EPB41L1
edit |
Eritrocitni membranski protein 1 sličan bandu 4.1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Identifikatori | |||||||||||
Simboli | EPB41L1; 4.1N; MRD11 | ||||||||||
Vanjski ID | OMIM: 602879 HomoloGene: 8126 GeneCards: EPB41L1 Gene | ||||||||||
| |||||||||||
Pregled RNK izražavanja | |||||||||||
podaci | |||||||||||
Ortolozi | |||||||||||
Vrsta | Čovek | Miš | |||||||||
Entrez | 2036 | n/a | |||||||||
Ensembl | ENSG00000088367 | n/a | |||||||||
UniProt | Q9H4G0 | n/a | |||||||||
RefSeq (mRNA) | NM_012156.2 | n/a | |||||||||
RefSeq (protein) | NP_036288.2 | n/a | |||||||||
Lokacija (UCSC) | Chr 20: 34.68 - 34.82 Mb | n/a | |||||||||
PubMed pretraga | [1] | n/a |
EPB41L1 (protein 1 sličan bandu 4.1) je protein koji je kod ljudi kodiran EPB41L1 genom.[1][2][3]
Eritrocitni membranski protein band 4.1 (EPB41) je multifunkcioni protein koji posreduje interakcije između eritrocitnog citoskeletona i okružujuće ćelijske membrane. Ovaj protein je visoko zastupljen u neuronima. On je strukturno sličan sa EPB41. EPB41L1 se vezuje za i stabilizuje D2 i D3 dopaminske receptore u neuronskoj ćelijskoj membrani. Višestruke transkriptne varijante kodiraju različite izoforme. Do sada su dve izoforme ispitane.[3]
Poznato je da EPB41L1 formira interakcije sa ITPR1,[4] dopaminskim receptorom D2,[5] dopaminskim receptorom D3,[5] CENTG1[6] i proteinom 1 nukleusnog mitotičkog aparata.[7]
- ↑ Kim AC, Van Huffel C, Lutchman M, Chishti AH (Jun 1998). „Radiation hybrid mapping of EPB41L1, a novel protein 4.1 homologue, to human chromosome 20q11.2-q12”. Genomics 49 (1): 165–6. DOI:10.1006/geno.1998.5212. PMID 9570967.
- ↑ Peters LL, Weier HU, Walensky LD, Snyder SH, Parra M, Mohandas N, Conboy JG (Jan 1999). „Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human”. Genomics 54 (2): 348–50. DOI:10.1006/geno.1998.5537. PMID 9828140.
- ↑ 3,0 3,1 „Entrez Gene: EPB41L1 erythrocyte membrane protein band 4.1-like 1”.
- ↑ Maximov, Anton; Tang Tie Shan, Bezprozvanny Ilya (February 2003). „Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons”. Mol. Cell. Neurosci. (United States) 22 (2): 271–83. DOI:10.1016/S1044-7431(02)00027-1. ISSN 1044-7431. PMID 12676536.
- ↑ 5,0 5,1 Binda, Alicia V; Kabbani Nadine, Lin Ridwan, Levenson Robert (September 2002). „D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N”. Mol. Pharmacol. (United States) 62 (3): 507–13. DOI:10.1124/mol.62.3.507. ISSN 0026-895X. PMID 12181426.
- ↑ Ye, K; Hurt K J, Wu F Y, Fang M, Luo H R, Hong J J, Blackshaw S, Ferris C D, Snyder S H (December 2000). „Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N”. Cell (UNITED STATES) 103 (6): 919–30. DOI:10.1016/S0092-8674(00)00195-1. ISSN 0092-8674. PMID 11136977.
- ↑ Ye, K; Compton D A, Lai M M, Walensky L D, Snyder S H (December 1999). „Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor”. J. Neurosci. (UNITED STATES) 19 (24): 10747–56. PMID 10594058.
{{PBB_Further_reading | citations =
- Calinisan V, Gravem D, Chen RP, et al. (2006). „New insights into potential functions for the protein 4.1 superfamily of proteins in kidney epithelium.”. Front. Biosci. 11: 1646–66. DOI:10.2741/1911. PMID 16368544.
- Nagase T, Ishikawa K, Nakajima D, et al. (1997). „Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.”. DNA Res. 4 (2): 141–50. DOI:10.1093/dnares/4.2.141. PMID 9205841.
- Walensky LD, Blackshaw S, Liao D, et al. (1999). „A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1.”. J. Neurosci. 19 (15): 6457–67. PMID 10414974.
- Ye K, Compton DA, Lai MM, et al. (2000). „Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor.”. J. Neurosci. 19 (24): 10747–56. PMID 10594058.
- Shen L, Liang F, Walensky LD, Huganir RL (2001). „Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association.”. J. Neurosci. 20 (21): 7932–40. PMID 11050113.
- Ye K, Hurt KJ, Wu FY, et al. (2001). „Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N.”. Cell 103 (6): 919–30. DOI:10.1016/S0092-8674(00)00195-1. PMID 11136977.
- Deloukas P, Matthews LH, Ashurst J, et al. (2002). „The DNA sequence and comparative analysis of human chromosome 20.”. Nature 414 (6866): 865–71. DOI:10.1038/414865a. PMID 11780052.
- Binda AV, Kabbani N, Lin R, Levenson R (2002). „D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N.”. Mol. Pharmacol. 62 (3): 507–13. DOI:10.1124/mol.62.3.507. PMID 12181426.
- Zhang S, Mizutani A, Hisatsune C, et al. (2003). „Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells.”. J. Biol. Chem. 278 (6): 4048–56. DOI:10.1074/jbc.M209960200. PMC 2366074. PMID 12444087.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). „Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. DOI:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Coleman SK, Cai C, Mottershead DG, et al. (2003). „Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein.”. J. Neurosci. 23 (3): 798–806. PMID 12574408.
- Maximov A, Tang TS, Bezprozvanny I (2003). „Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons.”. Mol. Cell. Neurosci. 22 (2): 271–83. DOI:10.1016/S1044-7431(02)00027-1. PMID 12676536.
- Nagaraja GM, Kandpal RP (2004). „Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins.”. Biochem. Biophys. Res. Commun. 313 (3): 654–65. DOI:10.1016/j.bbrc.2003.12.001. PMID 14697242.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). „Complete sequencing and characterization of 21,243 full-length human cDNAs.”. Nat. Genet. 36 (1): 40–5. DOI:10.1038/ng1285. PMID 14702039.
- Ballif BA, Villén J, Beausoleil SA, et al. (2005). „Phosphoproteomic analysis of the developing mouse brain.”. Mol. Cell Proteomics 3 (11): 1093–101. DOI:10.1074/mcp.M400085-MCP200. PMID 15345747.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). „The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”. Genome Res. 14 (10B): 2121–7. DOI:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Beausoleil SA, Villén J, Gerber SA, et al. (2006). „A probability-based approach for high-throughput protein phosphorylation analysis and site localization.”. Nat. Biotechnol. 24 (10): 1285–92. DOI:10.1038/nbt1240. PMID 16964243.