Рицин

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Рицин
Пространственная структура рицина. Цепь А изображена синим цветом, цепь B — золотистым
Пространственная структура рицина. Цепь А изображена синим цветом, цепь B — золотистым
Обозначения
CAS 9009-86-3
PDB 2AAI
UniProt P02879
Логотип Викиданных Информация в Викиданных ?
Семена клещевины — источник рицина

Рици́н — белковый яд растительного происхождения (фитотоксин).

Рицин чрезвычайно ядовит, особенно в виде аэрозоля: для человека средняя смертельная доза (ЛД50) составляет 0,3 мг/кг[1] перорально. Токсичность рицина составляет: 0,00015 мг/кг (белые мыши, внутривенно), 0,02 мг/кг (крысы, подкожно), 0,2 мг/кг (морские свинки, подкожно)[2].

Рицин представляет собой белый порошок без запаха, хорошо растворимый в воде. Молекулярная масса — около 67 кДа. Рицин не проникает через кожу. Пути отравления — обычно введение в кровь, чуть хуже проникновение через лёгкие (этот способ для рицина не всегда действенен).

Механизм отравляющего действия рицина включает ингибирование синтеза белка рибосомами. Известны два основных типа таких ингибиторов: ингибиторы типа 1 представляют собой единичную полипептидную цепь, обладающую ферментативной активностью, а рицин и прочие ингибиторы типа 2 состоят из двух полипептидных цепей и являются гетеродимерными гликопротеинами. Из них только цепь A обладает ферментативной активностью, а цепь B, связанная с нею дисульфидными связями, проявляет активность, свойственную лектинам и опосредует проникновение токсина в цитозоль. Чтобы токсин мог инактивировать рибосому, дисульфидная связь между цепями А и В должна быть восстановлена[3].

Молекула рицина представляет собой гликозилированный глобулярный гетеродимер массой 60—65 кДа. Массы цепей А и В приблизительно равны: 32 и 34 кДа соотв.

  • Цепь A — N-гликозидаза, состоит из 267 аминокислотных остатков[4]. Три структурных домена, состоящие из альфа-спиралей и бета-складок, образуют щель, в которой расположен активный центр[5].
  • Цепь B — лектин, состоит из 262 аминокислотных остатков, связывает остатки галактозы на поверхности клетки[6]. Образует двудольную структуру, лишенную альфа-спиралей и бета-складок, каждая доля разделяется на три субдомена, один из которых содержит активный центр. Белки, подобные цепи A, содержат многие растения, например, ячмень, но в отсутствие цепи B они нетоксичны.

Проникновение в цитозоль

[править | править код]

Способность рицина проникать в цитозоль зависит от водородных связей, образующихся между аминокислотными остатками цепи B и олигосахаридами на поверхности клетки, содержащими остатки галактозы или N-ацетилгалактозамина. Кроме того, остатки маннозы, входящие в состав рицина, могут связываться рецепторами маннозы на поверхности клетки[7]. Показано, что на поверхности одной клетки может связаться до 106—108 молекул рицина[8]. После связывания происходит интернализация молекул как в клатриновые везикулы, так и в транспортные везикулы, не содержащие клатрин, такие как кавеолы и везикулы, образующиеся при макропиноцитозе[9][10]. Так рицин попадает в эндосомы и затем в аппарат Гольджи. Хотя на этом пути рицин проходит через лизосомы, он не подвергается деградации[11], и из аппарата Гольджи попадает в эндоплазматический ретикулум интактным.

Известно, что для проявления токсической функции рицин должен распасться на A- и B-цепи, но где это происходит, в эндоплазматическом ретикулуме или в цитозоле, пока неизвестно[12]. Существующий в цитозоле механизм очистки от лишнего белка путём его убиквитинирования на рицин также не действует, поскольку для присоединения убиквитина в его структуре не хватает остатков лизина[13].

Инактивация рибосомы

[править | править код]

Показано, что цепь A расщепляет гликозидную связь при остатке аденина в позиции 4324 рРНК 28S субъединицы[14][15]; этот остаток расположен в консервативной последовательности 5’-AGUACGAGAGGA-3’, называемой сарцин-рициновой петлёй, которая важна для связывания факторов элонгации[16], вследствие чего синтез белка на рибосоме полностью и необратимо блокируется. На этом действие цепи A не прекращается, каждая молекула этого фермента выводит из строя до 1500 рибосом в минуту.

