Przejdź do zawartości

Prawo Moore’a: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
Linia 20: Linia 20:
Jednym z głównych powodów, dzięki któremu ten wykładniczy wzrost jest możliwy, jest stosowanie coraz mniejszych elementów w procesie fabrykacji. Współcześnie dominują technologie 65, 45, 32 i ostatnio 14 nm, kiedy we wczesnych latach 90. używano technologii 500 nm. Biorąc pod uwagę [[Fizyka klasyczna|fizykę klasyczną]] rozmiary te nie mogą zmniejszać się bez końca – granicę stanowi tutaj rozmiar [[atom]]ów, a kolejnym ograniczeniem jest [[prędkość światła]] w próżni wyznaczająca górną granicę dla prędkości przesyłania [[Informacja|informacji]].
Jednym z głównych powodów, dzięki któremu ten wykładniczy wzrost jest możliwy, jest stosowanie coraz mniejszych elementów w procesie fabrykacji. Współcześnie dominują technologie 65, 45, 32 i ostatnio 14 nm, kiedy we wczesnych latach 90. używano technologii 500 nm. Biorąc pod uwagę [[Fizyka klasyczna|fizykę klasyczną]] rozmiary te nie mogą zmniejszać się bez końca – granicę stanowi tutaj rozmiar [[atom]]ów, a kolejnym ograniczeniem jest [[prędkość światła]] w próżni wyznaczająca górną granicę dla prędkości przesyłania [[Informacja|informacji]].


Od wielu lat powtarzane są zapowiedzi, że czas obowiązywania prawa Moore’a właśnie dobiega końca. Jednak dotychczas nie spełniały się, aczkolwiek w {{fakt|data=2009-05|listopadzie 2006 sam Gordon Moore miał oświadczyć, że według niego za 2–3 lata (w 2008 lub 2009 roku) prawo to przestanie obowiązywać}}. {{fakt|Według dokumentów ''International Technology Roadmap for Semiconductors'', uwzględniających potencjalne problemy z rozwojem i miniaturyzacją, należy oczekiwać kolejnych procesów dostępnych (na rynku) w latach, 32 nm – 2009, 22 nm – 2012, 14 nm – 2015, 10 nm – 2018(Intel), 7 nm ~ 2020, a dalszy rozwój w ramach elektroniki stoi pod znakiem zapytania. Ostatnie 10 lat będą miały mniejszą dynamikę wzrostu niż wskazuje na to Prawo Moore’a. |data=2017-05}}.
{{fakt|Według dokumentów ''International Technology Roadmap for Semiconductors'', uwzględniających potencjalne problemy z rozwojem i miniaturyzacją, należy oczekiwać kolejnych procesów dostępnych (na rynku) w latach, 32 nm – 2009, 22 nm – 2012, 14 nm – 2015, 10 nm – 2018(Intel), 7 nm ~ 2020, a dalszy rozwój w ramach elektroniki stoi pod znakiem zapytania. Ostatnie 10 lat będą miały mniejszą dynamikę wzrostu niż wskazuje na to Prawo Moore’a. |data=2017-05}}.


== Po osiągnięciu granicy ==
== Po osiągnięciu granicy ==
Nawet jeżeli wymienione powyżej problemy pozostaną rozwiązane (nowe procesy litograficzne, użycie innych półprzewodników), zawsze można spodziewać się wystąpienia innych problemów w wytwarzaniu szybkich układów scalonych oraz wysokich kosztów. Dlatego już teraz trend całego przemysłu komputerowego jest skierowany ku tworzeniu układów wieloprocesorowych (lub wielordzeniowych) i przetwarzaniu równoległym (stosowanym do tej pory w wydajnych serwerach i superkomputerach). Również ta forma przedłużenia prawa Moore’a ma swoje granice w postaci [[Prawo Amdahla|prawa Amdahla]] i wysokich opóźnień w dostępie do danych (np. w [[pamięć RAM|pamięci RAM]], tzw. ściana powolnej pamięci). Również dużym problemem obecnych technologii jest duży pobór prądu i wydzielane ciepło (rosnące wraz z częstotliwością pracy układów).
Nawet jeżeli wymienione powyżej problemy pozostaną rozwiązane (nowe procesy litograficzne, użycie innych półprzewodników), zawsze można spodziewać się wystąpienia innych problemów w wytwarzaniu szybkich układów scalonych oraz wysokich kosztów. Dlatego już teraz trend całego przemysłu komputerowego jest skierowany ku tworzeniu układów wieloprocesorowych (lub wielordzeniowych) i przetwarzaniu równoległym (stosowanym do tej pory w wydajnych serwerach i superkomputerach). Również ta forma przedłużenia prawa Moore’a ma swoje granice w postaci [[Prawo Amdahla|prawa Amdahla]] i wysokich opóźnień w dostępie do danych (np. w [[RAM|pamięci RAM]], tzw. ściana powolnej pamięci). Również dużym problemem obecnych technologii jest duży pobór prądu i wydzielane ciepło (rosnące wraz z częstotliwością pracy układów).


