Датотека:Gd Heat Capacity DE.svg
Садржај странице није подржан на другим језицима
Изглед
Величина PNG прегледа за ову SVG датотеку је 720 × 540 пиксела. 5 других резолуција: 320 × 240 пиксела | 640 × 480 пиксела | 1.024 × 768 пиксела | 1.280 × 960 пиксела | 2.560 × 1.920 пиксела.
Оригинална датотека (SVG датотека, номинално 720 × 540 пиксела, величина: 17 kB)
Ово је датотека са Викимедијине оставе. Информације са њене странице са описом приказане су испод. Викимедијина остава је складиште слободно лиценциралних мултимедијалних датотека. И Ви можете да помогнете. |
Опис
ОписGd Heat Capacity DE.svg |
English: the heat capacity of gadolinium as a function of temperature |
Датум | |
Извор | Сопствено дело |
Аутор | Martin Teichmann |
SVG genesis InfoField | This W3C-invalid plot was created with Matplotlib. |
Изворни код InfoField | Python code#encoding: utf8
from __future__ import division
from numpy import array, atleast_1d, pi, exp, vectorize, sqrt, log
from scipy.optimize import leastsq
from scipy import interpolate
class Adeb3(object):
left = -1
right = 1
coefficients = [
2.707737068327440945,
0.340068135211091751,
-0.12945150184440869e-01,
0.7963755380173816e-03,
-0.546360009590824e-04,
0.39243019598805e-05,
-0.2894032823539e-06,
0.217317613962e-07,
-0.16542099950e-08,
0.1272796189e-09,
-0.987963460e-11,
0.7725074e-12,
-0.607797e-13,
0.48076e-14,
-0.3820e-15,
0.305e-16,
-0.24e-17]
def cheb_eval(cs, x):
d = 0
dd = 0
y = (2 * x - cs.right - cs.left) / (cs.right - cs.left)
y2 = 2 * y
for c in cs.coefficients[:0:-1]:
d, dd = y2 * d - dd + c, d
return y * d - dd + 0.5 * cs.coefficients[0]
@vectorize
def debye3(x):
val_infinity = 19.4818182068004875
xcut = 7.0839641853226408e+02
if x < 0:
raise ValueError("x must be > 0!")
elif x < 2.0 * sqrt(2) * 1.5e-8:
return 1 - (3 / 8) * x + x ** 2 / 20
elif x <= 4:
t = x ** 2 / 8 - 1
c = cheb_eval(Adeb3, t)
return c - 0.375 * x
elif x < 36 - log(2):
nexp = int(xcut / x)
ex = exp(-x)
sum = 0
for rk in range(nexp, 0, -1):
xk_inv = 1 / (rk * x)
sum *= ex
sum += (((6 * xk_inv + 6) * xk_inv + 3) * xk_inv + 1) / rk
return val_infinity / x ** 3 - 3 * sum * ex
elif x < xcut:
sum = ((x + 3) * x + 6) * x + 6
return (val_infinity - 3 * sum * exp(-x)) / x ** 3
else:
return val_infinity / x ** 3
def capacity(x):
return 4 * debye3(x) - 3 * x / (exp(x) - 1)
#wikipedia
m = 157.25 # g / mol
density = 7.886e6 # g / m^3
# following Tsang et al., PRB 31, 235 (1985)
#td = 163.4 # K
#gamma = 6.38e-3 # J / mol K^2
# Lounasmaa et al., PR 150, 399 (1966) (= Tb)
#gamma = 10.5e-3 # J / mol K^2
# Hill et al., J Phys F 17, 1867 (1987)
gamma = 4.48e-3 # J / mol K^2
td = 169 # K
# CRC Handbook, 87 ed
# http://ingemeca.org/docs/Genie_chimique/Handbook%20of%20chemistry%20and%20physics/Section%2004/04_03_86.pdf
gamma = 4.48e-3 # J / mol K^2
td = 169 # K
lamda = 0.30
# from wikipedia
# very large error bars since temperature dependent
kappa = 11 # W / m K
# Palik (ed.), Handbook of Optical Constants of Solids, Academic Press, 1998
# very large error bars
n = 2.5+2.5j
# from wikipedia, Dulong-Petit
gasR = 8.314472 # J / mol K
# from Lewis, PRB 1, 4368 (1970)
tc = 291 # K
alpha = -0.09
alphap = -0.32
cal = 4.184 # J
# from Griffel et al., PR 93, 657 (1954)
# data deleted for copyright reasons
#data = [ ]
#data = array(data)
#t = data[:, 0]
