It is to this

body of work that this thesis belongs, contributing to the understanding of anyons

in general, how they may be used, the means by which they may be realized and

the experiments that may be done to demonstrate their existence.

Within this thesis, I introduce two new concepts to the �eld of topological quan-

tum computation. Firstly I introduce the concept of enhanced Abelian models, and

2



their associated enhanced Abelian quasiparticles. These are the means by which

Abelian anyons may be reinterpreted such that they appear to have similar prop-

erties to, and can perform some of the tasks of, non-Abelian anyons. They are

introduced in full in Chapter 4. Secondly I introduce the concept of non-abelian-like

memories for encoding quantum information. These are memories that can be used

both with non-Abelian and enhanced Abelian models. Like the quantum memo-

ries usually associated with non-Abelian anyons, these are de�ned using the fusion

space. The di�erences lie in the means by which the stored information may be

manipulated, and the steps that must be taken to ensure full fault-tolerance. These

memories are introduced in full in Chapter 5.

The thesis is structured as follows:

• Chapter 2 introduces the background required for the thesis. An introduction

to the abstract theory of anyons is given, as well as the de�nition of the

quantum double models that can be used to realize them. The theory of

topological quantum computation is then presented.

• Chapter 3 deals with my work on the use of Abelian anyon models for the task

of quantum computation. Since these models are not universal by braiding

alone they, like non-universal non-Abelian models, require the addition of non-

topological operations. Various such gate sets are considered and their power

analysed, with universality proven in certain cases. The chapter is based on

the work presented in [1], done in collaboration with Jiannis K. Pachos.

• In Chapter 4 I present my work in demonstrating that non-Abelian anyons can

be simulated using Abelian ones, including realizations of non-trivial fusion and

braiding behaviour as well as simulating chirality from a non-chiral model. The

general methodology used to do this is presented, and will be used throughout

the thesis. This chapter is mostly based upon the work presented in [2], which

was done in collaboration with Ville Lahtinen, Zhenghan Wang and Jiannis K.

Pachos. It also includes elements discovered in the studies of the next chapter.

3



Chapter 1. Introduction

• Chapter 5 is a study of a quantum memory based on the non-Abelian charge

anyons of the D(S3) model. Di�erent methods of encoding are found which,

though very similar seeming on the surface, have markedly di�erent proper-

ties. The reasons for the similarities and di�erences are then explored. These

studies are then applied to an Abelian model, where it is shown that equivalent

quantum memories can be realized. Methods to ensure the fault-tolerance of

this encoding are then developed, applicable in both Abelian and non-Abelian

models. This chapter is based on the work presented in [3] and [4], both done

in collaboration with Ville Lahtinen and Jiannis K. Pachos, with the latter

also involving Benoit Doucot.

• Chapter 6 then draws together the theoretical arguments of the previous chap-

ters in order to propose experimental implementations. Where possible, each

scheme is distilled down to its basics so that proofs of principle may be realis-

tically carried out in the lab. This chapter also includes elements of the work

presented in [4].

• Finally, in Chapter 7, I conclude. The results of all previous chapters are shown

to achieve our aim of proving that Abelian anyons are as good for quantum

computation as their non-universal non-Abelian counterparts. Other results

uncovered along the way are also discussed.

So now, let us begin with the quest!

4



Chapter 2

Anyons and quantum double

models

In this chapter the theoretical and experimental background to the thesis is pre-

sented. Firstly the abstract theory of anyons is introduced in Section 2.1. Then

the anyon models explored in the thesis are presented, along with the spin lattice

models used to realize them. Firstly the quantum double models are given, with

the Abelian case in Section 2.2 and a particular example of a non-Abelian model

in Section 2.3. Kitaev's honeycomb lattice model is then presented in 2.4, with the

associated Ising anyon model. Finally, in Section 2.5, it is shown how anyons may be

used for quantum computation, and why this is said to be topologically protected.

2.1 The theory of anyons

The de�nition of an anyon model is a process of several stages [45]. Firstly a set

of particle types is de�ned for the anyons, with one always de�ned to be the trivial

vacuum particle type, 1. This list of possible particle types within the model must be

exhaustive, such that even when two or more particles are combined, their composite

must also behave according to one of the de�ned particle types. To systematically

describe this process, known as the fusion of the particles, fusion rules are de�ned.

These determine which possible outcomes, known as fusion channels, can occur for

5



Chapter 2. Anyons and quantum double models

a given composition of particles.

The fusion rules of a model take the form,

a× b =
∑
c

N c
a,b c. (2.1)

This denotes the fusion of particles of type a and b to yield one of type c. The N c
a,b

are fusion multiplicities which can be any non-negative integer. For N c
a,b = 0 there

is no way in which a and b can fuse to a particle of type c. For N c
a,b > 0 the fusion

is possible in N c
a,b distinguishable ways.

Such multiplicities may also be de�ned for fusions of more than two anyons. For

example, consider the fusion of anyons a, b and c to an anyon of type d. Though

the fusion channel of all three anyons is �xed, the intermediate fusion outcomes are

not. Hence, if a and b are �rst fused, the outcome e can take many possible values.

Similarly, if b and c are �rst fused the outcome e′ can take multiple values. The

multiplicity for the fusion of the three anyons can then be de�ned,

Nd
a,b,c =

∑
e

N e
a,bN

d
e,c =

∑
e′

N e′
b,cN

d
a,e′ . (2.2)

Multiplicities for larger numbers of anyons can be de�ned similarly.

The space of states describing how given collection of anyons will fuse to a given

outcome is known as the fusion space of the anyons. The basis states are labelled by

each of the possible intermediate fusion outcomes, with each di�erent order of fusion

corresponding to a di�erent basis. The dimension of the fusion spaces is therefore

equal to the corresponding multiplicity. The fusion space of anyons is a non-local

property, which cannot be accessed by local or LOCC operations on the anyons.

Only the braiding or interaction of anyons can have an e�ect on the fusion space.

The full description of an anyon model requires operations on the fusion space,

known as F - and R− matrices, to be de�ned. The former acts on the fusion space

of the three anyons a, b and c and determines the relationship between the two

possible fusion bases. A depiction of its de�nition can be found in Fig. 2.1 (a).

6



2.1. The theory of anyons

The R-matrix describes the e�ect of exchanging anyons. It acts on the fusion space

of two anyons, a and b, mapping it to to the space for which their positions are

exchanged, and hence that of the two anyons b and a. In addition it may also place

a complex phase on the wave function of the anyons, depending on their particle

types and fusion channel. In the case of non-Abelian anyons the multiplicity of

fusion channels means that braiding can implement non-trivial unitary operations

on the fusion space. A depiction of the action of this matrix can be found in Fig.

2.1 (b). Note that the F - and R-matrices of a model cannot be chosen arbitrarily,

but must satisfy consistency relations known as the pentagon and hexagon relations

[48]. Once the F - and R-matrices are chosen from the set of possibilities that are

consistent with the fusion rules, the de�nition of the anyon model is complete.

Figure 2.1: The (a) F -matrix and (b) R-matrix of an anyon model. The states of
the fusion space are depicted by diagrams showing the corresponding fusions, with
time �owing downwards.

An important quantity describing the anyons of a model is their quantum di-

mension. The quantum dimension of an anyon a is denoted da. This can be thought

of as the fraction of the fusion space carried by each anyon, and is de�ned according

to the fusion rules as follows,

dadb =
∑
a,b,c

N c
a,bdc. (2.3)

Once calculated for each particle type, the quantum dimensions can used to de�ne

the total quantum dimension, D, of the model,

D =

√∑
a

d2a. (2.4)

7



Chapter 2. Anyons and quantum double models

This quantity is related to the entanglement of a physical medium on which an

anyon model may be realized. The most natural measure of entanglement for such

systems is the topological entropy, γ, for which it has been shown that a model with

total quantum dimension D requires a state with entanglement γ = logD [14, 15].

Anyon models are split into two classes: Abelian and non-Abelian. Abelian

models are a restricted class in which all fusions have only one possible outcome,

and so all fusion spaces are one dimensional. Fusion rules therefore simplify to,

a× b = c. (2.5)

The braiding of Abelian models is described by R-matrices acting on one-dimensional

spaces, and so yields only global phases on the wave function. Non-Abelian models

are the more general class. Multiple fusion outcomes are allowed and fusion spaces

are can be non-trivial. Since the braiding of non-Abelian anyons acts on spaces

greater than one-dimension it can therefore implement unitary operations.

Since the theory of anyons describes the fusion space as a perfectly general Hilbert

space, the implementation of operations beyond those of braiding and fusion can be

considered. The e�ect these have on the fusion space, and hence the fusion behaviour

of the anyons, can therefore be fully predicted from the anyonic theory.

Simulations of anyons

No anyons are known to exist in the universe, and none are expected to exist.

However, their properties would make them ideal for quantum computation, as will

be described later in Section 2.5. It is therefore desirable for us to simulate anyons

in order to bene�t from their unique behaviour. Certain systems have proven to be

well suited to this task, with the ability to produce quasiparticles that reproduce

anyonic behaviour.

These simulations can never be perfect, since certain operations on the under-

lying physical systems may a�ect the behaviour of the quasiparticles in ways not

consistent with anyonic theory. Any such simulation is therefore only as good as the

8



2.2. Abelian quantum double models

restrictions that must be made such that it is valid. Harnessing the full power of

anyons therefore requires a full knowledge of the properties and limitations of the

simulations.

The quantum double models considered in this thesis are a means by which simu-

lations of certain anyon models may be realized on two-dimensional spin lattices [7].

They allow the fusion space to be realized as a non-local property of the quasiparti-

cles, and the application of non-topological operations will yield the e�ects predicted

by the anyonic theory. However, it is important to know their limitations. As we

will see in Chapter 5, the non-locality of the fusion space holds true only as long as

the operations are implemented in the correct way. Other operations, which naively

seem to yield the same e�ects, can lead to the fusion space becoming accessible

to LOCC measurements. Also, though these models realize all full monodromies

in braiding, the e�ects of single exchanges are not always realized exactly as they

should be according to anyon theory.

2.2 Abelian quantum double models

The quantum double models are a particular spin lattice realization of certain anyon

models [7]. Each is based on a group, with the quantum double of a �nite group G

denoted D(G). Anyons are associated with states of the spins around each plaquette

and vertex, with plaquette anyons known as �uxes and vertex anyons called charges.

The fusion and braiding behaviour of the anyons depends on the property of the

group employed. For example, an Abelian group leads to Abelian anyons, and a

non-Abelian group to non-Abelian anyons.

Quantum double models can be de�ned on spin lattices, with groups of order

d requiring a lattice of d-level spins. The D(Z2) model, more commonly known as

the toric code [34, 35], is de�ned on a d = 2 lattice and is a well-known example

of a stabilizer code [49]. For other d the models correspond to higher dimensional

generalizations of the stabilizer code concept.

In this section, Abelian quantum double models are presented in detail. First

9



Chapter 2. Anyons and quantum double models

the models based upon the cyclic groups Zd are considered [50], followed by the

generalization to all Abelian groups.

Quantum double models of cyclic groups

Consider the cyclic group of d elements, Zd. We label the elements of this group

{0, 1, . . . , d−1}. This allows us to represent the binary operation as addition modulo

d, hence for two elements g and h,

g × h = g + h (mod d).

A quantum double model based on such a group can be realized on a square lattice

with a d-level spin on each edge. The elements of Zd are used to label the basis

states of the spins. Generalized Pauli operators are de�ned,

σx =
∑
h∈Zd

|h+ 1 (mod d)〉 〈h | , σz =
∑
h∈Zd

ωh |h〉 〈h | , (2.6)

where ω = ei2π/d. These satisfy the commutation relation σzσx = ωσxσz. The

eigenstates of σx are those of the Fourier transform basis,

| g̃〉 = 1√
d

∑
h∈Zd

ωgh |h〉 , (2.7)

with corresponding eigenvalues ω−g. To rotate between these two bases, the follow-

ing unitary is used to perform the Fourier transform,

F =
∑
h∈Zd

∣∣∣ h̃〉 〈h | = 1√
d

∑
g,h∈Zd

ωgh |h〉 〈g | . (2.8)

This has the properties F 2 | g〉 = | −g〉, F 3 = F † and F 4 = I. Here, due to the use

of cyclic groups, −g is taken to mean d− g.

The stabilizers of the quantum double models are de�ned as follows on the four

10



2.2. Abelian quantum double models

spins around each vertex, v, and plaquette, p,

A(v) = σx1
†σx2

†σx3σ
x
4 , B(p) = σz1

†σz2σ
z
3σ

z
4
†, (2.9)

where the numbering proceeds clockwise from the top-most spin (Fig. 2.2). These

have eigenvalues ωg = ei2πg/d for each g ∈ Zd. For a system in an arbitrary state

|ψ〉, no anyon is associated with a vertex or plaquette if A(v) |ψ〉 = B(p) |ψ〉 = |ψ〉.

An anyon eg is associated with a vertex, v, if A(v) |ψ〉 = ωg |ψ〉. An anyon mh is

associated with a plaquette, p, if B(p) |ψ〉 = ωh |ψ〉. The presence of both in an

adjacent plaquette and vertex is associated with the composite particle εg,h. The

anyonic vacuum corresponds to the stabilizer space of the code.

Projectors onto the states of anyons can be constructed from the plaquette and

vertex operators as follows,

Peg(v) =
∑
g∈Zd

ωgA(v), Peg(p) =
∑
g∈Zd

ωgB(p). (2.10)

Using these, a Hamiltonian may be de�ned whose ground state corresponds to the

anyonic vacuum,

H = −
∑
v

Pe0(v)−
∑
p

Pm0(p). (2.11)

Since this Hamiltonian projects onto the vacuum for all plaquettes and vertices, it

acts in the same way to all states that do not correspond to the vacuum. Hence

it assigns equal energy to all eg and mg anyons, without distinguishing their type.

Since the anyons are localised excitations, they may be thought of as quasiparticles.

The resulting anyon model is then as follows.

• Particle types:

eg, mg, εg,h ∀g, h ∈ Zd. (2.12)

Where e0 = m0 = ε0,0 = 1.

11



Chapter 2. Anyons and quantum double models

• Fusion rules:

eg × eh = eg+h(mod d), mg ×mh = mg+h(mod d), eg ×mh = εg,h. (2.13)

• R-matrices:

(Re
gmh

εg,h )2 = ωgh, ω = ei2π/d, (2.14)

with all others trivial.

• F -matrices: All trivial.

The creation and movement of the anyons may be achieved by σz and σx opera-

tions on the spins of the lattice, as depicted in Fig. 2.2. The creation of any anyon

eg or mg will result also in the creation of its respective antiparticle, e−g or m−g.

The operation (σz)g on spins 1 or 2 of a vertex, or (σz)−g on 3 or 4, creates an eg

charge at that vertex and an e−g on the other vertex shared by the spin. Similarly,

a (σx)g on spins 2 or 3 of a plaquette, or a (σx)−g on 1 or 4, creates an mg �ux

on that plaquette and an m−g on the other plaquette shared by the spin. Particles

can be moved and braided using corresponding strings and loops of the σz and σx

operations. The commutation relations of these give a phase ωgh when an eg anyon

is moved clockwise around an mh. The phase ω−gh is obtained for an anticlockwise

braiding.

Abelian models in general

All Abelian groups are either cyclic, or direct products of cyclic groups. Since we

have already dealt with quantum double models based upon the former, we need

only consider the latter.

Consider a group Zd1 × Zd2 , the direct product of two arbitrary cyclic groups.

The D(Zd1 × Zd2) model may be realized on a square lattice with two spins at

each edge, one a d1-level spin and the other a d2-level spin. On the former spins
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2.3. The non-Abelian D(S3) quantum double model

Figure 2.2: The quantum double models are realized on a square lattice with a d-level
spin on each edge. A numbering of the spins around each plaquette, p, and vertex,
v, is given. Anyons eg reside on vertices. These may be created in pairs by single
spin operations, and moved away from each other by further single spin operations.
Anyons mg reside on plaquettes, and may be created and moved similarly.

the quantum double model D(Zd1) may be de�ned as above, and on the latter the

model D(Zd2) may be de�ned. The anyons of D(Zd1 × Zd2) therefore do not admit

any behaviour beyond those of D(Zd1) and D(Zd2) alone, it merely allows them to

be realized on the same lattice. Corresponding arguments apply to direct products

of three or more cyclic groups.

The only di�erence between the modelD(Zd1×Zd2) and independent realizations

of D(Zd1) and D(Zd2) concerns the Hamiltonian, as de�ned in Eq. 2.11. The

Hamiltonian of D(Zd1 × Zd2) assigns equal energy to an anyon eg from D(Zd1), e
h

from D(Zd2), and the combination egeh of the two. This would not be the case if the

D(Zd1) and D(Zd2) Hamiltonians were applied independently, as egeh in this case

would be assigned energy by each independent Hamiltonian, and thus have twice

the energy.

2.3 The non-Abelian D(S3) quantum double model

The structure of non-Abelian quantum double models is far more complex than their

Abelian counterparts. For this reason only the charge anyons of the D(S3) model
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Chapter 2. Anyons and quantum double models

are presented here, since only these will be required in this thesis. As such the

de�nition of the model seems quite arbitrary. However, if the reader desires a more

holistic understanding, the theory underlying non-Abelian quantum double models

is outlined in [7] and a full treatment of D(S3) can be found in [24].

The spin lattice model

The D(S3) anyon model is de�ned on an oriented two-dimensional square lattice.

On each edge there resides a six-level spin whose states are labelled by the elements

of S3, the permutation group of three objects. We express every element in terms

of generators t and c, which can be understood as the transpose and cycle of the

objects. These satisfy t2 = c3 = e and tc = c2t, where e denotes the trivial element.

