Skip to main content

Google BigQuery API client library

Project description

Python idiomatic client for Google BigQuery

pypi versions

Quick Start

$ pip install --upgrade google-cloud-bigquery

For more information on setting up your Python development environment, such as installing pip and virtualenv on your system, please refer to Python Development Environment Setup Guide for Google Cloud Platform.

Authentication

With google-cloud-python we try to make authentication as painless as possible. Check out the Authentication section in our documentation to learn more. You may also find the authentication document shared by all the google-cloud-* libraries to be helpful.

Using the API

Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google BigQuery (BigQuery API docs) solves this problem by enabling super-fast, SQL queries against append-mostly tables, using the processing power of Google’s infrastructure.

Create a dataset

from google.cloud import bigquery
from google.cloud.bigquery import Dataset

client = bigquery.Client()

dataset_ref = client.dataset('dataset_name')
dataset = Dataset(dataset_ref)
dataset.description = 'my dataset'
dataset = client.create_dataset(dataset)  # API request

Load data from CSV

import csv

from google.cloud import bigquery
from google.cloud.bigquery import LoadJobConfig
from google.cloud.bigquery import SchemaField

client = bigquery.Client()

SCHEMA = [
    SchemaField('full_name', 'STRING', mode='required'),
    SchemaField('age', 'INTEGER', mode='required'),
]
table_ref = client.dataset('dataset_name').table('table_name')

load_config = LoadJobConfig()
load_config.skip_leading_rows = 1
load_config.schema = SCHEMA

# Contents of csv_file.csv:
#     Name,Age
#     Tim,99
with open('csv_file.csv', 'rb') as readable:
    client.load_table_from_file(
        readable, table_ref, job_config=load_config)  # API request

Perform a query

# Perform a query.
QUERY = (
    'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '
    'WHERE state = "TX" '
    'LIMIT 100')
query_job = client.query(QUERY)  # API request
rows = query_job.result()  # Waits for query to finish

for row in rows:
    print(row.name)

See the google-cloud-python API BigQuery documentation to learn how to connect to BigQuery using this Client Library.

Project details


Release history Release notifications | RSS feed

This version

1.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google-cloud-bigquery-1.3.0.tar.gz (142.8 kB view details)

Uploaded Source

Built Distribution

google_cloud_bigquery-1.3.0-py2.py3-none-any.whl (75.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file google-cloud-bigquery-1.3.0.tar.gz.

File metadata

File hashes

Hashes for google-cloud-bigquery-1.3.0.tar.gz
Algorithm Hash digest
SHA256 67812d7401ec9e01b464d12b84aef6f247c66d5cc51544b15bb12116e4b1f8d7
MD5 8f17e8a1de0ef5101059d1b13cb60794
BLAKE2b-256 f0dc5a329029135d56032997698f5ca8a73c1ef60e11e6f0ee5bef2aedc400d4

See more details on using hashes here.

File details

Details for the file google_cloud_bigquery-1.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for google_cloud_bigquery-1.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d2791bbfe4e569b12436a3ef4c57c20f33105a037b3550d4de71fdf8d30bea45
MD5 7816b3648ea5c70e4cedcd8d2f959050
BLAKE2b-256 46a41bfb9d56e4e137554d7f216063238f82b6c50b69f616b95282015e2835e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page