Абсолютная величина

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Абсолютное значение»)
Перейти к навигации Перейти к поиску
График вещественной функции
Модуль и другие характеристики комплексного числа

Абсолю́тная величина́, или мо́дуль, числа математике) — неотрицательное число, которое, неформально говоря, обозначает расстояние между началом координат и . Обозначается:

В случае вещественного  абсолютная величина есть непрерывная кусочно-линейная функция, определённая следующим образом:

Обобщением этого понятия является модуль, или абсолютная величина[1], комплексного числа Это число определяется по формуле:

Основные свойства

[править | править код]

С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина означает расстояние между точками и и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой — например, в определении предела по Коши или медианы[2].

Вещественные числа

[править | править код]

Комплексные числа

[править | править код]

Алгебраические свойства

[править | править код]

Для любых вещественных чисел имеют место следующие соотношения:

  • (sgn — функция знака);
  • квадрат модуля числа равен квадрату этого числа:

Как для вещественных, так и для комплексных имеют место соотношения:

  • модуль любого числа равен либо больше нуля: , причём тогда и только тогда, когда
  • модули противоположных чисел равны:
  • модуль произведения двух (и более) чисел равен произведению их модулей:
    • в частности, постоянный положительный множитель можно выносить за знак модуля:
  • модуль частного от деления двух чисел равен частному от деления модулей этих двух чисел:
  • (неравенство треугольника);
  • если существует.

Считают, что термин предложил использовать Котс, ученик Ньютона. Лейбниц тоже использовал эту функцию, которую называл модулем и обозначал: mol. Общепринятое обозначение абсолютной величины введено в 1841 году Вейерштрассом. Для комплексных чисел это понятие ввели Коши и Арган в начале XIX века.

В языках программирования

[править | править код]

Поскольку эта функция вычисляется достаточно просто (а именно с помощью сравнений и присваиваний), то обычно она входит в стандартный список функций во все языки программирования. Например, в Pascal есть функция abs(x), а в C fabs(x) для вещественного типа. В программе Wolfram Mathematica: Abs[x].

Понятие абсолютной величины можно ввести в произвольном упорядоченном кольце или упорядоченном поле, и свойства её будут аналогичны приведённым выше.

Обобщением понятия модуля можно считать норму элемента многомерного векторного пространства, обозначаемую . Норма вектора в евклидовом пространстве иногда тоже называется модулем. По аналогии с модулем разности чисел, норма разности двух векторов является мерой близости между ними. В отличие от модуля числа, норма вектора может определяться различными способами, однако в случае одномерного пространства норма вектора пропорциональна (часто и равна) модулю его единственной координаты.

Примечания

[править | править код]
  1. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1. Архивировано 13 ноября 2013 года.
  2. Определение медианы как числа (точки), минимизирующего сумму расстояний до некоторого набора.