Pojdi na vsebino

Besslova funkcija

Iz Wikipedije, proste enciklopedije
Redakcija dne 20:00, 22. junij 2019 od Yerpo (pogovor | prispevki) (disambig., drugi drobni popravki AWB)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)

Besslove funkcije [béslove fúnkcije] (pogosteje Bésselove f.) so družina transcendentnih funkcij, ki rešijo Besslovo diferencialno enačbo:

Besslove funkcije je prvi definiral švicarski matematik Daniel Bernoulli in jih poimenoval po Friedrichu Wilhelmu Besslu.

Uporabnost Besslovih funkcij

[uredi | uredi kodo]

Besslova enačba se pojavi pri analitičnem reševanju nekaterih problemov matematične fizike v valjasti ali krogelni geometriji, kot na primer:

Besslove funkcije imajo koristne lastnosti tudi pri reševanju nekaterih drugih problemov uporabne matematike.

Besslove funkcije in

[uredi | uredi kodo]
Graf Besslove funkcije prve vrste za red ν = 0,1,2.

Besslova funkcija prve vrste reda se izračuna kot:

Če ni celo število, funkciji in nista linearno odvisni, zato ima v tem primeru splošna rešitev Besslove diferencialne enačbe obliko:

Kjer sta in odvisna od začetnih pogojev.

Če je celo število, se izkaže, da sta funkciji in linearno odvisni, saj velja:

Graf Besslove funkcije druge vrste za red ν = 0,1,2.

V tem primeru potrebujemo Besslovo funkcijo druge vrste reda , ponekod imenovano tudi Neumannova funkcija ali Webrova funkcija:

V tem primeru je splošna rešitev Besslove diferencialne enačbe za katerikoli realni enaka:

Zunanje povezave

[uredi | uredi kodo]
  • Weisstein, Eric Wolfgang. »Bessel Function of the First Kind«. MathWorld.