Using this notation the six elements are given by S3 = {e, c, c2, t, tc, tc2}.

The properties of the group can be used to de�ne operations on the spins. The

unitary operations Rg(i) and Lg(i) can be used to implement right and left multi-

plication, respectively, of the state of a spin i by the group element g,

Rg |h〉 = |hg〉 , Lg |h〉 = | gh〉 g, h ∈ S3 (2.15)

These may then be used to de�ne the following operators which act on the four spins

around a vertex,

Tg(v) = Rg(1)Rg(2)Lg−1(3)Lg−1(4), (2.16)

The choice of which spins are acted upon by Rg and which by Lg−1 ensures that

such operators de�ned on di�erent vertices will always commute, even when de�ned

for di�erent and non-commuting group elements. A depiction of the operator can

be found in Fig. 2.3.

For all purposes in this thesis we consider only the so-called charge anyons asso-

ciated with the vertices of the lattice, and assume that the plaquettes are �xed in

the vacuum state. There are two non-trivial charges, which we call Λ and Φ, and

the trivial vacuum charge, 1. For a general state of the system, |ψ〉, the presence
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2.3. The non-Abelian D(S3) quantum double model

of a charge of type a at vertex v is de�ned by Pa |ψ〉 = |ψ〉, where the orthogonal

projectors are given by,

P1(v) =
1

6
[Te(v) + Tc(v) + Tc2(v) + Tt(v) + Ttc(v) + Ttc2(v))],

PΛ(v) =
1

6
[Te(v) + Tc(v) + Tc2(v)− Tt(v)− Ttc(v)− Ttc2(v)],

PΦ(v) =
1

3
[2Te(v)− Tc(v)− Tc2(v)].

Projectors are also de�ned for the states of �ux anyons on plaquettes, but we need

not give them here.

Figure 2.3: A pictorial representation of the vertex operators Tg(v).

The stabilizer space consists of states with no anyons, i.e. those for which

P1(v) |ψ〉 = |ψ〉 for all v, and a similar condition for the �uxes on plaquettes. The

syndrome measurement is de�ned as a measurement of anyon occupancies, and so

corresponds to the above projectors. A Hamiltonian may be de�ned to maintain the

stabilizer space. This assigns energy to the states of the anyons, and thus suppresses

their spontaneous creation. This may be expressed,

H = −
∑
v

P1(v)−
∑
p

P1(p). (2.17)

States with no anyons form the ground state of this, and hence may be denoted | gs〉.

Charge anyons are created from the stabilizer space by acting with the following
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operators on single spins,

WΛ
i = | e〉 〈e |+ | c〉 〈c |+

∣∣ c2〉 〈c2 ∣∣
− | t〉 〈t | − | tc〉 〈tc | −

∣∣ tc2〉 〈tc2 ∣∣ , (2.18)

WΦ
i = 2 | e〉 〈e | − | c〉 〈c | −

∣∣ c2〉 〈c2 ∣∣ . (2.19)

These create charges on the two vertices connected sharing the spin i. A protocol

to create and move charges apart is given in [24].

The anyon model

The set of charge anyons is closed under fusion, and so they form their own consistent

submodel of non-Abelian anyons [43]. The properties of this model are as follows.

• Particle types:

1, Φ, Λ. (2.20)

• Fusion rules:

Φ× Φ = 1 + Λ + Φ, Λ× Λ = 1, Φ× Λ = Φ. (2.21)

• R-matrices:

RΦΦ =


1 0 0

0 −1 0

0 0 1

 (2.22)

in the basis 1, Λ, Φ.

• F -matrices:

FΦ
ΦΦΦ =

1

2


1 1 −

√
2

1 1
√
2

−
√
2

√
2 0

 , (2.23)

in the basis 1, Λ, Φ.
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The fusion rules of the Φ anyons demonstrates their non-Abelian nature. How-

ever, these anyons have the simplest possible non-Abelian behaviour. Their braiding

has no e�ect on the fusion space other than that required to describe the e�ect of

permuting the anyons.

2.4 The honeycomb lattice model

Kitaev's honeycomb lattice is a spin lattice model that can be used to realize certain

anyon models [51]. Unlike the quantum double models, its Hamiltonian is frustrated,

making it much more di�cult to solve explicitly in terms of the underlying spin

lattice. This is especially true for the non-Abelian phase of the model, for which the

states of the anyon cannot yet be expressed in terms of the states of the underlying

spins.

The model is de�ned on a hexagonal lattice, as shown in Fig. 2.4. A spin-

1/2 particle is located at each vertex of the lattice, with edges labelled x, y and x

according to orientation. The Hamiltonian is then de�ned,

H = JxHx + JyHy + JxHz + iK [Hx,Hy] ,

Hα =
∑

α−links
σαi σ

α
j . (2.24)

Here the Jx, Jy, Jz and K are positive coupling strengths and α ∈ {x, y, z}.

For each plaquette of the lattice, P, there is de�ned a plaquette operator,

WP = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 . (2.25)

For an arbitrary state |ψ〉, there is said to be a vortex on the plaquette P ifWP |ψ〉 =

− |ψ〉. The WP operator commutes with the Hamiltonian, and so the number and

positions of the vortices are conserved under its action.

When K = 0 and Jz � Jx, Jy, perturbation theory shows that the Hamiltonian

is e�ectively equal to that of the D(Z2) model. The vortices then become the
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Chapter 2. Anyons and quantum double models

Figure 2.4: The hexagonal lattice on which Kitaev's model is de�ned. The number-
ing of spins around a plaquette is shown.

anyons, with e's and m's residing on alternate rows of plaquettes. For K > 0 and

Jz = Jx = Jy, the vortices correspond to the non-Abelian anyons of the Ising model,

presented below. The Hamiltonian in this case is too complex to diagonalize directly,

and so the technique of Majorana fermionization is used. However, this makes it

di�cult to translate the results back into the spin lattice picture. The non-Abelian

phase of the model is therefore not well understood in terms of the underlying spins.

The Ising anyon model

The Ising anyon model is one of the simplest non-Abelian models. The properties

of the model relevant for the studies of this thesis are as follows.

• Particle types:

1, σ, ψ. (2.26)

• Fusion rules:

σ × σ = 1 + ψ, ψ × ψ = 1, σ × ψ = σ. (2.27)

• R-matrices:

Rψψ1 = −1, (Rψσσ )2 = −1, (Rσσ)2 = e−iπ/4

 1 0

0 −1

 , (2.28)

in the basis 1, ψ.
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2.5. Topological quantum computation

• F -matrices:

F σσσσ =
1√
2

 1 1

1 −1

 , (2.29)

in the basis 1, ψ.

As mentioned above, the non-Abelian σ anyons correspond to the vortices of the

honeycomb lattice model, as detected by the plaquette operator WP . The exact

nature of the fermions ψ in terms of the underlying spins of this model is as yet

unknown.

2.5 Topological quantum computation

The fusion space of non-Abelian anyons provides the perfect place to store quantum

information [7, 8, 46, 47]. Errors can only occur when the anyons used to store the

information are braided around or interacted with each other. These processes are

e�ciently suppressed by keeping the anyons far apart. The braiding of anyons also

provides the perfect means to process quantum information, since the operations

they perform on the fusion space are implemented exactly and without error. Minor

perturbations in the path of the anyons as they moved have no e�ect on the �nal

operation. The fusion space is sensitive only to the topology of paths, which should

not be a�ected by local perturbations as long as the anyons are kept well separated.

However, most Abelian anyon models cannot implement universal quantum compu-

tation by braiding alone. Other, so-called non-topological operations must be used

in addition, which do not have the same resilience to errors as braiding [39�41].

These are achieved by bringing anyons close together and interacting them by some

means. Since such operations are beyond those natural to the anyon models, the

means by which they may be implemented and the practicality of their use depends

on the physical system used to realize the anyons.

Abelian anyon models can also be used for topological quantum computation.

Since quantum double models are stabilizer codes, quantum information can be

stored in the stabilizer space of Abelian models. The most famous example of
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this is the toric code, for which the D(Z2) model is realized on a square lattice

wrapped around a torus [34, 35]. Logical operations can be performed by moving

anyons through topologically non-trivial paths. As long as the size of the code is

large, this protects against errors in a similar way to encoding in the non-Abelian

fusion space. The gate set achieved by moving the anyons is not universal, so non-

topological operations are required. However, since the information is not stored

on anyons which may be moved close and interacted, as in the non-Abelian case,

the implementation of such operations becomes highly impractical. An exception

to this is found in measurement based schemes inspired by quantum double models,

but based on cluster states. In these, quantum information can be stored in `holes'

in the code [42]. The braiding of the holes then allows quantum computation in a

way similar to non-universal non-Abelian models. However, though such holes can

also be de�ned for the quantum double models realized in the usual way on two

dimensional lattices, the means to move them without error is not known. This

is especially true when the holes are made large enough to support fault-tolerance,

since the problem of impracticality again arises.

The contribution of this thesis to the �eld is to expand on the means by which

Abelian quantum double models may be used for topological quantum computation,

and show that their potential is the same as that of non-Abelian models that are not

universal by braiding. Chapter 3 deals with the non-topological operations required

for universality. Chapter 5 shows that the holes used to encode information may

be carried by quasiparticles, and hence we can expect that they can be moved in a

similar way as non-Abelian anyons.
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Chapter 3

A toolkit for quantum

computation with Abelian

anyons

The experimental accessibility and control of Abelian anyons is expected to be easier

than their non-Abelian counterparts, an expectation supported by current experi-

mental progress [28�33]. Hence, rather than simply rely on non-Abelian anyons in

order to implement quantum computation, it is important to understand how well

this may be achieved with Abelian models.

Some work has already been done in this direction. Dennis et. al. [35], Lloyd

[36] and Pachos [38] have all made proposals for quantum computation with Abelian

anyon models. Raussendorf et al. [42], also proposed a measurement based scheme

inspired by Abelian anyons. In all these works, only theD(Z2)model is considered in

detail. It is therefore interesting to see how quantum computation may be performed

on a more general class of Abelian models.

In this chapter the computational power of Abelian quantum double models

is investigated, as are the means that may be used to provide universality. The

structure of the chapter is as follows. Firstly, the gates that can be realized by the

topological operations of anyon creation, transport and annihilation are determined
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in section 3.1. These do not form a gate set useful for quantum computation, but

they form the foundation of the operations used in the following sections. Since

the quantum double models are realized on a spin lattice, the e�ect of measuring

single spins may be considered. In section 3.2 it is shown that measurements in

each Pauli basis are su�cient to realize all Cli�ord group operations for D(Z2).

This is then extended in section 3.3, where arbitrary single spin measurements are

considered on all Abelian quantum double models, with universality proved in certain

cases. Finally, in section 3.4 we consider how computation may be achieved without

braiding, determining the gates that may be used to achieve universality in this case

with minimal resources.

As shown in Chapter 2, all the anyonic behaviour of Abelian quantum double

models are contained within those models based upon cyclic groups. Models based

based on products of these groups only di�er in the spectrum of their Hamiltonian,

not the braiding and fusion of the anyons that is important for quantum computa-

tion. Hence only cyclic group quantum double models will be considered in the rest

of this chapter without loss of generality.

This chapter considers only the computational power of Abelian models, and

contains no arguments of fault-tolerance or topological protection. The means by

which the computation proposed may be performed in a fault-tolerant manner is

explored in Chapter 5, but still remains an open topic for research.

3.1 Gates implemented with topological operations alone

The operations of anyon creation, transport and fusion would be expected to come

naturally for any realization of an anyonic model. Hence we begin by considering

how quantum information is most naturally encoded in an Abelian model, and what

gates can be achieved through these basic operations. This forms the foundation of

the schemes in the following sections.
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Encoding of logical qudits

In order to determine what gates may be achieved using Abelian models, the en-

coding of information must �rst be de�ned. Logical qudits are stored using `holes':

plaquettes or vertices on which the relevant terms in the Hamiltonian are removed,

and hence the stabilizers are not enforced [42]. Any quantum double model based

on a cyclic group, D(Zd), may be used to store a d level qudit in two vertex holes,

v1 and v2, as follows,

| j〉v =
∣∣ ej〉

v1

∣∣ e−j〉
v2
. (3.1)

Here
∣∣ ej〉

v1
represents the state for which the the vertex hole v1 contains an anyon

ej , etc. The basis state | j〉 therefore corresponds to a state in which an anyon ej

resides in the hole v1 and its antiparticle in v2. Since this qudit is stored in vertex

holes, it is referred to as a v-type qudit. Plaquette holes may be used to store p-type

qudits similarly,

| j〉p =
∣∣mj

〉
p1

∣∣m−j〉
p2
. (3.2)

Note that, since the two holes will hold anyons of di�erent types, it is important to

remember which hole is which. Otherwise a qudit in state | g〉 might be mistaken

for one in state | −g〉.

Implementation of Pauli operators

Generalized Pauli operators for the logical qudits are de�ned in the same way as for

the lattice spins in Eq 2.6,

X =
∑
j

| j + 1〉 〈j | , Z =
∑
j

ωj | j〉 〈j | . (3.3)

We denote X and Z operations on v- and p-type qudits Xv and Zv, and Xp and Zp,

respectively.

With the qudit encoding de�ned above, the implementation of these Pauli op-

erators comes simply from the manipulation of anyons. To perform the logical Zv
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Figure 3.1: A p-type qubit is shown, with the vertex holes coloured dark blue. (a)
The logical Z is a product of σx operations on the spins around either vertex. (b)
The logical X is a product of σz operations on spins forming a path between the
holes, such as the one coloured light blue.

(Zp) operation, an m
1 (e1) must be created and braided clockwise around v1 (p1).

Z† can be implemented by instead braiding an m−1 (e−1). These logical operations

can be expressed in terms of the stabilizers of the model (Eq. 2.9),

Zv = A(v1) = A†(v2), Zp = B(p1) = B†(p2). (3.4)

To perform an Xv, an e
1, e−1 pair must be created. The e1 is then placed in the

hole v1 and the e−1 in v2. Similarly an Xp is performed using an m1, m−1 pair.

The X† operation may be implemented in both cases by reversing the destinations

of the anyons, placing e−1 in v1, etc. The logical X and Z operations are shown in

Fig. 3.1.

Implementation of controlled-Z

If it is assumed that the holes can be moved the gates implemented by braiding can

be considered. Braiding the contents of a hole v1 around a hole v2 braids the anyons

they contain. The phase factor that results will therefore depend on the states of

the two qudits,

| g〉v |h〉p → ωgh | g〉v |h〉p . (3.5)
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The resulting gate is the controlled-Z, the qudit generalization of the controlled

phase. This implements Zg on the target qudit when the control is in state | g〉. The

gate is completely symmetric, in that either qudit could be viewed as the control or

target.

3.2 Cli�ord gates using Pauli spin measurements

Since the gates above do not form a useful gate set, additional operations must be

considered. Here we determine the e�ect of measuring lattice spins in the basis of

Pauli operators σx, σy and σz. This is done in detail for the case of logical qubits

stored in the D(Z2) model, where it is shown that the full Cli�ord group of gates

may be implemented. This makes the model as some non-universal non-Abelian

models, such as that of the much celebrated Ising anyons [51]. The case of general

D(Zd) models is then commented upon.

Measuring logical Pauli operators

For the case of the D(Z2) model, a v-type qubit is stored on two vertex holes, v1

and v2, as follows,

| 0〉v = | 1〉v1 | 1〉v2 , | 1〉v = | e〉v1 | e〉v2 .

Logical states for p-type qubits take a similar form.

Using measurements of the spin Pauli operators σx, σy and σz it is possible to

measure the logical Pauli operators X, Y and Z of the encoded qubits. We �rst

consider this for the logical Z operations, which for the D(Z2) model take the form,

Zv = A(v1) = A(v2), Zp = B(p1) = B(p2). (3.6)

These are four-body operations measuring the parity of spins in the σx and σz bases,

respectively. The logical Z acting on one hole for a v-type qubit is shown in Fig.

3.1(a). Ideally, measurement of the logical Z requires an entangling measurement

25



Chapter 3. A toolkit for quantum computation with Abelian anyons

of the four spins involved. However, single spin measurements may also be used.

To do this one simply measures in the σz or σx basis of each lattice spin surround-

ing v1 or p1, respectively, and then computes the parity to determine the result.

These measurements can also be used to prepare qudits in the Zv/p basis states,

{| 0〉v/p , | 1〉v/p}.

Note that measurements performed in such a way will create unwanted anyons.

For example, the measurement of the four σx's on each spin around a vertex does

not commute with the B(p) operators on the surrounding plaquettes. This creates

a superposition of m anyons on these plaquettes. Any attempt to correct this by

fusing the anyons will only succeed with a probability of 1/2. Otherwise a logical Z

error will be implemented on the qubit. However, since the post-measurement state

is an eigenstate of Z, such errors have no e�ect. Similarly, any attempt to move

the hole away from the super�uous anyons will also result in a logical Z error with

probability 1/2, but with no ill e�ects to the prepared state. These anyons may,

however, cause non-trivial errors if allowed to propagate away from their initial

position, either by thermal errors or perturbations in the Hamiltonian, and braid

around other holes. Any proposal for fault-tolerant computation using these models

must therefore include some means to annihilate these.

For measurement of X, consider the case in which the holes are neighbouring.

They will then share a lattice spin, i, and the logical X operators take the form,

Xv = σzi , Xp = σxi , (3.7)

Measurement of the Xv basis is then simply measurement in the σz basis of the spin

i. Similarly measurement of Xp is measurement of σxi . These measurements may be

used to prepare qudits in the Xv,p basis states, denoted {
∣∣ 0̃〉

v,p
,
∣∣ 1̃〉

v,p
}.