#
#rdata = data[:, 1] * cal - (gamma * t + capacity(td / t) * 3 * gasR)
#
#spline1 = interpolate.splrep(t[t < tc], rdata[t < tc], s=0.01)
#spline2 = interpolate.splrep(t[t >= tc], rdata[t >= tc], s=0.01)
# the resulte of the above spline interpolation:
spline1 = (array([15., 15., 15., 15., 35., 50., 60., 65., 70.,
80., 85., 105., 120., 155., 175., 190., 210., 225.,
260., 275., 285., 290., 290., 290., 290.]),
array([0.49389679, 1.27420175, 2.77687614, 4.02375527,
4.76956233, 5.22356252, 5.59837477, 5.92009627,
6.49799508, 6.85174211, 7.75186406, 8.48986024,
9.70070657, 10.58583945, 11.7457047, 13.56042647,
16.1996443, 20.93242938, 24.73094546, 28.80272272,
30.5090826, 0., 0., 0., 0.]), 3)
spline2 = (array([ 295., 295., 295., 295., 305., 310., 325., 340., 355.,
355., 355., 355.]),
array([ 13.45959205, 10.78000421, 9.00637154, 7.23686324,
6.11750324, 5.3514927 , 4.38785726, 4.33129557,
0. , 0. , 0. , 0. ]), 3)
def critical(t, alpha, a, b):
return b + a * abs((t - tc) / tc) ** -alpha
left = [-1, 1]
right = [1, 1]
def spincapacity(t): # in J / mol K
t = array(t)
return (t > tc).choose(interpolate.splev(t, spline1),
interpolate.splev(t, spline2))
def electroncapacity(t): # in J / mol K
return gamma * t
def phononcapacity(t): # in J / mol K
return capacity(td / t) * 3 * gasR
if __name__ == "__main__":
from pylab import plot, show, xlabel, ylabel, savefig
from numpy import linspace
tt = linspace(15, 355, 300)
xlabel("Temperatur (K)")
ylabel(u"Wärmekapazität (J / mol)")
plot(tt, spincapacity(tt))
plot(tt, spincapacity(tt) + phononcapacity(tt) + electroncapacity(tt))
tt = linspace(0, 355, 300)
plot(tt, phononcapacity(tt))
plot(tt, electroncapacity(tt))
energy = 4 * pi * n.imag * 1.2 / 780e-7 # mJ / cm^3
energy *= 1e3 # J / m^3
energy *= m / density # J / mol
t = 100 # K
savefig("gadolinium.svg")
show()
|
Лиценцирање
Ја, носилац ауторског права над овим делом, објављујем исто под следећом лиценцом:
Ова датотека је доступна под лиценцом Creative Commons Ауторство-Делити под истим условима 3.0 Unported.
- Дозвољено је:
- да делите – да умножавате, расподељујете и преносите дело
- да прерађујете – да прерадите дело
- Под следећим условима:
- ауторство – Морате да дате одговарајуће заслуге, обезбедите везу ка лиценци и назначите да ли су измене направљене. Можете то урадити на било који разуман манир, али не на начин који предлаже да лиценцатор одобрава вас или ваше коришћење.
- делити под истим условима – Ако измените, преобразите или доградите овај материјал, морате поделити своје доприносе под истом или компатибилном лиценцом као оригинал.
Ставке приказане у овој датотеци
приказује
26. септембар 2011
Историја датотеке
Кликните на датум/време да бисте видели тадашњу верзију датотеке.
Датум/време | Минијатура | Димензије | Корисник | Коментар | |
---|---|---|---|---|---|
тренутна | 10:57, 26. септембар 2011. | 720 × 540 (17 kB) | Tecki |
Употреба датотеке
Следећа страница користи ову датотеку:
Глобална употреба датотеке
Други викији који користе ову датотеку:
- Употреба на bs.wikipedia.org
- Употреба на de.wikipedia.org
Метаподаци
Ова датотека садржи додатне податке, који вероватно долазе од дигиталног фотоапарата или скенера коришћеног за дигитализацију.
Ако је првобитно стање датотеке промењено, могуће је да неки детаљи не описују измењену датотеку у потпуности.
Ширина | 576pt |
---|---|
Висина | 432pt |