== Zobacz też ==
== Zobacz też ==

Wersja z 17:26, 13 paź 2017

Wzrost liczby tranzystorów w procesorach w latach 1971–2011

Prawo Moore’a – prawo empiryczne, wynikające z obserwacji, że ekonomicznie optymalna liczba tranzystorów w układzie scalonym zwiększa się w kolejnych latach zgodnie z trendem wykładniczym (podwaja się w niemal równych odcinkach czasu). Autorstwo tego prawa przypisuje się Gordonowi Moore’owi, jednemu z założycieli firmy Intel, który w 1965 r. zaobserwował podwajanie się liczby tranzystorów co ok. 18 miesięcy[1]. Liczba ta była następnie korygowana i obecnie przyjmuje się, że liczba tranzystorów w mikroprocesorach od wielu lat podwaja się co ok. 24 miesiące. Na zasadzie analogii, prawo Moore’a stosuje się też do wielu innych parametrów sprzętu komputerowego, np. pojemności dysków twardych czy wielkości pamięci operacyjnej.

Zakres znaczenia

Termin ten jest też używany do określenia praktycznie dowolnego postępu technologicznego. „Prawo Moore’a”, mówiące że „moc obliczeniowa komputerów podwaja się co 24 miesiące”, jest nawet popularniejsze od oryginalnego prawa Moore’a.

Podobnie (z innym okresem) mówi się o:

Nie wszystko jednak podlega tak rozszerzonemu prawu Moore’a, np. czas dostępu dla pamięci komputerowej, dysków twardych czy sieci komputerowych maleje powoli, pomimo rosnącej ich przepustowości. W niewielkim stopniu spadły też ceny typowych komputerów, ich rozmiar czy pobór mocy.

Granice prawa Moore’a

Jednym z głównych powodów, dzięki któremu ten wykładniczy wzrost jest możliwy, jest stosowanie coraz mniejszych elementów w procesie fabrykacji. Współcześnie dominują technologie 65, 45, 32 i ostatnio 14 nm, kiedy we wczesnych latach 90. używano technologii 500 nm. Biorąc pod uwagę fizykę klasyczną rozmiary te nie mogą zmniejszać się bez końca – granicę stanowi tutaj rozmiar atomów, a kolejnym ograniczeniem jest prędkość światła w próżni wyznaczająca górną granicę dla prędkości przesyłania informacji.

Według dokumentów International Technology Roadmap for Semiconductors, uwzględniających potencjalne problemy z rozwojem i miniaturyzacją, należy oczekiwać kolejnych procesów dostępnych (na rynku) w latach, 32 nm – 2009, 22 nm – 2012, 14 nm – 2015, 10 nm – 2018(Intel), 7 nm ~ 2020, a dalszy rozwój w ramach elektroniki stoi pod znakiem zapytania. Ostatnie 10 lat będą miały mniejszą dynamikę wzrostu niż wskazuje na to Prawo Moore’a. [potrzebny przypis].

Po osiągnięciu granicy

Nawet jeżeli wymienione powyżej problemy pozostaną rozwiązane (nowe procesy litograficzne, użycie innych półprzewodników), zawsze można spodziewać się wystąpienia innych problemów w wytwarzaniu szybkich układów scalonych oraz wysokich kosztów. Dlatego już teraz trend całego przemysłu komputerowego jest skierowany ku tworzeniu układów wieloprocesorowych (lub wielordzeniowych) i przetwarzaniu równoległym (stosowanym do tej pory w wydajnych serwerach i superkomputerach). Również ta forma przedłużenia prawa Moore’a ma swoje granice w postaci prawa Amdahla i wysokich opóźnień w dostępie do danych (np. w pamięci RAM, tzw. ściana powolnej pamięci). Również dużym problemem obecnych technologii jest duży pobór prądu i wydzielane ciepło (rosnące wraz z częstotliwością pracy układów).

Zobacz też

  1. Gordon E. Moore: Cramming more components onto integrated circuits. Electronics Magazine 38 (8), 19 kwietnia 1965. [dostęp 23 października 2013]. (ang.).