If the vertices are not neighbouring, the Xv are realized by the product of σzi 's

on spins that form a path between the two vertices, and the Xp by a product of

σxi 's between the two plaquettes. This is shown for a p-type qubit in Fig. 3.1(b).

Measurement of each logical X can be locally achieved by measuring each spin along
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3.2. Cli�ord gates using Pauli spin measurements

the path in the relevant basis, and computing the parity of results. As with measure-

ment in the Z basis above using a similar technique, this will lead to the creation of

unwanted anyons which will cause a logical X error on the post measurement state

with probability 1/2. Again, this does not a�ect X basis preparation.

The logical Y operation may be achieved through a product of X and Z. It is

therefore a product of spin Pauli operators that stretch between the holes as well

as circling around one. Measurement in the Y basis may again be done locally

by measuring each of the single spin Pauli operators, which will again lead to the

creation of unwanted anyons. These will independently cause Z and X errors on the

post measurement state with probabilities of 1/2. Since these are not eigenstates of

the errors, the reliable preparation of Y basis states is not possible.

Implementation of controlled-X

In order to prove that all gates of the Cli�ord group can be implemented, it must

be shown that all such gates can act on both v- and p-types qubits alone. The

controlled-Z implemented by braiding does not satisfy this, since it entangles v- type

qubits to p-type. However, the controlled-Z can be used to implement a controlled-X

on qubits of the same type.

The �rst step to building the controlled-X is to use the controlled-Z to perform

the following operation. Consider a v-type qubit in arbitrary state |ψ〉v =
∑

j cj | j〉v

and a p-type qubit prepared in state
∣∣ 0̃〉

p
= (| 0〉p + | 1〉p)/

√
2. Entangling these

together with the controlled-Z yields,

Λ(Z) |ψ〉v
∣∣ 0̃〉

p
=

1√
2
(c0 | 0〉v

∣∣ 0̃〉
p
+ c1 | 1〉v

∣∣ 1̃〉
p
)

=
1√
2

∑
l

∣∣∣ l̃〉
v

(
X l
pF |ψ〉p

)
. (3.8)

Measuring the v qudit in the Xv basis teleports the initial state |ψ〉 state to the p-

type qudit, while implementing the Fourier transform, or Hadamard, F . We denote

this process Fv→p. This operation is performed up to a Pauli correction, according
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Chapter 3. A toolkit for quantum computation with Abelian anyons

Figure 3.2: Circuits for the implementation of: (a) the Fourier transform with tele-
portation, Fv→p; and (b) the controlled-X. These circuits are shown for the general
case of qudits.

to the measurement outcome. A corresponding process Fp→v can be used if the

initial state is on a p-type qubit. The circuit for this process is shown in Fig. 3.2

(a).

Using the teleporting Fourier transforms, the controlled-X can be performed

between two v-type qubits by �rst performing Fv→p on the target, then performing

the controlled-Z, then �nally performing Fp→v. The circuit for this process is shown

in Fig. 3.2 (b).

Implementation of Z1/2, X1/2 and F

Since the teleporting Fourier transforms above do not map v-type qubits to v-type,

or p-type to p-type, they cannot be used as a Fourier transform in Cli�ord circuits

in a straightforward manner. However, it is possible to implement the gates Z1/2

and X1/2, which in turn can be used for a standard Fourier transform.

For the implementation of Z1/2, consider the implementation of the operation

Fv→p, as shown in Fig. 3.2 (a). Modifying this such that the measurement of the
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3.2. Cli�ord gates using Pauli spin measurements

�rst qubit is in the Y basis, rather than the X results, in the state FZ l+1/2 |ψ〉p on

the second qubit, where l ∈ {0, 1} denotes the measurement result. This implements

either Z1/2 or its inverse depending on l and then teleports the state from a v to a

p-type qubit while implementing the Fourier transform. If Fv→p is then performed

as normal the state is teleported back to a v-type qubit, and the Fourier transform

is cancelled. The result of the whole process is then the operation,

|ψ〉v → Z l+1/2 |ψ〉v , (3.9)

which simply implements either Z
1/2
v or its inverse according to the result of the

Y measurement. To apply either deterministically a Zv can be applied to map

Z
1/2
v to its inverse and vice-versa. The X

1/2
v may be similarly implemented using

Fp→vZ
1/2
p Fv→p. Corresponding processes can be used to perform these operations

on p-type qubits.

Implementation of Cli�ord group

It is well known that the Cli�ord group is generated by F , Z1/2 and the controlled-

X [49]. The implementation of the latter two on the D(Z2) model are explicitly

given above. It is therefore su�cient to demonstrate that a Fourier transform can

be performed that acts only on a single qubit type, without teleporting between

them. This can be constructed according to the relation,

F = Z1/2X1/2Z1/2. (3.10)

All the required generators can then be performed on either v- or p-type qubits

alone, leading to the full Cli�ord group realized on each.
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Generalization of the methods

This result is not limited to the case of d = 2, but is true whenever d = 2do, where do

is odd. In this case we may encode logical qubits in a subset of e anyons as follows,

| 0〉v = | 1〉v1 | 1〉v2 , | 1〉v =
∣∣∣ edo〉

v1

∣∣∣ edo〉
v2
. (3.11)

The encoding for p-type qubits is similarly de�ned. All methods above may be easily

applied to this encoding, with the substitution,

σα → (σα)3, α ∈ {x, y, z}. (3.12)

Note that the reason that do must be odd is for the controlled-Z to be implemented

upon braiding. Otherwise this braiding is trivial.

For all other D(Zd) models the measurements of XaZb operations, generaliza-

tions of Y , do not lead to Z1/2 or X1/2. The gate set realized does not seem to

correspond to one that is well studied, and so the computational power remains an

open question. It is not known whether they implement the Cli�ord group or not.

3.3 Universal quantum computation with arbitrary spin

measurements

The e�ect of arbitrary single spin measurements is now considered in general for all

D(Zd) models. The gate set implemented is proved to be universal when d is prime

or twice an odd number.

Implementation of controlled-X

Measurement in the basis of spin Pauli operators, as considered in the previous

Section, is clearly included within arbitrary spin measurements. As such, certain

methods used in the previous section for D(Z2) can be applied in general for all

D(Zd) models. Notably, using the same circuits as in Fig. 3.2 it is possible to imple-
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3.3. Universal quantum computation with arbitrary spin measurements

Figure 3.3: Measurements of a single spin a�ect the surrounding plaquettes and
vertices. When a v-type qudit is stored in the two vertices surrounding a spin i,
and a p-type in the two plaquettes, measurements of the spin correspond either to
measurements of the single qudits, or entangling measurements of the two.

ment the qudit generalization of a controlled-X. This performs an Xg on the target

when the control is in state | g〉 : | g〉 |h〉 → | g〉 |h+ g〉. Again, this is implemented

between two v-type qudits, or two p-type qudits. Also, logical Pauli measurements

and basis state preparations can be performed using spin Pauli measurements on

lattice spins.

Implementation of single spin rotations

It is well known that entangling gates and suitably prepared ancillae can be used

to perform single spin rotations [52]. Here we use measurement of lattice spins to

prepare logical ancillae that can be used to perform qudit rotations.

Consider any lattice spin i. The two plaquettes and two vertices sharing this

spin may be used to de�ne two qudits, one v-type and the other p-type. These are

labelled as shown in Fig. 3.3. The vertex v1 is taken to be that for which i is labelled

1 or 2 and the plaquette p1 is that for which i is 2 or 3. The logical X operations

for these qudits then take the following simple form,

Xv = σzi , Xp = σxi .

A projector acting on spin i can be expressed in terms of the Pauli operators
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Chapter 3. A toolkit for quantum computation with Abelian anyons

acting on i and hence, by the relations above, in terms of the logical qudit Pauli

operators. Measurements of the spin i therefore correspond to measurements of

these qudits. In general these measurements are in an entangled basis of the two

qudits. The exceptions are the measurements of σzi and σxi , which correspond to

X basis measurements of the v- and p-type qudits, respectively. Note that not all

measurements of the two qudits can be achieved in this way, only a certain class.

We consider using these measurements to prepare logical ancilla states. The

measurement used is one for which one outcome projects to the state,

|φ〉i =
1√
d

∑
j

eiφj | j〉 , (3.13)

where the φj are arbitrary and independent phases. The projector onto this state

may be expressed,

|φ〉i 〈φ | =
1

d

∑
j,k

ei(φj+k−φj) | j + k〉i 〈j | =
1

d2

∑
j,k,l

ei(φj+k−φj)ω−jlXk
pX

l
v, (3.14)

which projects the logical qudits neighbouring the measured spin into the state,

|φ〉i 〈φ | (| 0〉p | 0〉v) =
1

d2

∑
j,k,l

ei(φj+k−φj)ω−jl | k〉p | l〉v . (3.15)

This is a superposition of anyon states on the vertices and plaquettes sharing i,

and corresponds to an entangled state of the two logical qudits. However, we are

interested only in preparing a single qudit state. To obtain the required state we

apply X†
p to the p qudit and probabilistically project its state onto | 0〉p using a Zp

measurement. This will leave the v qudit in the state,

1√
d

∑
j

ei(φj+1−φj)
∣∣−j̃〉

v
.

32



3.3. Universal quantum computation with arbitrary spin measurements

Application of F †
v→p will then transform this into the p qudit state,

1√
d

∑
j

ei(φj+1−φj) | j〉p .

Setting φ0 = 0 and de�ning a set of phases θk such that φj =
∑

k=1...j−1 θk for

j = 1...d− 1, this becomes,

| θ〉p =
∑
j

eiθj | j〉p . (3.16)

This is the ancilla state which may be used for single qudit rotations of p-type qudits.

It may be prepared for any desired set of θk. A corresponding process can be used

to prepare the same ancilla state for v-type qudits.

These ancilla states may be used to implement single qudit unitaries of the form,

Uz(θ) =
1√
d

∑
j

eiθj | j〉 〈j | , (3.17)

on both v- and p-type qudits. For example, consider a v-type qudit in an arbitrary

state |ψ〉v. Applying the inverse of a controlled-X between this and a logical ancilla

in state | θ〉v, with the latter as the target, results in the state,

∑
j,k

eiθjck | k〉v | j − k〉v =
∑
j,k

eiθj+kck | k〉v | j〉v . (3.18)

If the ancilla is then measured in the Z basis and the outcome j = 0 obtained,

the rotation Uz(θ) is applied to |ψ〉v. Otherwise an erroneous rotation occurs. The

process may then be repeated until the right result is obtained, changing the θj 's to

correct the erroneous rotations. Each attempt succeeds with a probability of 1/2,

so success can be expected to occur within a small number of steps. The circuit

for this process is given in Fig. 3.4. Conjugating Uz(θ) with the teleporting Fourier

transform allows corresponding rotations in the X basis,

Ux(θ) = F †Ux(θ)F. (3.19)
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Figure 3.4: The circuit used to implement rotations in the Z basis.

Proof of universality

When d is prime, the single qudit unitaries Uz(θ) and Ux(θ) can be used to perform

arbitrary single qudit rotations [53]. Along with the entangling controlled-X, this

allows for universal quantum computation. Also, as mentioned earlier, the opera-

tions that can be implemented in D(Z2) can also be performed when d is twice an

odd number. Hence, since such arbitrary measurements can make D(Z2) universal,

corresponding measurements can also lead to universality in this case. For other

cases universality has been neither proved nor disproved.

3.4 Quantum computation without braiding

Certain experimental realizations of Abelian anyons, such as those using Josephson

junctions [20], focus on realizing charge anyons at the expense of �uxes, or vice-

versa. Only v- or p-type qubits may therefore be encoded, not both, and gates using

braiding can no longer be achieved. This applies also to similar partial realizations

of non-Abelian models, such as the charges of D(S3), for which braiding is trivial.

It is therefore important to determine what gates it may be possible to utilize to

achieve universality in this case, while acting on a minimum number of lattice spins.

Here it is shown that acting on a minimum of one spin per logical qubit is su�cient

to achieve universality.
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3.4. Quantum computation without braiding

In this section we consider a quantum memory based on the charge anyons of

Abelian quantum double models, assuming that the plaquettes are always in the

vacuum state. This is equivalent to the converse case of using �ux anyons in the

absence of charges.

Gates without braiding

The encoding de�ned in Eq. 3.1 is again employed for v-type qudits but, since there

can be no �ux anyons, no encoding on p-type qudits is possible. This then means

that the controlled-Z gate, which is the backbone of all the above, may no longer

be used. The logical X and Z may still be used, as their implementation does not

necessarily involve braiding. The scheme we consider using these gates also requires

measurement of the Z basis, which has been shown above to be possible when lattice

spins can be measured in each Pauli basis. However, alternative means to make this

measurement would have the same e�ect.

In order to determine what additional and non-topological gates it might be

reasonable to add to the above set, note that the logical X operation acts on a

single spin when the two holes are neighbouring. All operations diagonal in the X

basis, such as the Ux(θ) of Eq. 3.19, can therefore also be implemented using single

spin operations.

In this same spirit, a two qubit entangling gate diagonal in the X basis of both

would act on a minimum of two spins, one for each logical qudit. Such a gate is the

the phase-controlled-X: a controlled-X conjugated by the Fourier transform on the

source qudit, which implements Xj on the target when the source is in state
∣∣ j̃〉.

Using this, the Fourier transform may be implemented by the circuit of Fig. 3.5.

With the Fourier transform and phase gates Ux(θ), the phase gates Uz(θ) may

also be performed. As shown above, these can be proven to implement arbitrary

single qudit rotations when d is prime, and so universal quantum computation can

be performed.
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Figure 3.5: The circuit used to implement a Fourier transform, up to a logical Pauli
correction, where j denotes the measurement result.

3.5 Conclusions

In this chapter, a range of methods are developed for quantum computation in

Abelian quantum double models. These explore the computational power that may

be achieved when the di�erent sets of operations are assumed possible. Firstly the

use of measurement in the basis of spin Pauli operators was considered. It was

shown for the case of D(Z2do), where do is odd, that this allows the implementation

of the full Cli�ord group of gates. The use of arbitrary spin measurements was then

considered. This allowed the construction of certain single spin rotations which can

be used for universal quantum computation in D(Zd) models when d is prime, or

when d = 2do.

The chapter is intended to provide a toolkit of methods for quantum computation

with Abelian anyons. Though the chapter deals only with quantum double models,

many of the techniques may also be applicable for Abelian anyons realized by other

means. The results presented here are used in Chapter 6 to determine what proof

of principle experiments in topological quantum computation may be performed

with current technology. They may also be employed in the advanced encoding of

Chapter 5, designed to ensure fault-tolerance.

It is worth mentioning how the results of this chapter compare to the previous

work on the topic, as mentioned earlier. The proposal of Dennis et. al [35] treats
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the D(Z2) model simply as a stabilizer code, without consideration of the Hamil-

tonian. Cli�ord gates are implemented transversely on logical qubits stored within

the stabilizer space. However, the implementation of these requires the system to go

via states of superposed anyons. Hence, if a Hamiltonian were to be implemented,

these gates would be prone to decoherence. In our proposal the gates are designed

to commute with the Hamiltonian, and hence not create excitations. It therefore

should not cause decoherence to our logical information, but help to prevent it by

providing an energy gap. Such arguments will be applied more rigorously in Chapter

5.

The proposals of Lloyd [36] and Pachos [38], like the one here, store information in

such a way that entangling gates may be implemented by braiding. However, unlike

here the superpositions of anyon states used for the encoding is degenerate under the

Hamiltonian without the need for holes, and can be moved by local potentials. Single

qubit rotations are then performed using local gates, which would be implemented

by applying local Hamiltonian terms for speci�c time intervals. As such, they are

similar in philosophy to the single qubit rotations of Section 3.4 above. However,

in their proposals as well as ours, such gates are susceptible to timing errors. This

is in stark contrast to the exact nature of gates implemented by braiding and with

well distilled ancilla states [41], such as those in Section 3.3.

Finally, Raussendorf et al. [42] encode logical qubits in holes and implement

gates by braiding, supplemented with logical ancillae prepared using single spin

measurements. Hence their philosophy is very similar to that used here. However,

there are two di�erences. Firstly, their proposal deals only with D(Z2), and with a

given set of allowed operations. Ours is de�ned in general for all Abelian quantum

double models, and investigates many di�erent sets of operations that may be appli-

cable in di�erent experimental set-ups. Secondly, our proposal is based on Abelian

anyons realized on two dimensional spin lattices with a Hamiltonian, whereas theirs

is a topologically inspired scheme for measurement based quantum computation.

This allows braiding of the holes to be implemented by single spin measurements,
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move the holes through simulated time. Even so, the relations between the methods

allow the possibility that our work be used in higher dimensional generalizations of

their scheme [42].

From these we see the main restriction of the methods proposed in this chapter.

Though the means to perform the required braidings were obvious in previous works,

it is not clear how this may be done in a practical and fault-tolerant way here.

However, this is not a big problem, since this chapter is not intended as a full

proposal for quantum computation itself, but as an outline of methods that may

be used. These can then be implemented in more advanced encodings in which the

means to braid are more straightforward, such as the non-abelian-like encoding of

Chapter 5, or generalization of the above schemes to other Abelian models outside

the quantum double formalism.
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Chapter 4

Simulating non-Abelian anyons

with Abelian Models

In this chapter, Abelian anyon models are used to simulate the fusion and braiding

behaviour of non-Abelian models. Two examples are considered. The �rst demon-

strates a complete operational equivalence of the Abelian charge anyons of D(Z6)

and the non-Abelian charge anyons of D(S3). It is shown that there is no detectable

di�erence between the two when restricting to anyonic operations. The second uses

the Abelian D(Z2) model to demonstrate the non-Abelian behaviour of the Ising

anyon model, including the non-trivial and chiral nature of the braiding. In both

cases, more complex operations than those of the underlying Abelian models must

be employed in order for the non-Abelian behaviour to emerge. These include op-

erations which allow superpositions of anyon states to be created and transported

coherently, and framings to introduce chirality. For this reason the concept of en-

hanced Abelian models is developed.

