Принцип д’Аламбера — Лагранжа
Принцип д’Аламбера — Лагранжа — один из основных принципов механики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы присоединить силы инерции, то при движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ активных сил и элементарных работ сил инерции на любом возможном (виртуальном) перемещении системы равна нулю[1].
Принцип д’Аламбера-Лагранжа является объединением принципа возможных перемещений статики и принципа д’Аламбера динамики. Его использование позволяет изучать движения механических систем с идеальными связями, не вводя в уравнения движения неизвестные реакции связей.
Вывод
[править | править код]Пусть механическая система с голономными, удерживающими, идеальными связями представлена материальными точками с массами [2]. Пусть к каждой материальной точке приложены активные силы с равнодействующей и пассивные силы с равнодействующей . Согласно второму закону Ньютона:
или
- (1)
Зафиксируем теперь некоторый момент времени и сообщим механической системе виртуальное (возможное) перемещение . Умножим скалярно каждое уравнение (1) на соответствующее и суммируем все уравнения:
Сумма работ идеальных связей на любом виртуальном перемещении равна нулю, поэтому:
Это равенство называется общим уравнением механики.
Во всякой механической системе с идеальными удерживающими связями в каждый момент времени движения на любом виртуальном перемещении сумма механических работ, производимых активными силами и силами инерции, всегда равна нулю.
См. также
[править | править код]Примечания
[править | править код]- ↑ Тарг С. М. Д’Аламбера — Лагранжа принцип // Физика. Энциклопедия / под ред. А. М. Прохорова — М., Большая Российская энциклопедия, 2003. — ISBN 5-85270-306-0. — с. 142
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М., Высшая школа, 1999. — ISBN 5-06-003587-5. — с. 218