Raiz quadrada de dois

Número irracional
(Redirecionado de Raiz quadrada de 2)

A raiz quadrada de dois, denotada , é o único número real positivo cujo quadrado (ou seja, o resultado de sua multiplicação por si próprio) é dois: .

A hipotenusa de um triângulo retângulo cujos catetos medem 1 tem comprimento raiz quadrada de dois

A raiz quadrada de dois é um número irracional,[1][Nota 1] ou seja, não é possível encontrar dois números inteiros e tais que

Acredita-se que tenha sido o primeiro número irracional reconhecido como tal. Esta importante descoberta é atribuída a Hipaso de Metaponto, da escola de Pitágoras. De acordo com uma lenda, a demonstração teria custado a vida de seu descobridor, uma vez que contrariava as ideias predominantes entre os pitagóricos de que tudo era número (inteiro).[2]

Um triângulo retângulo cujos catetos medem 1 tem hipotenusa com comprimento .

A fração 9970 (≈ 1.4142857) por vezes é usada como uma boa aproximação racional com um denominador razoavelmente pequeno.

A sequência A002193 na Enciclopédia On-Line de Sequências Inteiras consiste nos dígitos da expansão decimal da raiz quadrada de 2, aqui truncada para 65 casas decimais:[3]

1.41421356237309504880168872420969807856967187537694807317667973799

Notação

editar

A raiz quadrada de dois pode ser escrita como:

  •  , lê-se "raiz quadrada de dois" ou "raiz de dois".
  •   ou  , lê-se "dois elevado a um meio" ou "dois a um meio".

Aproximação decimal da raiz quadrada de 2

editar

Por ser um número irracional,   não pode ser expressa como um número finito de casas decimais, uma aproximação com 65 dígitos decimais é:

1,41421356237309504880168872420969807856967187537694807317667973799... (sequência A002193 na OEIS).

Uma aproximação fracionária para a raiz quadrada de 2 é 10/7 que, ao quadrado, fica 100/49, bem próximo de 2.

Sequência convergente a raiz quadrada de dois

editar

Pode-se facilmente construir uma sequência de números racionais se aproximando (convergindo) para  :

 

Esta recursão produz a sequência:

 

Ou, aproximadamente:

 

Observe que o método estabiliza a nona casa decimal após apenas cinco passos.

Inexistência de um número racional cujo quadrado seja 2

editar

O matemático britânico Godfrey Harold Hardy em seu livro Em defesa de um matemático afirma que a demonstração da irracionalidade da raiz quadrada de dois é um dos teoremas de "primeira classe". E que "conserva a beleza e o frescor que tinha ao ser descoberto" há mais de dois mil anos.

A demonstração é simples e recorre ao método da prova por contradição. Ou seja, supomos que exista um número racional igual a raiz de 2, ou seja, que existem números inteiros positivos   e   tais que:

 

ou, equivalentemente:

 

Podemos supor que   e   não são ambos números pares, pois se fossem, poderíamos simplificar a fração até obter um dos termos da fração ímpar.

Agora, escrevemos:

 

Então:

 

Concluímos então que   deve ser um número par, pois é dobro de  . E   deve ser par também, pois o quadrado de um número ímpar é ímpar.

Temos então que   é um número par e, portanto, é o dobro de algum número inteiro, digamos  :

 
 
 
 

Pelos motivos alegados anteriormente,   deve ser um número par.

Concluímos, finalmente, que se a raiz quadrada de 2 fosse um número racional, então este número seria uma fração que não tem forma irredutível, já que tanto o numerador quanto o denominador da fração são pares. Isto é um absurdo e, portanto, não existe um racional cujo quadrado seja igual a 2, como queríamos demonstrar.

Aplicações

editar

Tamanho de Papéis

editar

Em 1786, o professor alemão de física Georg Christoph Lichtenberg[4] descobriu que qualquer folha de papel cuja borda longa seja   vezes maior que sua borda curta poderia ser dobrada ao meio e alinhada com seu lado mais curto para produzir uma folha com exatamente as mesmas proporções como o original. Esta proporção de comprimentos do lado mais longo sobre o lado mais curto garante que o corte de uma folha ao meio ao longo de uma linha resulta em folhas menores tendo a mesma proporção (aproximada) da folha original. Quando a Alemanha padronizou os tamanhos de papel no início do século 20, eles usaram a proporção de Lichtenberg para criar a série "A" de tamanhos de papel.[4] Hoje, a proporção (aproximada) dos tamanhos de papel em ISO 216 (A4, A0, etc.) é 1:  

Existem algumas propriedades interessantes envolvendo a raiz quadrada de 2 nas ciências físicas:

  • A raiz quadrada de dois é a razão de frequência de um intervalo de trítono em uma música de temperamento igual de doze tons.
  • A raiz quadrada de dois forma a relação de f-stops em lentes fotográficas, o que, por sua vez, significa que a proporção das áreas entre duas aberturas sucessivas é 2.
  • A latitude celestial (declinação) do Sol durante os pontos astronômicos de um quarto de dia cruzado é igual à inclinação do eixo do planeta dividido por  

Notas e referências

Notas

  1. No texto, Vitrúvio escreve que a determinação de um número que corresponde à diagonal de um quadrado com lado igual a dez pés não pode ser feita por números, o que, segundo interpretação de Bill Thayer, editor do site LacusCurtius, significa que não pode ser feita por uma fração com números inteiros.

Referências

  1. Vitrúvio, De Architetura, Livro IX, Introdução, 4 [em linha]
  2. Kurt von Fritz, "The discovery of incommensurability by Hippasus of Metapontum", Annals of Mathematics, 1945.
  3. «A002193 - OEIS». oeis.org. Consultado em 10 de agosto de 2020 
  4. a b Houston, Keith (2016). The Book: A Cover-to-Cover Exploration of the Most Powerful Object of Our Time. [S.l.]: W. W. Norton & Company. 324 páginas. ISBN 978-0393244809 

Ligações externas

editar