This chapter is structured as follows. Firstly the formalism by which Abelian

anyons may be mapped to enhanced Abelian models is introduced in Section 4.1.

Then, in Section 4.2, the equivalence of the D(Z6) and D(S3) charges is shown.

Finally the behaviour of Ising anyons is demonstrated using D(Z2) in Section 4.3.
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4.1 Construction of enhanced Abelian models

The structure of Abelian anyon models is much simpler than that of non-Abelian

models. The fusion of Abelian anyons always has a de�nite result and their F - and

R-matrices are all one-dimensional. However, despite this, they are still capable of

complex behaviour similar to that found in non-Abelian models.

In order to demonstrate the complex behaviour that may be achieved using

Abelian models, an alternate description of them is derived. This rede�nes the

quasiparticles of the model such that fusion and braiding is non-trivial. However,

these rede�ned quasiparticles cannot strictly be described as anyons, so we will not

refer to them as such. Instead they will be described simply as quasiparticles of new,

enhanced, Abelian models.

Note that an enhanced Abelian model has no physical di�erence to the Abelian

model it is based upon. The di�erence is only in the way the states are labelled.

The non-trivial behaviour realized by the quasiparticles of the enhanced Abelian

model is therefore the behaviour of the Abelian anyons, just looked at in a light that

illuminates their potential.

Mapping Abelian anyon models to enhanced non-Abelian anyon

models

An Abelian model A has a set of NA particle types, A = {1, a, b . . .}. This can

be used to de�ne an enhanced Abelian model A′ with NA′ < NA particle types,

A′ = {1, α, β, . . .}. To do this, the particles of A are decomposed into Nα disjoint

sets,

A = {M1,Mα,Mβ , . . .}. (4.1)

All anyons within the set Mα are identi�ed with the quasiparticle α, etc. The set

M1 = {1} is de�ned to contain only the vacuum, so that the vacuum particle of the

anyon model is always directly identi�ed with the vacuum of the enhanced Abelian

model.
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Once the particle types of the enhanced Abelian model have been de�ned, their

fusion rules can be determined. These are directly computed from the fusion rules

of the Abelian model by the following relation,

Nαn
αl,αm

=
∑

ai∈Mαl
, aj∈Mαm , ak∈Mαn

Nak
ai,aj . (4.2)

The fusion rules of the quasiparticles are determined both by the fusion rules of the

underlying anyons and the way in which they are decomposed into sets. Therefore,

in general, multiple enhanced Abelian models with di�erent fusion rules can be

obtained from the same Abelian model.

These fusion multiplicities demonstrate why the αn cannot be described as non-

Abelian anyons. The abstract theory of anyons is based on the assumption that

N1
αl,αl

= 1, and so a particle and antiparticle fuse to the vacuum in only one dis-

tinguishable way. However, as will be seen below when this method is applied, it

is possible in enhanced Abelian models to have N1
αl,αl

> 1. The quasiparticles are

therefore not non-Abelian anyons or anyons of any kind.

Transport of the quasiparticles

In order for a physical realization of an Abelian model to support an enhanced

Abelian model based upon it, there must exist operations that can map the state

of the quasiparticles from one position (a plaquette or vertex, for example) to a

neighbouring position. Since, in general, the quasiparticle state may be a superpo-

sition of various anyon states, this movement must also be done in a manner that

maintains the coherence of the superposition. Furthermore, the operation should be

quasi-local, acting only in the neighbourhood of the positions moved from and to.

For any enhanced Abelian model, a transport protocol can be designed in a

way similar to the transport of non-Abelian anyons in [24]. Though our focus is

on quantum double models realized on spin lattices, we present the protocol in

a general way that should be applicable to all Abelian models, regardless of the

physical medium used to realize them.
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Given a physical realization of an Abelian anyon model, let us use tx,x′(an) to

denote the operation to move an anyon an to from a position x to x′ and Px(an) to

denote the projector onto the state of an anyon of type an present at x. To move

a quasiparticle αm from x to x′ we �rst take an ancillary |Mαm |-level spin q whose

basis states are denoted |n〉q for each an ∈Mαm . This is initially prepared in some

known initial state | θ〉q. The following unitary operation can then be performed

between the physical medium used to realize the anyons and the ancilla,

Cx(αm) =
∑

an∈Mαm

Px(an)⊗ |n〉 〈θ |+ other terms. (4.3)

The other terms mentioned here are required for unitarity, but only relevant when

the ancilla is in an initial state other than | θ〉. However, since we do not consider

such cases, we need not consider these terms. The operation entangles the ancilla

to the anyon occupation state at position x: when an an is present at x the ancilla

is mapped to state n. The following unitary may then be applied,

Dx′(αm) =
∑

an∈Mαm

tx,x′(an)⊗ |n〉 〈n | . (4.4)

This applies an operation tx,x′(an) to the physical medium according to the state of

the ancilla. This ensures that the correct operation is applied to move the anyon

present. Finally the operation C†
x′(αm) is applied. If the position x

′ was previously

unoccupied, this disentangles the ancilla and returns it to its initial state | θ〉. If the

position was occupied by some other quasiparticle αl, the state of the ancilla will, in

general, remain entangled. Measurement of its state will reveal the channel of the

fusion αm × αl.

In any case, the application of the operations above results in the transport

of the quasiparticle which, when an ancilla located close to x and x′ is used, is

quasilocal. Furthermore, when these operations are used to fuse and braid the

underlying anyons, the same fusion and braiding behaviour is obtained as would be

expected from the model.
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4.2 Realizing D(S3) charges with D(Z6)

Introduction

Using enhanced Abelian models, it can be shown that the non-Abelian charge anyons

of the D(S3) model are equivalent in behaviour to the Abelian charge anyons of the

D(Z6) model. Applying the operations of creation and transport of D(S3) charges

yields the same fusion results as the quasiparticles of an enhanced Abelian model.

This equivalence only applies to a certain extent. There will be multiplicities

present in the fusion rules of the quasiparticles of the enhanced Abelian model not

present in the anyons, and relative phases in the F -matrices of the anyons not

realized by the quasiparticles. However, so long as only the operations of creation

and transport, and measurements of fusion results are used, these di�erences cannot

be detected.

The D(Z6) model

The D(Z6) model is an Abelian quantum double model, with charge, �ux and com-

posite anyons. The model has a spin lattice realization, as discussed earlier (2.2),

but this need not be considered here. As in all Abelian quantum double models, the

charge and �ux anyons are the exact mirror of each other. Either can therefore be

shown to be equivalent to the charges of D(S3), but the charges are chosen for the

sake of later discussions of experimental realizations in Chapter 6. The properties

of these charge anyons are as follows.

• Particle types:

e0, e1, e2, e3, e4, e5. (4.5)

The e0 charge anyon is identi�ed with the vacuum, 1.

• Fusion rules:

eg × eh = eg+h mod 6, ∀ g, h ∈ Z6. (4.6)

• R-matrices: All trivial.
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• F -matrices: All trivial.

The charge submodel of D(S3)

The charge submodel of D(S3) was presented in detail in Section 2.3. The non-

Abelian braiding of this model is only su�cient to represent the permutation of the

anyons, and does not perform any additional operations on the fusion space. It is

this property that allows these non-Abelian anyons to be made equivalent to Abelian

anyons in a straightforward manner.

An enhanced Abelian model of D(Z6)

Consider the following enhanced Abelian model of the D(Z6) charges,

M1 = {e0}, MΦ̃ = {e1, e2, e4, e5}, MΛ̃ = {e3}. (4.7)

This leads to the fusion rules,

Φ̃× Φ̃ = 4 · 1 + 4 · Λ̃ + 8 · Φ̃, Λ̃× Λ̃ = 1, Φ̃× Λ̃ = 4 · Φ̃, (4.8)

which, aside from the multiplicities, are the same as those of the D(S3) charges (Eq.

2.21).

The states of Φ̃ quasiparticles

The Φ̃ quasiparticles are de�ned as being any anyon from the set MΦ̃. The state

of a single Φ̃ residing at some position n can therefore be any arbitrary mixture of

these anyon states,

ρΦ̃n
= c1

∣∣ e1n〉 〈e1n ∣∣+ c2
∣∣ e2n〉 〈e2n ∣∣+ c4

∣∣ e4n〉 〈e4n ∣∣+ c5
∣∣ e5n〉 〈e5n ∣∣). (4.9)

Here the n subscript, for both the Φ̃ and eg, denotes the position of the quasiparticles.

The reason why the state of the single Φ̃ must be a mixture is that the superposition
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of anyons of di�erent states is impossible, only the superposition of states of the

same total fusion channel forms a physical state. Hence, for example, a pair of Φ̃

quasiparticles that belong to the vacuum sector can be an arbitrary superposition

of any such pairs of the anyons in MΦ̃,

∣∣∣ Φ̃n, Φ̃m; 1〉 = a1
∣∣ e1n, e5m〉+ a2

∣∣ e2n, e4m〉+ a4
∣∣ e4n, e2m〉+ a5

∣∣ e5n, e1m〉 . (4.10)

In the following the exact forms of these states must be determined in order to

satisfy the fusion rules.

Equivalence of fusion behaviour

We will �rst consider the equivalence of fusion behaviour in the two models. We have

seen that the fusion rules di�er only in the values of the multiplicities, so it only re-

mains to show that the F -matrices are satis�ed. Since only measurements of anyons

are considered, relative phases between anyon states cannot be detected. Only the

probabilities for fusion outcomes predicted by the F -matrices must therefore be re-

produced. The only non-trivial F -matrix for the D(S3) charges corresponds to the

case where three Φ charges fuse to a Φ. Let us suppose that these anyons are located

at positions denoted 1, 2 and 3, and so can be labelled Φ1, Φ2 and Φ3 accordingly.

When the anyons are prepared in a state such that Φ1 and Φ2, if fused, would fuse

to the result a ∈ {1,Φ,Λ}, the probability that Φ2 and Φ3 will fuse to b ∈ {1,Φ,Λ}

is,

P (b|a) = |(FΦ
ΦΦΦ)

b
a|2. (4.11)

This follows from the de�nition of the F -matrix in 2.1. From Eq. 2.23, these

probabilities are,

P (1|1) = 1/4, P (Λ|1) = 1/4, P (Φ|1) = 1/2,

P (1|Λ) = 1/4, P (Λ|Λ) = 1/4, P (Φ|Λ) = 1/2,

P (1|Φ) = 1/2, P (Λ|Φ) = 1/2, P (Φ|Φ) = 0.
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In order to reproduce the probabilities, the states of any Φ̃ quasiparticle must be an

equally weighted mixture of all the anyons in MΦ̃,

ρΦ̃n
=

1

4
(
∣∣ e1n〉 〈e1n ∣∣+ ∣∣ e2n〉 〈e2n ∣∣+ ∣∣ e4n〉 〈e4n ∣∣+ ∣∣ e5n〉 〈e5n ∣∣). (4.12)

Accordingly, the state of Φ̃ pairs in the vacuum and Λ̃ fusion channels is de�ned to

be,

∣∣∣ Φ̃1, Φ̃2; 1
〉

=
1

2
(
∣∣ e11, e52〉+ ∣∣ e51, e12〉+ ∣∣ e21, e42〉+ ∣∣ e41, e22〉)∣∣∣ Φ̃1, Φ̃2; Λ̃

〉
=

1

2
(
∣∣ e11, e22〉+ ∣∣ e21, e12〉+ ∣∣ e41, e52〉+ ∣∣ e51, e42〉). (4.13)

Introducing an external Φ3 and fusing it with Φ2 will then correspond to an equally

weighted mixture of sixteen anyon fusions. Four of these yield the vacuum, four

yield a Λ̃ and eight yield a Φ̃, hence giving the correct probabilities for each.

The third fusion process to be considered is that of three Φ̃'s, in a state for which

Φ̃1× Φ̃2 = Φ̃ and Φ̃1× Φ̃2× Φ̃3 = Φ̃. In terms of the anyons, the states which satisfy

these take one of the following two forms,

∣∣∣ e1+i1 , e1+j1 , e2+k1

〉
,
∣∣∣ e2+i1 , e2+j1 , e1+k1

〉
, i, j, k ∈ {0, 3}. (4.14)

From these, it is easy to see that Φ̃2×Φ̃3 can only be 1 or Λ̃, reproducing the required

probability P (Φ|Φ) = 0. De�ning Φ̃'s to satisfy Eq. 4.12 ensure that neither the 1

or Λ̃ is preferred, so P (1|Φ) = P (Λ|Φ) = 1/2, as required.

Since these states do not simply correspond to those of the underlying anyons,

but superpositions of them, they cannot be prepared using the same simple creation

operators. Instead, more complex operations must be employed. It is the use of

these, along with the quasiparticle transport operations outlined previously, that

allow non-Abelian behaviour to emerge from this Abelian model.
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Equivalence of braiding behaviour

The abstract theory of anyons as presented in 2.1 treats anyons of the same type as

indistinguishable. Therefore, the e�ect of their permutation must be represented in

the braid matrices. In a physical realization of anyons on a spin lattice, however,

the quasiparticles are distinct entities in the lattice. Their permutation is therefore

represented by simply taking the quasiparticles and exchanging them. Hence the

e�ect of the braid matrix is realized, even if the exact phase factors it speci�es

cannot be seen to have been realized explicitly.

In the case of the D(S3) anyons the RΦΦ matrix has one non trivial entry,

RΦΦ
Λ = −1, which states that a phase of −1 should result when two Φ's of the Λ

fusion channel are exchanged. Though such a phase cannot be seen to result from

the exchange of the Φ̃ quasiparticles, its e�ect on the fusion outcomes is achieved

when they are moved around each other. Hence the e�ect of the R-matrix is fully

realized. This is exactly the same way as the R-matrix is reproduced in for the Φ

anyon in the actual D(S3) lattice model.

With both braiding and fusion shown to be equivalent, the Φ̃ and Λ̃ quasiparticles

will always yield the same results with the same probabilities as the charge sub-

model of D(S3). The two may therefore be considered to be completely operational

equivalent when only the anyonic operations of braiding and fusion are performed.

This allows experiments to be designed which could realize these anyons in a simpler

manner than usually expected for non-Abelian anyons, as will be discussed later in

Chapter 6.

Uses of the simulation

In the above it was shown that an enhanced D(Z6) model, in which superpositions

of the charge anyons can be created and manipulated, is equivalent to the charge

submodel of D(S3) when only operations of fusion and braiding are considered.

However, it should be noted that the superpositions are not actually required in

order to satisfy this equivalence, since statistical mixtures will also su�ce. One
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might therefore question whether this is truly a realization of non-Abelian anyons.

As discussed in Section 2.1 of Chapter 2, all realizations of anyons are simula-

tions with certain limits. The limits for this simulation of the D(S3) are that only

the anyonic operations of braiding and fusion may be implemented. The e�ects of

other, non-topological operations, would not be expected to yield the same results

as predicted by the anyonic theory.

The limitations of this simulation, coupled with the simplicity of the model

simulated, means that the anyonic behaviour realized by the above could not be

harnessed for fault-tolerant quantum computation. This point is underlined by the

fact that the superposition states used in the above could be replaced by statistical

mixtures, without making any di�erence to the results. The simulation therefore has

no need to maintain to coherence of the states, and could not be used as a quantum

memory. This primary use of this simulation is therefore as a �rst step toward more

complex realizations of anyonic behaviour. It provides a testing ground in which

the spin lattice models may be constructed and quasiparticles may be created and

manipulated without stringent requirements on the coherence of states.

4.3 Realizing Ising anyons with D(Z2)

Introduction

In the previous Section an Abelian anyon model, supplemented by additional oper-

ations, was shown to realize the same behaviour as a non-Abelian model. This was

facilitated by the simple braiding behaviour of the non-Abelian model in question.

Now it will be demonstrated that an Abelian model can also demonstrate the be-

haviour of a non-Abelian model whose braiding is not trivial, but which implements

rotations in the fusion space. This will require a more careful approach to the fusion

multiplicities of the enhanced Abelian model used, which must be eliminated for

consistency.

The Abelian model used is the D(Z2) quantum double model, well known as the

48



4.3. Realizing Ising anyons with D(Z2)

anyon model of the toric code. This is shown to realize the braiding and fusion

behaviour of the non-Abelian Ising anyon model. Chirality is introduced using

framing, which brings about the correct phase factors to accompany the exchange

statistics.

Though the Ising anyon model is known to exist in a phase of the honeycomb

lattice model [51, 55], it does not have a well known spin lattice realization. It is still

an open question as to how the anyons are created and transported by spin opera-

tions, and how these lead to the braid relations. Our simulation of the properties of

this model in a well understood spin lattice realization sheds light on this problem,

especially since the D(Z2) model is also a phase of the honeycomb lattice model.

The D(Z2) anyon model

The D(Z2) anyon model is the simplest and most well understood of all Abelian

models. It is the anyon model of the toric code, and related surface codes [34,

35]. This makes it the most well known anyon model both inside and outside the

community of topological quantum computation. Its properties are as follows.

• Particle types:

1, e, m, ε. (4.15)

• Fusion rules:

e× e = m×m = ε× ε = 1, e×m = ε, e× ε = m, m× ε = e.

• R-matrices:

Rεε1 = (Remε )2 = −1, Ree1 = Rmm1 = 1,

• F -matrices: All trivial.