Производство

[править | править код]

Рицин получают из касторовых бобов, плодов растения Ricinus communis (русское название клещевина) путём обработки жмыха, остающегося после получения касторового масла (также содержащего следы рицина).

Применение

[править | править код]

В отличие от касторового масла, очищенный рицин в медицине не применяется, хотя проводились разработки способов его использования для лечения рака, а также при вакцинации.

Химическое оружие

[править | править код]

Известно, что рицин в 6 раз более ядовит, чем цианистый калий[17]. Поскольку небольшой дозы рицина размером с булавочную головку достаточно, чтобы убить взрослого человека, способы применения рицина в качестве оружия массового поражения изучались военными ведомствами разных стран, начиная с Первой мировой войны, однако из-за ряда недостатков это вещество так и не было принято на вооружение. Тем не менее, рицин нашёл применение у спецслужб. Одним из наиболее известных инцидентов с применением рицина стало убийство болгарского диссидента Георгия Маркова, который был отравлен в 1978 году при помощи укола зонтиком особой конструкции[18][19][20]. По другим данным, оружием убийцы было замаскированное под зонтик пневматическое ружьё, заряженное микрокапсулой с рицином. Доза, введённая Маркову, составила не более 450 мкг (0,45 миллиграмма)[21].

Александр Солженицын утверждал[22], что КГБ пытался его отравить рицином, однако подтверждения этой информации из других источников нет.

Простота получения токсина сделала его потенциально доступным для террористических групп. Так, в 2001 году пресса сообщала об обнаружении инструкций по изготовлению рицина на разгромленной базе «Аль-Каида» в Кабуле[23]. В 2003 году некоторое количество рицина было найдено у террористов в Лондоне[24], следы рицина обнаружились в ячейке хранения на Лионском вокзале в Париже[25].

В 2013 году ряд лиц из штата Миссисипи были арестованы за попытку послать президенту США Бараку Обаме и другим высокопоставленным лицам США письма с рицином[17]. Так, в мае этого же года мэру города Нью-Йорка прислали письмо с угрозами, содержащее рицин, предположительно в ответ на деятельность общественной организации «Мэры против нелегального оружия»[26].

Позднее в Техасе предъявлены обвинения актрисе Шэннон Ричардсон, подозреваемой в рассылке писем со смертельным ядом американским политикам[27].