The spin lattice model usually used to realize the D(Z2) model is a square lattice

with a spin-1/2 particle on each edge [34]. Instead we consider a hexagonal lattice
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with spins on the vertices. These two descriptions are equivalent, as shown in Fig.

4.1. Each plaquette P is split into two subplaquettes, labelled s to the left and p to

the right. The following operators are then de�ned on the four spins around each

subplaquette,

As = σx1σ
x
2σ

x
3σ

x
4 , Bp = σz1σ

z
2σ

z
3σ

z
4 . (4.16)

The anyon vacuum is associated with any state for which As | ξ〉 = | ξ〉 and Bp | ξ〉 =

| ξ〉 for all s and p. Any state for which As | es〉 = − | es〉 is identi�ed with an e anyon

located at the subplaquette s. Similarly Bp |mp〉 = − |mp〉 is identi�ed with an m

anyon at p. An ε is present on a plaquette P if both an e and an m anyon are present

on the corresponding subplaquettes. This is due to the fusion rule e×m = ε.

Figure 4.1: The same spins are depicted in (a) on the edges of a square lattice and
in (b) on the vertices of a hexagonal lattice. The vertices v1 and v2 in the former
correspond to subplaquettes s1 and s2 in the latter, respectively. The plaquettes p1
and p2 also correspond to subplaquettes with the same labels.

The Ising anyon model

The Ising anyon model was presented in detail in 2.4. It is one is one of the simplest

non-Abelian models which, unlike the charge submodel of D(S3) above, has braiding

which acts non-trivially on the fusion space. In fact, its braiding is su�cient to

realize the Cli�ord group of gates on logical qubits stored within the fusion space
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[41]. though it is known that the Ising anyon model emerges in a certain coupling

regime of the honeycomb lattice model, as discussed in 2.4, an explicit understanding

of how the anyons are realized in terms of the underlying spins is not known. Any

insight into how this may work is then valuable to current research in the �eld.

The enhanced Abelian model of D(Z2)

In order to demonstrate the behaviour of the Ising anyon model, we map the Abelian

anyon model of D(Z2) into an enhanced Abelian model as follows,

AD(Z2) = {1, e,m, ε} = {M1,Mσ̃,Mψ̃}, M1 = {1}, Mσ̃ = {e,m}, Mψ̃ = {ε}. (4.17)

With this decomposition we directly identify the vacuum and ε of the anyon model

with the vacuum and ψ̃ of the enhanced Abelian model, respectively. The e and m

are then both identi�ed with the σ̃.

Equivalence of fusion behaviour

With the above decomposition of the D(Z2) anyons, the fusion rules are,

σ̃ × σ̃ = 2 · 1 + 2 · ψ̃, ψ̃ × ψ̃ = 1, σ̃ × ψ̃ = 2 · σ̃. (4.18)

Aside from the multiplicities, these take the same form as the fusion rules for the Ising

anyon model (Eq. 2.27). In order to eliminate these multiplicities, and faithfully

replicate the Ising anyon model fusion rules, we must place restrictions on the states

of quasiparticles that may be used in the enhanced Abelian model.

Consider a pair of σ̃ quasiparticles located at plaquettes P1 and P2. These are

denoted σ̃1 and σ̃2, respectively. The possible states for a pair in the vacuum fusion

channel are,

| σ̃1, σ̃2〉 = α | e1, e2〉+ β |m1,m2〉 , (4.19)
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For a pair in the ψ̃ fusion channel,

| σ̃1, σ̃2〉 = α | e1,m2〉+ β |m1, e2〉 . (4.20)

From these it can be seen that a two dimensional space is associated with each fusion

outcome, leading to the multiplicity of 2 for each. However, we will restrict to just

the two states, depicted in Fig. 4.2,

| σ̃1, σ̃2; j〉 =
1√
2
(| e1, e2〉+ j |m1,m2〉), (4.21)

for j = ±1. Both of these states are of the vacuum fusion channel, leading to the

fusion rule σ̃ × σ̃ = 2 · 1. However we will identify the j = −1 state with the ψ̃

fusion channel. The quasiparticle ψ̃ is then no longer simply identi�ed with the ε

of the D(Z2) model, but also this state of a σ̃ pair. The fusion rule then becomes

σ̃ × σ̃ = 1 + ψ̃, just as in the Ising anyon model. Note that these two states are

locally indistinguishable, since the σ̃ is an equal mixture of e and m in either state.

Also fusion with a ψ̃ does not change the σ̃ in any way that can be detected locally.

This is what one would expect from a fusion channel of anyons. Also, it means that

there is no longer a multiplicity in this fusion, so σ̃ × ψ̃ = σ̃.

Figure 4.2: The state of a σ pair with endpoints in two plaquettes of the honeycomb
lattice can be described by a superposition of e and m pair. The relative ± sign is
a non-local property that cannot be accessed by measurements at either endpoint.

Now we have determined the conditions under which the the correct fusion rules
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are realized, it remains to demonstrate that the F -matrices are obeyed. Since restric-

tions have been placed on the possible states for σ̃ pairs, corresponding restrictions

must also be placed on allowed fusion processes so that only allowed states emerge.

In addition, since we treat the vacuum channel j = −1 state as a ψ̃ channel state,

we must be careful which fusions we allow it to undergo. After these considerations,

the set of allowed fusions is found to be those in which pairs of anyons are fused to

yield other pairs.

To clarify this point, consider two pairs of σ anyons, both in the vacuum fusion

channel. The collective state of the four anyons is therefore also in the vacuum

channel. We use σ1 and σ2 to denote the anyons of the �rst pair, and σ3 and σ4 to

denote those of the second. We de�ne the fusion of these pairs to be the fusion of

σ1 with σ3 and σ2 with σ4. Since these collectively belong to the vacuum channel,

both fusions will yield either the vacuum, and hence a vacuum pair, or both will

yield a ψ, and hence a ψ pair. The general case is depicted in Fig. 4.3.

The allowed fusions are then:

• The fusion of two σ̃ pairs, both of the vacuum fusion channel.

• The fusion of two σ̃ pairs, both of the ψ̃ fusion channel.

• The fusion of a ψ̃ pair with any σ̃ pair.

• The fusion of two ψ̃ pairs.

The only non-trivial F-matrix for us to consider is that for σ anyons (Eq. 2.29),

which a�ects the fusion in Fig. 4.3. In order to satisfy this, the fusion of two σ̃ pairs

must yield an equally weighted superposition of a vacuum pair and a ψ̃ pair. When

both σ̃ pairs are of the vacuum fusion channel, this superposition has a relative

phase of +1. On the other hand, when they are of the ψ̃ channel the phase is −1.

The state of two pairs, either both in the vacuum channel (j = +1) or both in
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Figure 4.3: A pair of a anyons of the c fusion channel and a pair of b anyons of the
c fusion channel are depicted. The fusion of these pairs corresponds to the fusion of
each a with a b. This yields a pair of a× b anyons of the vacuum fusion channel.

the ψ̃ channel (j = −1), is as follows.

|σ1, σ2; +1〉 |σ1, σ2; +1〉 =
1

2
(| e1, e2, e3, e4〉+ |m1,m2,m3,m4〉

+ | e1, e2,m3,m4〉+ |m1,m2, e3, e4〉),

|σ1, σ2; +1〉 |σ1, σ2; +1〉 =
1

2
(| e1, e2, e3, e4〉+ |m1,m2,m3,m4〉

− | e1, e2,m3,m4〉 − |m1,m2, e3, e4〉). (4.22)

Let us consider the fusion of these pairs by fusing the contents of plaquette P1 with

that of P3, and that of P2 with that of P4. In the �rst two terms of each of the

above states these fusions yield the vacuum, and in the latter two they yield a ψ̃, so

we denote them

| 11,3, 12,4〉 =
1√
2
(| e1, e2, e3, e4〉+ |m1,m2,m3,m4〉),

|ψ1,3ψ2,4〉 =
1√
2
(| e1, e2,m3,m4〉+ |m1,m2, e3, e4〉). (4.23)
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The states of two pairs may then be written

| (σ1, σ2; +1)(σ3, σ4; +1)〉 =
1√
2
(| 11,3, 12,4〉+ |ψ1,3ψ2,4〉),

| (σ1, σ2;−1)(σ3, σ4;−1)〉 =
1√
2
(| 11,3, 12,4〉 − |ψ1,3ψ2,4〉). (4.24)

Here we see that these fusions yield the superposition and relative sign in exactly

the way predicted by the F -matrix. The σ̃ and ψ̃ quasiparticles of D(Z2) therefore

reproduce the fusion behaviour of the σ and ψ anyons of the Ising anyon model for

the restricted set of fusions considered.

Equivalence of braiding behaviour

By considering the decompositions of the σ̃ and ψ̃ particles in terms of the D(Z2)

particles we can show that they satisfy the Ising anyon model braiding rules. For

example, let us consider the exchange of two ψ̃'s. Since these are identi�ed with the

ε's of D(Z2) they will have the same fermionic behaviour. Also, since the braiding

of an e or an m around an ε results in a phase factor of −1, so does the braiding

of a σ̃ around a ψ̃. Let us also consider the braiding of two of the σ̃ particles,

such as those in Eq. 4.22. Braiding the σ̃ residing at plaquette 1 around that at

3 results in a change of the relative sign for both σ̃ pairs, and so a change also

of the relative sign between the vacuum and fermion pairs in the fusion outcome.

From this we infer the R matrices (Rσσ1 )2 = 1 and (Rσσψ )2 = −1. These are similar

to those of the Ising anyon model, except that a complex phase factor is missing.

This required phase di�ers for anticlockwise and clockwise braidings, e−iπ/4 for the

former and eiπ/4 for the latter. Since R = R† for the toric code particles, the lattice

does not distinguish between anticlockwise and clockwise evolutions. A framing [12]

is therefore proposed for the σ particles to make this distinction and to encode the

chirality on an ancillary system.

We allocate two framings to each σ̃ particle, one to the left (l) and one to the

right (r). Each of them has an ancillary qubit, initially in the zero state, | 0〉l | 0〉r.
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When the particle moves the framings move with it, performing the operation

Ei = |+〉 〈+ | ⊗ 1i + | −〉 〈− | ⊗ (iσyi ). (4.25)

between their ancillary qubits and the lattice sites, i, to the left and right of the

particle. This creates superpositions of the vacuum and an ε, controlled on the ancilla

state. When the loops are complete the framings act trivially on the lattice, but

may cause a bit �ip on the ancilla depending on whether the ε loop acquired a −1 by

braiding around a σ̃ string. After each loop the ancillary qubits are measured and

the operations eiπ/8σxr and e−iπ/8σxl applied for the results | 0〉l | 1〉r and | 1〉l | 0〉r

respectively. These assign a phase and reset the qubits. The state | 0〉l | 1〉r, for

example, is assigned eiπ/8 since it is the result of either an anticlockwise loop that

encloses no other σ̃ particle or a clockwise loop which does enclose a σ̃ particle. In

the former case this phase comes from the fact that the loop causes the extended

object of the σ̃ particle and framing to undergo a anticlockwise twist of 2π. This

must therefore be assigned the phase eiπ/8, due to a topological spin. In the latter

case the phase comes from both a clockwise braiding and a twist, eiπ/4e−iπ/8 = eiπ/8.

The consistency of this framing can be veri�ed in Fig. 4.4, where a complete set of

elementary cases have been considered.

The phase factor required for the R matrix is that for a braiding in which a σ

particle performs a loop around another particle without twisting. So the twists must

be removed from the above loops in order to obtain the corresponding evolutions.

This can be done by following all loops with a twist alone in the opposite direction.

By this two stage process the framing applies the required phase of e−iπ/4 for an

anticlockwise braiding. When the phase is inserted it gives the R matrix required

for the consistency of the Ising anyon model.
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Figure 4.4: The four possible loops for a σ̃ particle that start and �nish at the
marked points, where the framing is depicted. The loops to the top are clockwise
and those to the bottom are anti-clockwise . The loops to the left enclose no other
σ̃ particle and those to the right do. In (a) and (d) the left framing braids around
a σ̃ string once and the right framing does not braid or braids twice, resulting in a
bit �ip on the ancillary qubit for the left framing only. In (b) and (c) the situation
is reversed.

Rede�ned plaquette operators

Consider the plaquette operators,

WP = AsBp, W
′
P =

1

2
(1 +As +Bp −AsBp), (4.26)

on the plaquettes of the honeycomb lattice, where s and p are the subplaquettes

of P . The operator WP detects whether an e or an m is present on P without

distinguishing between the two. It is therefore well suited to the σ̃ quasiparticle,

since it can detect these without collapsing or otherwise changing the superposition.

It also bears a striking resemblance to the operator that detects the σ anyons in

Kitaev's honeycomb lattice model, as described in Section 2.4. The operator W ′
P
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detects the state of the plaquette in which both an e and an m is present, and is

therefore well suited to the φ̃ quasiparticle.
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4.4 Conclusions

Here we introduced the idea that Abelian anyon models, when properly supple-

mented with additional operations, can realize some of the behaviour of non-Abelian

anyons. This is a new method of building spin lattice representations anyons in which

complex models are engineered from simpler ones. Though the methods employed

here were applied to quantum double models, it is expected to be applicable to all

anyons realized on spin lattices [12, 13]. Many of the techniques may also be appli-

cable in the case of the fractional quantum Hall e�ect, though this would require

further study.

This study leads to several important theoretical insights. It sheds light on the

way in which non-Abelian behaviour can be realized in spin lattices. This paves the

way for an understanding of models, such as the Ising anyon model, whose spin level

description is beyond the stabilizer formalism. It could therefore aid the description

of the non-Abelian phase Kitaev's honeycomb lattice model at the spin level [51].

These models also show how important it is to determine the limitations of

any simulation of anyons. No experimental demonstration of anyons should be

considered complete without a full appraisal of what aspects of anyonic behaviour it

can and cannot reproduce, and the restrictions on what operations may be performed

in order to do this. Only this will distinguish those simulations that reproduce

anyonic operations completely without being able to form a stable quantum memory,

like that of Section 4.2, from those that can be harnessed for fault-tolerant quantum

computation. Such an appraisal would ideally be made by applying a universal set

of gates on the fusion space, to determine whether this has the e�ects predicted

by anyonic theory. Also, Bell's inequalities may also be considered using the anyon

states, the ensure that the anyonic behaviour truly emerges from quantum e�ects

[43].

This work also gives insight into the study of multipartite entanglement, espe-

cially the so-called topological entanglement. It is known that the realization of

anyonic quasiparticles requires physical mediums which exhibit topological entan-
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glement. The amount of this entanglement, as de�ned by the topological entropy,

is related to the total quantum dimension of the model. Models with the same to-

tal quantum dimension are therefore supported by entangled states with the same

topological entanglement entropy. However, nothing was known about how these

states relate to each other; whether they belong to the same entanglement class,

or whether they are inequivalent. This is especially true if the anyon models have

markedly di�erent properties. In the above we have proved equivalences between the

charge submodels of D(Z6) and D(S3), which both have total quantum dimension

of
√
6, and between D(Z2) and the Ising anyon model, both with a total quan-

tum dimension of 2. This demonstrates that states capable of supporting models

with a given value of D can, in some cases at least, support other models with the

same value even, when one is Abelian and the other non Abelian, or when one is

chiral and the other is not. It is worth noting that a similar result emerges fron

Kitaev's honeycomb lattice mode [51], for which three anyon models can be realized

in di�erent phases, all with the same total quantum dimension [57]. This provides

another means by which the relationship between topologically entangled states may

be studied.

The �ndings of this chapter also have important consequences experimentally.

The relative simplicity of Abelian anyons has lead to their demonstration in the

laboratory, and further progress is always being made. The fact that these anyons

can be used to realize the behaviour of their non-Abelian counterparts then brings

the experimental realization of non-Abelian anyons even closer. This is discussed

further in Chapter 6.
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Chapter 5

Dissecting a non-Abelian

quantum memory

Physical realizations of non-Abelian anyons are often highly complex, making it hard

to express the states of anyons and the operations on them in terms of the underlying

physical medium. However, the relative simplicity of Abelian anyon models allows

their physical realizations to be well understood and easily studied. As a result of

this problem, proposals for quantum memories using non-Abelian anyons are often

presented only at an abstract level [39, 40]. Those using Abelian anyons, however,

may be far more explicit [35, 42].

A notable exception to this rule is the non-Abelian D(S3) model, for which states

and operations have been determined in terms of the underlying spin lattice [24]. We

use this as an opportunity to study the physical realization of a non-Abelian quantum

memory. This information will then be used to show that equivalent memories can

be realized with Abelian models.

We consider quantum memories in which logical qubits are encoded in the charge

anyons of the D(S3) anyon model. Two possible methods are presented for this. The

method presented in Section 5.1 is such that logical information can be read out using

LOCC measurements, whereas that of Section 5.2 requires non-local measurements.

Since we expect the fusion channel of anyons to be a non-local degree of freedom,
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we identify the latter as the `true' non-Abelian quantum memory, and the former

`non-abelian-like'. The means to make the non-abelian-like memory as resilient to

errors as the true non-Abelian memory are then investigated in Section 5.3.

It is found that, though the true non-Abelian memory explicitly requires the use

of the underlying non-Abelian group structure, the non-abelian-like memory does

not. This suggests the possibility of engineering the non-abelian-like memory with

Abelian models. As shown in Chapter 4, the non-Abelian charges of D(S3) can be

simulated using D(Z6), making this a good candidate for the realization of a non-

abelian-like memory. Also, since 6 = 2 × 3, and hence twice an odd number, the

arguments of Chapter 3 show that it is universal for quantum computation. However,

we will not simply construct the memory using the quasiparticles of the enhanced

D(Z6) model in Chapter 4, since these require more stabilizer information to be

discarded than is necessary. A new enhanced Abelian model is therefore de�ned

in Section 5.4 and used to de�ne a non-Abelian like memory in Section 5.5. The

resistance of this memory against local perturbations in the Hamiltonian is then

presented in Section 5.6.

5.1 Non-abelian-like quantum memory with D(S3)

The non-Abelian D(S3) model was introduced in Chapter 2. In Eq. 2.21 it was

shown that the three charges of this model, 1, Λ and Φ, satisfy the fusion rules,

Λ× Λ = 1, Λ× Φ = Φ, Φ× Φ = 1 + Λ + Φ.

The last implies that the Φ charges have three possible fusion channels; a pair may

fuse to the trivial charge 1, a Λ or a Φ. This may be used to de�ne a quantum

memory.
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De�nition of logical states

Logical states are de�ned by the action of the creation operators WΦ and WΛ on

vertices initially in the vacuum state | gs〉. For the de�nitions of these, see Chapter

2.

Consider four neighbouring vertices, as shown in Fig. 5.1. ApplyingWΦ to spins

1 and 4 creates two pairs of Φ charges from the vacuum, one on vertices v1 and v2

and the other on v3 and v4. Since these pairs are created from the vacuum, they

both carry the vacuum fusion channel. This state is identi�ed with the logical qubit

state | 0L〉.

Applying WΛ
i to spin 2 creates a pair of Λ charges. One of these will fuse with

the Φ on v2 and the other with the Φ on v3. After the fusion, the two Φ pairs carry

the Λ fusion channel. This state is identi�ed with the logical qubit state | 1L〉. The

same is achieved if the WΛ
i is applied to 4. The encoded states for the logical qubit

may then be explicitly written as,

| 0L〉 = WΦ
1 W

Φ
4 | gs〉 ,

| 1L〉 = WΛ
2 W

Φ
1 W

Φ
4 | gs〉 . (5.1)

Figure 5.1: Four vertices use to store a logical qubit.
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Rather than keeping the Φ charges on neighbouring vertices, it is possible to

move them apart. All operations acting on a single spin, i, above must then act

on a corresponding chain of spins, Ci, lying on a path connecting the anyons. The

operations WΦ
Ci

and WΛ
Ci

then take the form,

WΛ
Ci

=
∏
j∈Ci

WΛ
j ,

WΦ
Ci

=
∑

gn×...×g1=ck
(ωk + ω−k) | g1, ..., gn〉 〈g1, ..., gn | , (5.2)

where g1, ..., gn are the states of the spins within the chain Ci and ω = ei2π/3. The

logical states take the same form as Eq.(5.1) except that operations acting on spins

i will instead act on the chains Ci.

Logical Pauli operations

The logical X operation corresponds to any process that creates two Λ charges and

fuses both with a Φ from each pair, such as X = WΛ
[C2]

. As such this operation is

protected against errors as the pairs are moved apart, as it becomes more di�cult

for Λ's to move or tunnel from one pair to another. Since WΛ
i is an observable,

measurement in the X basis may be achieved by measuring the eigenvalue of WΛ
i

on each spin in a chain connecting a Φ from each pair and calculating the parity.

The logical Z operation corresponds to vertex operators acting on both Φ charges

of either pair,

Z = Tt(v1)Tt(v2) or Tt(v3)Tt(v4). (5.3)

Such an operation corresponds to the �ux anyons of plaquettes braiding around v1

and v2, or v3 and v4. This could be either a single braiding around both or two

independent braidings around each.

Since the logical qubit is encoded in the fusion channel, measurement in the Z

basis is achieved through fusion of the charge pairs. This is achieved by moving the

two Φ charges of each pair onto the same vertex and measuring the result. Fusing

the Φ charges on v1 and v2 and obtaining the vacuum or a Λ implies a logical qubit
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5.1. Non-abelian-like quantum memory with D(S3)

state of | 0L〉 or | 1L〉, respectively.

Logical measurements with LOCC

As well as measurement by fusion, the above relation suggests that the Z measure-

ment can also be performed by LOCC when the Φ charges remain separated. This

is because measurement of the eigenvalue of Tt(v1) and Tt(v2) (or those on v3 and

v4) and calculation of the parity is su�cient to determine the Z basis state.

The fact that such an LOCC measurement of the Z basis exists, with only the

spins around each anyon requiring measurement rather than all those in between as

well, shows that this is not a true non-Abelian encoding. If it were, then only the

fusion of anyons or equivalent non-local operations would be su�cient to determine

the measurement outcome. Even so, we may still demonstrate that the measurement

of both anyons of a pair is required rather than just one, showing that the encoding

is not accessible by local operations alone. Observe that WΛ
i W

Φ
i =WΦ

i , implying,

WΛ
1 W

Λ
2 W

Φ
2 =WΛ

1 W
Φ
2 . (5.4)

Here the left-hand side creates a Φ pair on v1 and v2 and fuses a Λ with the Φ on v2.

The right-hand side does the same except that the Λ is fused with the Φ on v1. The

equality between these shows that the resultant state does not depend upon which Φ

the Λ was fused with. It holds even when they are well-separated, showing that the

encoding of information in this way is indistinguishable by operators that act only

on one Φ, and hence cannot be distinguished by local operators alone. Operators

that act on both Φ's in a pair are required, and so must be non-local or LOCC.

Code distance

The code distance of this encoding is the minimum number of spins that must be

acted on to cause a logical error. For Z errors, this is seven spins if the two Φ

charges of a pair are on neighbouring vertices, or eight spins otherwise, irrespective

of the distance between the anyons. For X errors it is the minimum number of spins
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in a path connecting a Φ from one pair to one from the other. The value of the

code distance therefore depends on the placement of the anyons. If the Φ charges

of each pair are kept on neighbouring vertices, only one spin needs to be acted on

to cause a logical X, so the distance in this case is 1. If the Φ charges of each pair

are well-separated it is the Z that is easiest to implement so the distance takes the

value of 8.

Stabilizer code interpretation

It is illuminating to study how the above memory �ts in to the formalism of stabilizer

codes. The stabilizer operators here are de�ned by the projections onto anyon states

for each vertex, as stated in Eq. 2.17. The stabilizer space corresponds to the anyonic

vacuum everywhere. The particle types and positions of anyons correspond to the

syndromes.

Consider an alternate projector onto the state of Λ charges,

P ′
Λ(v) =

1

2
[Te(v)− Tt(v)]. (5.5)

The action of this on the states of anyons at a vertex v in comparison with that of

the standard projector PΛ(v) is,

PΛ(v) | 1v〉 = 0, PΛ(v) |Λv〉 = |Λv〉 , PΛ(v) |Φv〉 = 0,

P ′
Λ(v) | 1v〉 = 0, P ′

Λ(v) |Λv〉 = |Λv〉 , P ′
Λ(v) |Φv〉 6= 0. (5.6)

Both detect the presence of an isolated Λ on v, but whereas PΛ(v) does not see a

Λ when a Φ is present, P ′
Λ(v) can detect a Λ hiding within, corresponding to a −1

eigenvalue of Tt(v).

These projectors are equivalent except when a Φ is present, in which case the

latter extracts more syndrome information than the former. The syndrome infor-

mation obtained by the standard stabilizer of Eq. 2.17 is therefore equivalent to

a modi�ed stabilizer in which PΛ(v) is replaced by P ′
Λ(v) on all vertices except

66



5.2. True non-Abelian quantum memory with D(S3)

where a Φ is present. This suppression of elements of the stabilizer on certain ver-

tices is reminiscent of the holes considered in Chapter 3. Hence the de�nition of

non-Abelian stabilizer codes is such that the holes in the code result whenever non-

Abelian charges are created, and that these holes are not stationary but carried by

the quasiparticles. Since the Hamiltonian assigns energy to any state that is not the

vacuum without distinction, it does not see when a Λ hides within a Φ and when it

does not. The holes therefore also hide the logical states from the Hamiltonian and

keep them degenerate.

With the new projector, the LOCC measurement of Z can be seen as using P ′
Λ(v)

to detect the Λ's within a Φ pair. If an even number are found it is deduced that

fusing the Φ's will annihilate the Λ's and the vacuum fusion channel will result.

Hence the logical qubit is in state | 0L〉. If only one is found, however, it is deduced

that the pair is in the Λ fusion channel and hence the state | 1L〉.

5.2 True non-Abelian quantum memory with D(S3)

To see how a stronger encoding may be constructed, let us consider the single spin

operation,

W ′Φ
i = | c〉 〈c | −

∣∣ c2〉 〈c2 ∣∣ . (5.7)

Like WΦ
i , this creates a pair of Φ charges on the vertices either side of the spin.

However, if these pairs were used for the above encoding, the Z operation would

take the form,

Z = −Tt(v1)Tt(v2) or − Tt(v3)Tt(v4). (5.8)

This di�ers from Eq. 5.3 by a mere minus sign, which may seem unimportant.

However, this is the key to preventing LOCC access to the logical information.

Consider the encoding,

| 0L〉 = WΦ
1 W

Φ
4 | gs〉 ,

| 1L〉 = WΛ
2 W

′Φ
1W

′Φ
4 | gs〉 . (5.9)
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This uses Φ pairs created by WΦ
i to store | 0L〉 and Φ pairs created by W ′Φ

i to store

| 1L〉. These are both states on which Tt(v1)Tt(v2) and Tt(v3)Tt(v4) act trivially, so

neither one now performs the logical Z. Instead this requires a non-local operation,

such as bringing the two Φ charges of a pair together, fusing them on a vertex vi,

applying Tt(vi) to the fusion outcome, recreating the Φ pair and returning them

to their original positions. In terms of the braiding of �ux anyons, this means

that the logical Z can only be realized by a braiding around both v1 and v2, or v3

and v4, together. Unlike in the previous encoding, two independent braidings are

insu�cient.

With this new encoding, the LOCC measurement of the Z basis no longer works.

The relative minus sign of the state in Eq. 5.7 tricks the P ′
Λ(v) projectors into

thinking one more Λ is present in the pair than there is, and so both the logical

states of Eq. 5.9 always appear to contain an even number of Λ's. The only way to

measure in the Z basis is then to fuse the Φ charges. This is the true non-Abelian

encoding. Note that the huge operational di�erence between this encoding and that

of Eq. (5.1) comes directly from the non-Abelian group multiplication underlying

the model. It is only because of this that the relative minus sign in Eq. (5.7) has

such an e�ect. Abelian group multiplication cannot provide tricks to fool the Tt(v)

observables in such a way.

The stronger encoding increases the complexity of the logical X operation. The

fusion of a Φ with a Λ by simply placing them on the same vertex is no longer

enough. The unitary operation,

U(v) =
1

3
Te(v)−

2

3
[ω Tc(v) + ω2 Tc2(v)], (5.10)

must be applied to any vertex on which a fusion takes place to rotate from WΦ
i type

Φ pairs to W ′Φ
i type, or vice-versa.

Previously the logical X acting on as many spins as was required to form a path

between the quasiparticles. Hence, when the quasiparticles were neighbouring, only

one spin was required. This allowed the gates of of Section 3.4 to be implemented
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on a minimum of one lattice spin per logical qubit. Now, however, there is an extra

overhead in order to implement U(v), meaning a minimum of four spins are required

for the logical X, and the gates of of Section 3.4. Such non-topological operations

are therefore much more impractical to implement on the true non-Abelian encoding

than the non-abelian-like encoding.

The new encoding also has a signi�cant e�ect on the code distance, since it means

that the number of spins that must be acted on to perform a Z error depends on

the separation of the Φ. If we use l to denote the minimum number of spins on a

path between a Φ charge of one pair with that of the other, the code distance may

be expressed as O(l), and so may be made arbitrarily large.

5.3 Closing the gap between the memories

The two encodings presented above are very similar, with both storing a logical qubit

in the fusion channel of four Φ charges. However, the maximum code distance for

the former is �xed at 8, whereas for the latter it can take an arbitrarily high value.

The reason for this di�erence is that, for the former, the logical Z may be achieved

by a product of two operations, each performed on the spins surrounding one anyon

of each pair. However, for the latter, it requires an operation that acts not only

on the spins surrounding the anyons, but those connecting them. We now consider

the means to improve the non-abelian-like memory, and give it a comparable code

distance to the true non-Abelian memory.

De�nition of logical states

In order to increase the distance of the non-abelian-like encoding, each qubit could

be stored on 2N pairs of Φ charges, rather than just 2. For example, consider the

use of 4 pairs of Φ charges, on the vertices depicted in Fig. 5.2. The logical states,
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now using the enumeration of Fig. 5.2 are,

| 0L〉 =
1

4
(1 +WΛ

2 )(1 +WΛ
9 )WΦ

1 W
Φ
3 W

Φ
8 W

Φ
10 | gs〉 , (5.11)

| 1L〉 = WΛ
4 (1 +WΛ

2 )(1 +WΛ
9 )WΦ

1 W
Φ
3 W

Φ
8 W

Φ
10 | gs〉 .

Again, moving the anyons away from each other means that operations here on

single spins i are instead performed upon a chain Ci.

The pair of Φ charges on v1 and v2 in the previous encoding is replaced here by a

row of four, on v1, . . . , v4. A projection, (1+WΛ
2 )/2 is made on the spin connecting

these pairs. This ensures that neither has a well de�ned fusion channel and the

whole row must be fused for a de�nite answer. The | 0L〉 state is identi�ed with the

fusion of all four Φ's to the vacuum, and the | 1L〉 with their fusion to a Λ. The

same is true for the four Φ's on the bottom row. The logical Z operation then takes

the form,

Z = Tt(v1)Tt(v2)Tt(v3)Tt(v4) or Tt(v5)Tt(v6)Tt(v7)Tt(v8). (5.12)

When the anyons are on neighbouring vertices, this acts on a minimum of thirteen

spins. Otherwise a minimum of sixteen is required. When 2N pairs are used, these

numbers become 3N + 1 and 4N , respectively. The X operation is implemented by

fusing a Λ with a Φ from each row and so, as before, requires action on an increasing

number of spins as the rows are separated by distance l.

Code distance

In the new encoding, the number of spins that must be acting on to implement a

logical Z is O(N), and that to implement a Z is O(l). Hence by increasing the num-

ber of pairs in each row and the distance between the rows, the code distance may

be made arbitrarily high. Long rows of Φ charges in the non-abelian-like encoding

therefore have the similar error protection properties to a well separated Φ pair in

the true non-Abelian encoding.

70



5.3. Closing the gap between the memories

Figure 5.2: Eight vertices are shown, each of which holds a Φ in the extended
encoding.

Detection and correction of errors

In some cases, partially performed logical operations leave a trace in the form of

anyons. Detection of these can be used to deduce the error and correct it. For

example, consider the creation of a Λ pair, where one Λ fuses with a Φ and the

other remains free. Any detection of the remaining Λ shows that a logical X has

partially occurred. By fusing it with the nearest Φ, one corrects the error with a

good probability. Similarly, logical Z errors can be implemented by the braiding

of �ux anyons around the Φ charges. The presence of such �uxes may signal that

partial braidings have been performed. Fusing them by the shortest path should

undo such errors with good probability.

For the non-abelian-like encoding, however, some partially performed logical op-

erations leave no anyonic trace. These include partial Z errors, which correspond to

applications of single Tt operations. To see the e�ect of these consider the applica-

tion of Tt(v1) on vertex v1, or any other holding a Φ. If a logical X is implemented

by fusing a Λ at v1 then it will anticommute with the Tt. Measuring X along a chain

of spins from v1 will therefore give the wrong result. To deal with this, majority

voting could be employed. The X could be measured in every possible way and
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the most frequent outcome taken as the correct one. The probability of the wrong

outcome will then be exponentially suppressed by N .

For an alternative to this, consider the encoding with four pairs as in Fig. 5.2.

A projection (1 +WΛ
i )/2 is made on spins 1, 2, 3, 8 9 and 10. This places the state

of all these spins, or the corresponding chains when separated, in the +1 eigenspace

of WΛ
i . Since W

Λ
i anticommutes with Tt, the application of this on any vertex will

result in the state of the spins either side moving to the −1 eigenspace ofWΛ
i . Hence

by measuring the WΛ
i observables on all such spins it is possible to determine when

and where Tt operations have occurred with good probability, and hence correct

them. This can also be used to energetically suppress such errors, as we will explore

in Section 5.6

5.4 An enhanced Abelian model of D(Z6)

The Abelian D(Z6) model can be used to realize quasiparticles with which a non-

abelian-like memory may be constructed. The enhanced Abelian model used for this

is de�ned as follows,

M1 = {1}, Mφ = {e1, e4}, Mφ = {e2, e5}, Mλ = {e3},

Mχ = {e1, e4}, Mχ = {e2, e5}, Mµ = {e3}. (5.13)

This leads to the fusion rules,

φ× φ = 1 + λ, φ× λ = φ, φ× λ = φ,

φ× φ = φ, φ× φ = φ, λ× λ = 1. (5.14)

Since the Hamiltonian of the model, as de�ned in Eq. 2.11, assigns the same energy

to each of the anyons, arbitrary states of the quasiparticles will also be eigenstates

of the Hamiltonian.

States with (φ, φ) or λ pairs on vertices connected by a single edge, i, can be
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created by acting on the ground state with the operators:

W φ
i =

1

2
σzi

[
1 + (σzi )

3
]
, W λ

i = (σzi )
3, (5.15)

respectively. The projection (1+(σzi )
3)/2 present inW φ

i may be performed determin-

istically by measuring the observable (σzi )
3 and applying

(
A(v)

)3
to a neighbouring

vertex if the −1 eigenvalue is obtained.