Примечания

[править | править код]
  1. [www.xumuk.ru/encyklopedia/2/3911.html Статья о рицине в химической энциклопедии]
  2. [xumuk .ru/spravochnik/826.html]
  3. Wright H. T., Robertus J. D. The intersubunit disulfide bridge of ricin is essential for cytotoxicity (англ.) // Archives of Biochemistry and Biophysics[англ.] : journal. — Elsevier, 1987. — Vol. 256. — P. 280—284. — doi:10.1016/0003-9861(87)90447-4.
  4. Olnes S., Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis (англ.) // Biochemistry : journal. — 1973. — Vol. 12. — P. 3121—3126. — doi:10.1021/bi00740a028.
  5. Weston S. A., Tucker A. D., Thatcher D. R., et al. X-ray structure of recombinant ricin A-chain at 1.8 A resolution (англ.) // J. Mol. Biol.[англ.] : journal. — 1994. — Vol. 244. — P. 410—422. — doi:10.1006/jmbi.1994.1739.
  6. Wales R., Richardson P. T., Robers L. M., Woodland H. R., et al. Mutational analysis of the galactose binding ability of recombinant ricin b chain (англ.) // J. Biol. Chem. : journal. — 1991. — Vol. 266. — P. 19172—19179.
  7. Magnusson A. S., Kjeken R., Berg T. Characterization of two distinct pathways of endocytosis of ricin by rat liver endothelial cells (англ.) // Exp. Cell Res.[англ.] : journal. — 1993. — Vol. 205. — P. 118—125. — doi:10.1006/excr.1993.1065.
  8. Sphyris N., Lord J. M., Wales R., et al. Mutational analysis of the ricinus lectin b-chains: Galactose-binding ability of the gamma subdomain of ricinus communis agglutin b-chain (англ.) // J. Biol. Chem. : journal. — 1995. — Vol. 270. — P. 20292—20297. — doi:10.1074/jbc.270.35.20292. — PMID 7657599.
  9. Moya M., Dautry-Varsat A., Goud B., et al. Inhibition of coated pit formatin in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin (англ.) // J. Cell. Biol.[англ.] : journal. — 1985. — Vol. 101. — P. 548—559. — doi:10.1083/jcb.101.2.548. — PMID 2862151.
  10. Nichols, B. J., Lippincott-Schwartz J. Endocytosis without clathrin coats (англ.) // Trends Cell Biol.[англ.] : journal. — 2001. — Vol. 11. — P. 406—412. — doi:10.1016/S0962-8924(01)02107-9.
  11. Lord M. J., Jolliffe N. A., Marsden C. J., et al. Ricin Mechanisms of Cytotoxicity (неопр.) // Toxicol. Rev.. — 2003. — Т. 22, № 1. — С. 53—64. — doi:10.2165/00139709-200322010-00006.
  12. Roberts L. M., Smith D. C. Ricin: the endoplasmic reticulum connection (англ.) // Toxicon[англ.] : journal. — 2004. — Vol. 44. — P. 469—472. — doi:10.1016/j.toxicon.2004.07.002.
  13. Deeks E. D., Cook J. P., Day P. J., et al. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol (англ.) // Biochemistry : journal. — 2002. — Vol. 41. — P. 3405—3413. — doi:10.1021/bi011580v.
  14. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxic lectin ricin on eukaryotic ribosomes (англ.) // J. Biol. Chem. : journal. — 1987. — Vol. 262. — P. 8128—8130.
  15. Endo Y., Tsurugi K. The RNA N-glycosidase activity of ricin A chain (англ.) // J. Biol. Chem. : journal. — 1998. — Vol. 263. — P. 8735—8739.
  16. Sperti S., Montanaro L., Mattioli A., et al. Inhibition by ricin of protein synthesis in vitro: 60S ribosomal subunit as the target of the toxin (англ.) // Biochem. J.[англ.] : journal. — 1973. — Vol. 136. — P. 813—815.
  17. 1 2 Письма с рицином: ФБР арестовало инструктора по карате. BBC Russian. Дата обращения: 29 апреля 2013. Архивировано 29 апреля 2013 года.
  18. Rózsa L., Nixdorff K. 2006. Biological Weapons in Non-Soviet Warsaw Pact Countries. p. 157—168. In: Wheelis M., Rózsa L., Dando M. (eds.) 2006. Deadly Cultures: Biological Weapons since 1945. Harvard University Press.
  19. Ricin – Biological Weapons. www.globalsecurity.org.
  20. "Poison-tip umbrella assassination of Georgi Markov reinvestigated". 19 June 2008. Архивировано 12 января 2022.
  21. Хэнсон, 2018, Глава 11. «Смерть от зонтика», с. 225.
  22. Антон Быков. Как органы советской госбезопасности использовали яды в борьбе с инакомыслящими. Открытая Россия (17 декабря 2016). Дата обращения: 17 февраля 2020. Архивировано 17 февраля 2020 года.
  23. Бин Ладен «создаёт яд рицин» Архивная копия от 6 января 2010 на Wayback Machine // Русская служба Би-би-си. 16 ноября 2001 г.
  24. В Лондоне нашли смертельно опасный яд Архивная копия от 10 мая 2011 на Wayback Machine // Русская служба Би-би-си. 7 января 2003 г.
  25. На вокзале в Париже обнаружен рицин Архивная копия от 15 февраля 2015 на Wayback Machine // Русская служба Би-би-си. 21 марта 2003 г.
  26. Мэру Нью-Йорка прислали письмо с рицином. Дата обращения: 30 мая 2013. Архивировано 30 мая 2013 года.
  27. Актриса, пытавшаяся отравить Обаму, приговорена к 18 годам тюрьмы. РИА Новости (16 июля 2014). Дата обращения: 26 апреля 2020. Архивировано 22 января 2019 года.

Литература

[править | править код]
  • Тор Хэнсон. Триумф семян: Как семена покорили растительный мир и повлияли на человеческую цивилизацию = Thor Hanson. The Triumph of Seeds: How Grains, Nuts, Kernels, Pulses, and Pips / Пер. с англ. — М.: Альпина нон-фикшн, 2018. — 376 с. — ISBN 978-5-91671-809-6.