Quasiparticles χ, χ and µ on plaquettes can be de�ned equivalently to φ, φ and λ,

respectively. The corresponding creation operators Wχ
i and Wµ

i are obtained from

Eq. 5.15 using the substitution σzi → σxi . The braiding of the quasiparticles can be

determined from the constituent eg and mg anyons. For example, a µ around a λ

gives the statistical phase eiπ due to their identi�cation with m3 and e3, respectively.

5.5 Non-abelian-like quantum memory with D(Z6)

As for the D(S3) charges, the non-abelian-like memory can be de�ned using two

rows of quasiparticles, consisting of 2N pairs. For example, the logical states for

four pairs are,

| 0L〉 =
1

4
(1 +W λ

2 )(1 +W λ
9 )W

φ
1 W

φ
3 W

φ
8 W

φ
10 | gs〉 , (5.16)

| 1L〉 = W λ
4 (1 +W λ

2 )(1 +W λ
9 )W

Φ
1 W

φ
3 W

φ
8 W

φ
10 | gs〉 .

The enumeration of the spins and vertices is as in Fig. 5.2. The logical states are

de�ned in exact correspondence with those in Eq. 5.11, the only di�erence being

the distinction between φ and φ that exists here. Even numbered vertices hold φ

quasiparticles in this encoding, and odd numbered ones hold φ quasiparticles. The

fusion channels of χ's and χ's may similarly be used to encode p-type qubits on

corresponding plaquettes p1, . . . , p8.

When the rows are neighbouring, as in Fig. 5.2, the logical qubit operations are
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given by,

X = W λ
i i ∈ {4, 5, 6, 7},

Z = A3(v1)A
3(v2)A

3(v3)A
3(v4) or A

3(v5)A
3(v6)A

3(v7)A
3(v8). (5.17)

Moving the rows apart means that the X operations become products of W λ
i on any

chain of spins connecting the two rows.

Note that λ and µ together form a submodel equivalent in braiding and fusion

to the e and m anyons of the D(Z2) model. Since each row of the (φ, φ) pairs

belongs to the vacuum or λ fusion channel, and each row of (χ, χ) pairs corresponds

to the vacuum or a µ, braiding of these rows is equivalent to the braiding of vertex

and plaquette holes in D(Z2). Hence the methods used for quantum computation

in Chapter 3 may be applied here, while the non-abelian-like quantum memory

provides fault-tolerance and the potential to move the rows of quasiparticles with

decoherence using adiabatic techniques.

5.6 Fault-tolerance

We consider errors that do not excite the system, requiring a temperature low enough

for topological order to be stable [16, 58]. Perturbations in the Hamiltonian of the

model are then the main source of errors. Though it is known that topological

models are stable against these [59], their speci�c e�ects on our encoding must be

considered.

Imprecisely tuned Hamiltonians

The Hamiltonian of the model, which we denoteHZ6 , is de�ned in Eq. 2.11. This can

be expressed as an equally weighted sum of the stabilizers A(v) and B(p). However,

physical systems will likely produce perturbed Hamiltonians, lifting the degeneracy

of the anyons and breaking the symmetries our scheme requires. This is a problem

that not only a�ects realizations of D(Z6), but all quantum double models, Abelian
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or non-Abelian [7, 24]. Here we present a method to enforce the symmetries in

D(Z6), but the principle applies in general.

We require that the states within the computational space, are una�ected by

perturbations that lift the degeneracies of the e1 and e4 anyon states and the e2 and

e5 states. If this is not so, relative phases will accumulate between the superposed

anyon states, causing errors in X basis measurements. For example the perturbation

δA3(v1) on vertex v1 does not commute with W λ
1 . Using this to measure the logical

X will therefore give the wrong result.

To see how these perturbations may be dealt with, consider the spins located

on edges between each φ and φ in a row. According to the de�nition of the logical

states in Eq. 5.16, the projection (1 +W λ
i ) is applied to each of these spins. This

makes the logical states eigenstates of the W λ
i with eigenvalue +1. We may then

consider adding the term −BW λ
i to the Hamiltonian on each of these spins, which

will have no e�ect on the logical states except to reduce their energy. However,

since they anticommute with any perturbations that lift the required degeneracies,

the perturbations are energetically suppressed.

To study the e�ectiveness of these terms in suppressing the perturbation, the

problem may be mapped to that of a repetition code. The logical X is the product

of W λ
i 's for spins on a path connecting the two rows. For a path that starts at the

vertex vi on the top row, such a logical X may be denoted X(vi). If we consider

the case for which the perturbations act only on the vertices of the top row, and

not the bottom, it makes no di�erence at which vertex the path ends. The encoding

for the X basis is therefore equivalent to a repetition code, where the N vertices

vi holding φ and φ are equivalent to N qubits, with the state for each determined

by the eigenvalue of the corresponding X(vi). All these should be equal, with any

di�erence signalling the presence of errors. In this interpretation, a perturbation on

a vertex vi that lifts the required degeneracies is equivalent to a perturbation that

causes a bit �ip on the corresponding qubits. The W λ
i acting on horizontal links

between φ's and φ's of the top row are equivalent to parity check operators that
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determine whether neighbouring spins are in the same state.

In a repetition code, error correction is done by majority voting. Hence, in

the limit N → ∞, correction can always be achieved with unit probability when

the probability of a single spin bit �ip p < 0.5. For p > 0.5 the code cannot

correct at all. For �nite N , the probability of correction failing is exponentially

suppressed in N when p is small. The majority voting can be performed without

direct measurement of the spins by means of the parity check operators. Since these

detect when neighbouring spins are not in the same state, they detect boundaries

between chains of spins in equal state. This can be used to determine which spins

are in the majority and which are in the minority.

Let us now consider the Hamiltonian which acts on the encoded information.

For the degeneracy lifting perturbations, the speci�c case of δA3(v) terms is studied.

Their action is trivial on all vertices which hold the vacuum and, as stated above,

we consider the case that they do not act on the bottom row of φ's and φ's. The

total Hamiltonian is then,

HZ6 +
∑
v

δA3(v)−B
∑
i

W λ
i , (5.18)

where the sums are over only the vertices of the top row and the links between them,

respectively. The �rst term in this only contributes a constant energy since there

are a speci�c number of quasiparticles on the lattice. Since the perturbations act

as bit �ips and the W λ
i as parity check operators, the Hamiltonian is equivalent to

that of the quantum Ising model in a transverse �eld,

H = −B
∑
i

(σzi σ
z
i+1 + gσxi ), (5.19)

where these are spin-1/2 Pauli operators and g = δ/B.

Using this equivalence, results of the well-known quantum Ising model can be

applied [60]. For g = 0 the model has a two-fold degenerate ground state corre-

sponding to the logical states. An energy gap of 2B protects these against errors.
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For 0 < g < 1 the degeneracy of the ground state space is broken, and the gap

between the two lowest lying states and those above them decreases. Due to the

phase transition, the gap drops signi�cantly when g ≈ 1, and becomes gapless at

g = 1 in the thermodynamic limit.

The probability of a bit �ip on any spin, p, is related to the probability of a

parity check operator detecting an error, P , according to the relation

P = 2p(1− p)

This is related to the expectation value of the corresponding σzi σ
z
i+1 according to,

〈σzi σzi+1〉 = 1− 2P.

The z − z correlations of the quantum Ising model may then be used to determine

p as follows,

p =
1−

√
〈σzi σzi+1〉

2
. (5.20)

The value of N = 10 was taken as a realistic example and studied numerically. Since

this is a �nite sized system, the values of p are not the same for all spins, and so the

maximum was determined. The maximum value of p and the energy gap found are

shown in Fig 5.3 and Fig. 5.4, respectively.

It is easy to see that, for the ground state of the model, the bit �ip probability

only reaches the uncorrectable value of p = 1/2 as g → ∞. Hence, in the thermo-

dynamic limit of large N , the magnetic �eld always ensures that the errors can be

corrected, even if it is much lower than the perturbation strength. However, this will

only be e�cient, with errors exponentially suppressed by N , when p is su�ciently

small. Hence we can interpret the g < 1 phase of the model as that for which the

error correction properties of the model is e�cient, and the g > 1 phase as increas-

ingly ine�cient as g increases. This is in good agreement with the fact that the

former phase has strong, long range σzσz interactions, whereas the latter does not.
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Chapter 5. Dissecting a non-Abelian quantum memory

Figure 5.3: A plot of the maximum probability for a bit �ip p, against the strength of
the perturbation. This was found by evaluating σz1σ

z
2 for the lowest lying eigenstate,

since this gives the maximum value for pi.

All the above arguments correspond to the highly unphysical case that perturba-

tions act only on the (φ, φ) pairs of the top row, and leave the bottom row una�ected.

Realistically, both must be taken into account. This is done by evaluating the parity

check operators provided by the W λ
i on horizontal links separately, and evaluating

the logical X between vertices in the majority on each. The probability of success

will then not be so high as when a single row is e�ected, but the probability of error

is still exponentially suppressed in N when g < 1.

The encoding of quantum information in square banks of quasiparticles, rather

than lines, can also be considered. This would make the e�ect of imprecisely tuned

Hamiltonians equivalent to the two-dimensional Ising model, and hence increase

error suppression. However the movement of such banks may well be more complex

than that of lines, and so the latter case only was considered here.
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Figure 5.4: A plot of the energy gap between the two lowest lying eigenstates and
those above.

Transport and annihilation of quasiparticles

The encoding we propose uses quasiparticles placed on the lattice, and hence stores

information in excited states rather than the ground state space. For this reason,

even single spin perturbations can have a large e�ect by moving the constituent

anyons or causing them to fuse. To deal with such errors, the computational space

must be moved into the ground state space by making some alterations to the

Hamiltonian. For vertices on which a φ resides, the Pe0(v) term in the Hamiltonian

should be replaced with Pφ(v) = Pe1(v) + Pe4(v), which similar replacements made

also for the locations of φ, χ and χ quasiparticles. The Hamiltonian will then

energetically favour the presence of these quasiparticles in these locations, rather

than other particle types or the vacuum.
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Many body perturbations

Perturbations acting on many spins can stretch between the rows of quasiparticles

or loop around them, causing the degeneracy of logical states to be a�ected. To de-

termine how many spins on which these perturbations must act in order to have such

an e�ect, the code distance must be considered. For the non-abelian-like encoding

O(l) spins must be acting on to cause an X basis error, where l is the minimum

separation of the rows, and O(N) spins must be acted on for a Z basis error.

It is reasonable to assume that nature is incapable of highly correlated errors

with signi�cant strength. Hence, by increasing l and N to be much larger than

the number of spins on which perturbations act, the encoding should remain stable

against them.

5.7 Conclusions

In this chapter the charge anyons of the D(S3) model were investigated in terms

of the quantum memory they can provide. Two encodings were studied, a non-

abelian-like memory which was found to be limited in its error correction, and a

true non-Abelian memory which was fully topologically protected. The means to

improve the performance of the non-abelian-like memory were then identi�ed, giving

it a resilience against errors comparable to the latter. It was then showed that this

memory can be realized using Abelian anyon models, with the fault-tolerance of the

encoding studied in this case.

The non-abelian-like encoding was shown to be equivalent to the holes used in

Chapter 3 pinned to quasiparticles. The means by which the holes may be moved

fault-tolerantly is then the same as for non-Abelian anyons, or the superpositions of

Abelian anyons used in [38] and [36]. Hence as well as the operations described in

Section 4.1, it is possible that local potentials and adiabatic techniques may also be

used [38, 54].

The example presented in this chapter was of a memory constructed from the

D(Z6) model, but this is not the only one in which such properties may be de�ned.
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The method to construct non-abelian-like memories is applicable to all Abelian

quantum double models, and would be expected to have generalizations to Abelian

anyons realized by alternative means.

In studying the two encodings of the D(S3) charges it was found that, though

the fusion of a Φ and Λ can be achieved by a single spin WΛ
i operation, the true

non-Abelian quantum memory also requires the many-body operation of Eq. 5.10.

This result is signi�cant in general for the use of non-Abelian models for quantum

computation. It shows that realizing the operations of anyon creation, transport and

fusion may not always be su�cient to achieve the full fault-tolerance expected from

the anyons. Instead, the operations required for the true non-Abelian behaviour

may be very speci�c, hard to implement and subject to errors.

As a result of this it is possible that, even when a non-Abelian model is realized,

only a non-abelian-like encoding of information may be practical. This is especially

true when braiding is not universal, and non-topological operations must be imple-

mented. The increased complexity of fusion could easily make these too complex to

implement for the true non-Abelian encoding, requiring the non-abelian-like mem-

ory to be used. For example, in the Josephson junction implementation of quantum

double models discussed in Chapter 6, the movement and fusion of anyons requires

charge pumping. This process is at the cutting edge of Josephson junction technol-

ogy, yet even this would be incapable of satisfying the needs of the true quantum

memory. Such a non-Abelian model will then have no advantages over Abelian mod-

els on which an equivalent non-abelian-like memory may be realized. However, the

(relative) simplicity of Abelian models makes them more tractable both theoretically

and experimentally. The opportunities this gives to realize such memories in the lab

are further explored in Chapter 6.

Also presented here is the means by which the required Hamiltonian symmetries

may be enforced. This is an important concern, since the realization of perfect

Hamiltonians is not something a physical system can easily provide. Again the

Josephon junctions of the next Chapter provide an example of this. The means by
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which they can provide a Hamiltonian which assigns energy to anyons is well studied,

but the means by which the anyons can be made degenerate has not yet been solved.

However, altering the �uxes threaded through loops between the junctions can allow

the method proposed here to be implemented, and so the symmetries enforced

It can be shown that our method equivalent to the transverse �eld Ising model,

and the error correction is the same as that for a classical repetition code. Since both

are well studied, their theory may be applied directly to this problem. The method

we propose is general in scope, and can be applied to non-abelian-like quantum

memories constructed from both Abelian and non-Abelian anyons in lattice models.

The use of single spin terms in the Hamiltonian to suppress the errors is highly

motivated by the practicalities of physical implementations, since such terms are

usually the easiest to implement and can be made highly powerful.

The studies of this chapter also have implications for the general study of sta-

bilizer codes. Just as the holes in the code used here were pinned to quasiparticles,

quantum information in general stabilizer codes could be stored in subspaces of states

with the same non-trivial syndrome, rather than simply in the stabilizer space as

normal. This technique is particularly applicable to higher dimensional generaliza-

tions of stabilizer codes, such as those with spins of d ≥ 3. The potential of the

technique to improve the protection of the information and ease its manipulation,

as it has done here, warrants further study.

The studies of Sections 5.1 and 5.2, dealing with a stabilizer code based upon

a non-Abelian group, also highlights the ability of these codes to hide information

from LOCC. It would therefore be interesting to explore their potential in terms of

quantum data hiding [61], and to investigate whether quantum data hiding could

be used to construct novel topological codes.
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Towards experimental

realizations

A good deal of experimental progress has already been made in the realization of

Abelian quantum double models, especially for the case of D(Z2). The results of this

thesis can help build upon this progress, allowing previous experimental set-ups to

demonstrate further principles of topological quantum computation, and designing

simple models to realize complex anyonic behaviour. In this chapter we �rst present

a brief overview of previous experiments in Section 6.1. Extensions to the existing

single plaquette D(Z2) experiment is then proposed in Section 6.2, designed to

demonstrate the principles of Chapter 3. Section 6.3 then explores the possibilities

for experimental realization of the D(Z6) model, allowing the simulations of the

D(S3) anyons in Chapter 4 and the non-abelian-like quantum memory of Chapter 5

to be demonstrated.

6.1 Experimental progress in quantum double models

The most explicit demonstration of the creation, braiding and fusion of anyons

has been in state based approaches [27]. Rather than attempting to realize the

Hamiltonian, these simply prepare the anyonic vacuum state and apply the necessary

operations to manipulate the anyons. Such simulations have the same capability as
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Hamiltonian based approaches to demonstrate anyonic behaviour, and to be used for

topological quantum computation. However, they lose one of the main advantages:

protection by the gap. To compensate for this, inherently decoherence free systems,

such as photons, must be used. The challenge is then to generate the required

entanglement and implement the required entangling operations with such weakly

interacting systems. Thus far, state based experiments have successfully been used

to demonstrate Abelian anyons and their exchange statistics. Two experiments have

achieved this, both realizing the D(Z2) model with states of entangled photons

[31, 32].

For realizations of the quantum doubles with a Hamiltonian, much progress has

been made with Josephson junctions. The theory of how the Hamiltonians may be

implemented has been developed for all Abelian models based on cyclic groups, as

well as the non-Abelian D(S3) models [20]. An experiment has also been performed,

realizing the D(Z2) model Hamiltonian and demonstrating the quantum memory

provided by its degenerate ground state [30].

Other theoretical work towards experimental realizations is based on cold atoms.

A toolkit of methods that may be used to realize anyon models with optical lattices

were explored in [21]. Experiments concerning minimal instances of topological order

were considered in [22]. Progress is also being made into simulations of the D(Z2)

model with Rydberg atoms, in which the Hamiltonian and the e�ects of dissipative

noise can be demonstrated [62].

6.2 Single plaquette D(Z2) experiments

The experiment of [31] deals with the D(Z2) model de�ned on a single plaquette

without boundary conditions, as shown in Fig 6.1. This model can also be used

to demonstrate the single spin measurements and hole based quantum memory of

Chapter 3.
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The plaquette and vertex operations for the single plaquette D(Z2) model are,

A(v1) = σx1σ
x
4 , A(v2) = σx1σ

x
2 , A(v3) = σx2σ

x
3 , A(v4) = σx3σ

x
4 ,

B(p) = σz1σ
z
2σ

z
3σ

z
4 . (6.1)

The anyonic vacuum de�ned by these is simply the four spin GHZ state,

| gs〉 = 1√
2
(|++++〉+ | − − −−〉). (6.2)

The application of σzi to any spin creates a pair of e anyons on the adjacent vertices.

The application of σxi creates a pair of m anyons, with one residing on the plaquette

p and the other created over the edge of the model.

Figure 6.1: The lattice for a single plaquette D(Z2) model.

Demonstration of single spin measurements

Consider two logical qubits, a v-type qubit stored in v1 and v2 and a p-type qudit

in p. Note that only one plaquette is required in the latter case, as the edge takes

the place of the second.
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Measurement of the spin 1 will result in a superposition of anyon states in v1, v2

and p, as in Eq. 3.15 of Chapter 3, where such measurements are used to prepare

logical ancilla states. By performing state tomography of the resulting four spin

state it can be veri�ed that the measurement leads to the anyonic states expected

and required by these protocols.

This experiment could easily be performed by a similar set up to the experiment

in [31] with entangled photons. The measurement would leads to the loss of the

corresponding photon. However, since its state is uncorrelated to the remaining

three, it can easily be replaced by preparing another photon in the same state.

Demonstration of single qubit memory

The single plaquette can also be used to demonstrate a single qubit memory in the

presence of the Hamiltonian. This could be done for a v-type qubit memory, but

the simplest Hamiltonian is obtained for the case of the p-type memory. The single

plaquette p then becomes a hole, so the corresponding plaquette operator must not

feature in the Hamiltonian, which then takes the form,

H = −
∑
v

A(v). (6.3)

Since this only requires nearest neighbour x−x interactions, it is an experimentally

tractable Hamiltonian. It energetically suppresses the creation of e anyons which,

if they braid around p, cause a logical Z error. Preparing the logical qubit in an

eigenstate of X then allows the suppression of Z errors to be seen. However, X

errors need only act on the single spin 2, and so are not protected against by such

a small model.

Note that this experiment does not necessarily require the D(Z2) model to be

de�ned on a square lattice, with four spins for a single plaquette. A triangular lattice

could instead be used, requiring only three spins.
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6.3 Experimental realizations of D(Z6)

Josephson-junction realization

Josephson junctions have already been studied as a means to experimentally realize

the quantum double models, especially those based on cyclic groups [20]. Proof of

principle experiments for the D(Z2) model have also already been performed [30].

Here we study the realization of the D(Z6) model, both as a means to simulate the

D(S3) charges as in Chapter 4 and demonstrate the quantum memory of Chapter

5.

Consider the Josephson junction element in Fig. 6.2. This consists of twelve

Josephson junctions, denoted by crosses, and eight superconducting islands, denoted

by dots. The dynamics of each element are described by twelve phase di�erences

across each junction. These are labelled α1 . . . α6 for the junctions to the left of the

element, according to the numbering of Fig. 6.2, and β1 . . . β6 for the junctions to

the right.

The Josephson junctions in each element are arranged in �ve loops. A �ux 2π/6

passes through each of these, resulting in the condition,

αj+1(mod6) + βj+1(mod6) − αj − βj =
2π

6
+ 2πnj , (6.4)

where the nj are integers. A further condition comes from current conservation,

which requires,

sinαj = sinβj ∀j,
6∑
j=1

sinαj =
6∑
j=1

sinβj = 0 ∀j, . (6.5)

The Josephson energy of the system is,

εJ = −EJ
6∑
j=1

(cosαj + cosβj). (6.6)

Where EJ is the Josephson energy. Clearly, minimum energy will be obtained when
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Figure 6.2: Twelve Josephson junctions arranged in �ve loops. This element has six
degenerate ground states when a �ux 2π/6 is passed through each loop, and thus
provides the required six-level spin.

cosαi > 0 and cosαi > 0 for all i. Added to the above conditions for current

conservation, this implies sinαi = sinβi(mod2π) for all i. However, without loss of

generality we can simply choose sinαi = sinβi. The ground state is then obtained

when the set {α1, . . . , α6} and coincides with the set {−5
6
π
2 + j π6 | 0 ≤ i ≤ 5}.

There are six ways to map the former onto the latter, related to each other by cyclic

permutations. These correspond to the six degenerate ground states of each element.

All six of these choices satisfy the condition of Eq. 6.4. For all but one case, this is

done with ni = 0. In the exception, nj = 1. This corresponds to a vortex between

the jth and j + 1th branches of the element. The value of j is di�erent for each

of the ground states, and so can be used to label the basis states of the e�ective

six-level spin.

Constructing a lattice of such elements, as in Fig. 6.3, introduces further loops

involving junctions from each element around a plaquette. If no �ux is passed

through each plaquette, the sum of phase di�erences around each will be zero. This

corresponds to the state of no �ux anyons in each plaquette. Only the charge anyons

of vertices need therefore be considered. The Hamiltonian here originates from

�uctuations in the phase variables on each island due to charging energies. Despite

generating single island terms, the condition in Eq. 6.4 allows the �uctuations to

only occur on all islands around a vertex at once. This leads to the following e�ective

Hamiltonian for the six-level spins on each link.

H = −r
∑
v

(
A(v) +A†(v)

)
. (6.7)
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Here the coupling constant r is determined by the tunnelling between degenerate

ground states. By means of a semi-classical approximation [20], this may be ex-

pressed in terms of the action of the tunnelling process, S0, as,

r ≈ E
3/4
J E

1/4
C exp(−S0), (6.8)

where EJ and EC are the Josephson and charging energies, respectively.

During the tunnelling process, all αi and βi are changed. For all phases where

i 6= j, this change is by the same amount. The exception is for αj = βj = 5
6
π
2 ,

the phases on the junctions below the vortex. For the ground state to change, the

vortex must move between loops through a Josephson junction. This breaks the

symmetry in the tunnelling process while the vortex moves, requiring an additional

phase di�erence of 2π to be added to either αi or βi. We choose this to occur to

βi without loss of generality. The quantity (αi − βi)/2 = 0 therefore stays constant

during tunnelling for i 6= j, but changes from 0 to π for j. The tunnelling process can

be approximated by formulating it entirely in terms of the change in this quantity,

which we denote v. The e�ective energy landscape for this transition, as determined

from the Josephson energy, is the following double well potential,

U ≈ 4.213EJ
π4

(v2 − πv)2, (6.9)

The kinetic term is,

K =
~2

8EC
(
dv

dt
)2. (6.10)

Using these, the action can be calculated using the instanton method [63], which

yields,

S0 ≈ 0.380~
√
EJ
EC

. (6.11)

Single qudit σzi operations, required to create anyons, can be applied by pumping

charge between the vertices [64]. When using these Josephson junctions to realize

the non-Abelian like quantum memories of the last chapter, it must be noted that
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Figure 6.3: (a) Twelve Josephson junctions arranged in �ve loops. This element has
six degenerate ground states when a �ux 2π/6 is passed through each loop, and thus
provides the required six-level spin. (b) A plaquette of the D(Z6) model realized
with Josephson junction elements.

the Hamiltonian of Eq. 6.7 is not ideal, since it does not assign equal energy to each

anyon type. This therefore gives an opportunity to demonstrate the enforcement of

the degeneracies by the −BW λ
i terms. These can be simply implemented by passing

a �ux of 2π/3 through the elements on the links for which this term is to be applied,

rather than 2π/6.

Since the simulation of the D(S3) charges does not require coherence between the

anyon states, the lack of the degeneracy is not important and need not be addressed.

Demonstrating the creation of the quasiparticles, their transport and fusion would

be an important step forward in the physical realization of non-Abelian anyons.

One-dimensional D(Z6) model

Though the exchange statistics of quasiparticles cannot be demonstrated in one-

dimensional systems, their fusion can. A one-dimensional realization of D(Z6) would

therefore be capable of demonstrating the fusion rules of the D(S3) charges. Also,

since the non-abelian-like quantum memory of Chapter 5 does not involve braiding,

its principles may be demonstrated in the one-dimensional model.

For the de�nition of the model, consider the line of six-level spins in Fig. 6.4.
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Figure 6.4: Four spins along a line, which can be used to realize the anyons of D(Z6)
on the links.

Operators corresponding to vertex operators in two-dimensions are de�ned on neigh-

bouring spins in one-dimension,

A(li) = (σxi )
†(σxi+1). (6.12)

The eg anyons live on the links li between the spins. The application of (σxi )
g creates

an eg anyon on the link li−1 and an e−g on the li.

Ideally, the Hamiltonian of the model would be,

H = −
∑
i

∑
h∈Z6

Ah(li). (6.13)

This has the anyonic vacuum as its ground state, and assigns equal energy to all

anyon types. However, since the simulation does not require coherent states of the

quasiparticles, Hamiltonians without the degeneracy of the anyon states could be

used if experimentally simpler to realize.

Clearly this is a simple model in comparison with others used to realize quasi-

particles with the properties of interest in topological quantum computation, since

it requires only simple two body interactions. It therefore marks a realistic starting

point for experimental demonstrations of non-Abelian anyons.
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6.4 Conclusions

The theoretical arguments of all previous chapters, as in all of physics, are only

signi�cant if they can be demonstrated with real physical systems. However, since a

full realization of anyon models requires control over a large number of particles with

highly complex interactions, only proofs of the principles proposed in this thesis are

realistic with current technology.

In this chapter the minimal resources required for proof of principle experiments

are explored. A single plaquette D(Z2) model is shown to have the potential to

demonstrate the action of the single spin measurements useful for the proposals of

Chapter 3. This experiment is a straightforward extension to ones that have already

been performed [31], and so could be implemented in the near future. The single

plaquette also allows the possibility of a quantum memory using holes in D(Z2) to

be demonstrated by physical systems capable of nearest neighbour x−x interactions

on three or more spins.

It was also found that non-Abelian behaviour could be experimentally demon-

strated using six level spins. In order for a full realization of the required D(Z6)

model in two-dimensions, a Josepshon junction based scheme was proposed building

on existing theoretical and experimental work [20, 30]. This could be used both

for a simulation of the D(S3) charge submodel and non-abelian-like quantum mem-

ories. A simpler set-up in one dimension was also proposed for proof of principle

demonstrations of non-Abelian anyonic behaviour without the need for a full two-

dimensional realization.

These experiments would allow the realization of anyonic behaviour in the labora-

tory to progress greatly over the next few years. Rather than just the scant evidence

of non-Abelian behaviour available presently [33], explicit and direct observations

could be made. This would form a major stepping stone to future breakthroughs in

the implementation of topological quantum computation.

92



Chapter 7

Conclusions

7.1 Main results

The aim of this thesis has been to prove that Abelian anyon models are capable

of much of the same richness and complexity of behaviour as their non-Abelian

counterparts. This was done from the perspective of quantum information, where

the similarities and di�erences between Abelian and non-Abelian models could be

studied from an operational point of view.

Firstly, Chapter 3 considered the use of Abelian anyons for quantum computa-

tion. Following on from previous proposals based on theD(Z2)model [35, 36, 38, 42],

this study looked in general at all Abelian quantum double models. The dependence

of computational power on the kind of non-topological operations allowed and the

properties of the group underlying the model could then be seen. It was found

that the D(Z2) model is by no means unique in allowing universal quantum com-

putation. The means to achieve this with simple non-topological operations was

found and proven for a wide class of models. From the perspective of implementing

universal quantum computation, therefore, Abelian anyons are as powerful as the

non-Abelian models whose braiding is not su�cient for universality.

Chapter 4 then considered a more limited task, the ability of Abelian models to

simulate non-Abelian anyons. This process again required the addition of operations
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beyond those normally used in Abelian models, in this case those that allowed the

creation and transport anyonic superpositions, as well as framing operations to pro-

vide chirality when required. Two examples of non-Abelian anyon simulation were

provided, one of the D(S3) charge submodel and the other of the Ising anyon model.

The former consists of anyons whose braiding su�ces only to represent the permu-

tation of the anyons, implementing no further operations on the fusion space. This

simplicity leads to a straightforward simulation, in which merely creating superposi-

tions, or even mixtures, of the Abelian D(Z6) charge anyons leads to quasiparticles

that are indistinguishable from the D(S3) charge anyons. The simulation of the

Ising model, however, realizes more complex braiding behaviour, namely non-trivial

action on the fusion space and chirality. However it is shown that the non-chiral

and Abelian D(Z2) model can demonstrate this behaviour when supplemented with

the correct methods. Both of these simulations have their limitations, and cannot

reproduce the behaviour of the anyon model in all instances, but they serve as a

useful lesson of how non-Abelian behaviour may be simply realized on spin lattices,

and allows simpli�ed experimental demonstrations to be designed.

In the �rst few sections of Chapter 5 the non-Abelian D(S3) model was studied,

with the quantum memory of the charge anyons studied in detail. Since this model is

based on the simplest non-Abelian group, it is the most tractable of all non-Abelian

quantum double models. It is also the most well understood of all non-Abelian

models at the level of its underlying physical medium, in this case a spin lattice.

It was found that the same fusion outcomes of the same anyons can be used to

de�ne two quantum memories with large operational di�erences. One, termed the

true non-Abelian memory, has a code distance that scales with anyon separation

and logical states that can only be distinguished non-locally. The other, called

non-abelian-like, has instead a constant code distance and is susceptible to LOCC

measurements. This is an important result concerning non-Abelian encoding of

quantum information, especially in non-universal non-Abelian models. It shows

that one cannot simply fuse anyons in an arbitrary manner in order to be con�dent
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that the encoding is non-local and fault-tolerant, but extra steps may need to be

taken. The operations that must be implemented in in order to ensure proper fusion

and hence fault-tolerance may then make the additional non-topological operations

for non-universal models too complex to be practical. The way in which the non-

abelian-like encoding may be extended in order to compare favourably with the true

non-Abelian encoding was then determined. These methods can then be adapted

in future experimental realizations of non-Abelian anyons, both with D(S3) and

otherwise, to ensure fault-tolerance.

While these results point out potential weaknesses in the memories of non-

universal non-Abelian anyons, they also hint at the strengths that may be achieved

by Abelian anyons. Though the true non-Abelian memory requires a non-Abelian

group structure underlying the model, the non-abelian-like memory does not, and

so may be realized using Abelian models. This potential was explored in the �nal

sections of Chapter 5, in which the D(Z6) model was used to implement the ex-

tended non-abelian-like memory. This demonstrates that Abelian models not only

have the same power in manipulating quantum information as their non-universal

non-Abelian counterparts, but the same power in the fault-tolerant storage of that

information.

With these manifestations of non-Abelian behaviour in Abelian models, the ex-

perimental advantage of the latter is then explored in Chapter 6. Experiments are

proposed using current cutting edge techniques using Abelian anyons and other mod-

els that could realistically be implemented in the lab. These demonstrate the theory

developed in the thesis, allowing the principles behind the computation schemes of

Chapter 3 to be physically realized, as well as the quasiparticles of Chapters 4 and

5 which simulate non-Abelian anyons and realize equivalent quantum memories.

7.2 Further results

While achieving the aims of the thesis, other notable results where uncovered. In

the simulations of Chapter 4, the Abelian models both had the same total quantum
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dimensions as the non-Abelian models they were used to simulate. This suggests a

fundamental connection between seemingly unrelated models which share only the

value of this quantity. There is no reason in the abstract theory of anyons as to why

this should be so, but perhaps the answer lies instead in the �eld of entanglement

theory. It is known that the states of a physical medium required to realize anyon

models must not only be highly entangled, but entangled in a certain way. This

topological entanglement is measured by a quantity known as the topological entropy

[14, 15], whose value is related only to the total quantum dimension of the model

realized. The simulatability of one model with a certain value of the total quantum

dimension by another of equal value suggests that equally topologically entangled

states are equivalent up to the quasilocal operations employed to implement the

simulation. However, it would not be expected that a realization of the Ising model

could simulate D(Z2), since the single σ anyon of the Ising model would need to be

split to form the e andm ofD(Z2). Also, no way is known in which theD(S3) charges

can simulate those of D(Z6). The equivalences between the states would therefore

appear to be one way. These results therefore give hints as to the structure of the

topological class of entanglement, though much further study would be required

before the de�nite nature of the relationships are known.

The studies of Chapter 5 is applicable to the generalization stabilizer codes to

higher dimensional spins. The true non-Abelian quantum memory shows the dra-

matic e�ect that stabilizers with a non-Abelian group structure can have in fault-

tolerantly storing information. These chapters also demonstrate that information

storage need not be limited to the stabilizer space in the anyonic case, for which

holes in the code are required to allow additional storage. Instead it was found that

quasiparticles can e�ectively carry holes in their internal states. Since these holes

are pinned to excitations, they are well suited to being moved by local potentials

or adiabatic techniques. This is in contrast with bare holes that are not pinned to

quasiparticles, which are prone to decohere when moved in such a manner. Once

these holes are used for encoding, it is found that certain symmetries of the Hamilto-
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nian must be enforced in order to ensure fault-tolerance. More elements must then

be added to the stabilizer in order to control these. Hence we see that stabilizer

codes for higher dimensional spins have a richness of behaviour that goes far beyond

their spin-1/2 counterparts, and deserve to be studied both within and beyond the

anyonic formalism.

7.3 Final remarks

Finally we conclude by again underlining the potential of Abelian anyons for the task

of quantum computation. Though universal non-Abelian models are admittedly the

holy grail of topological quantum computation, and rightly so, this thesis has shown

that Abelian models are just as useful as non-universal non-Abelian models. For,

despite the fact that the latter have the true non-Abelian encoding at their disposal,

this can be impractical to use along with the non-topological operations required

for universality. The non-abelian-like memory may then need to be used instead,

preventing non-Abelian anyons, or at least those realized on spin lattice models,

from having major advantages over their Abelian counterparts. Abelian models, on

the other hand, will always have the advantage of experimental simplicity. Hence

Abelian models are a computationally powerful, fault-tolerant and experimentally

realistic prospect for quantum computation.
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