You are viewing documentation for Kubernetes version: v1.27
Kubernetes v1.27 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date information, see the latest version.
Specifying a Disruption Budget for your Application
Kubernetes v1.21 [stable]
This page shows how to limit the number of concurrent disruptions that your application experiences, allowing for higher availability while permitting the cluster administrator to manage the clusters nodes.
Before you begin
Your Kubernetes server must be at or later than version v1.21. To check the version, enterkubectl version
.
- You are the owner of an application running on a Kubernetes cluster that requires high availability.
- You should know how to deploy Replicated Stateless Applications and/or Replicated Stateful Applications.
- You should have read about Pod Disruptions.
- You should confirm with your cluster owner or service provider that they respect Pod Disruption Budgets.
Protecting an Application with a PodDisruptionBudget
- Identify what application you want to protect with a PodDisruptionBudget (PDB).
- Think about how your application reacts to disruptions.
- Create a PDB definition as a YAML file.
- Create the PDB object from the YAML file.
Identify an Application to Protect
The most common use case when you want to protect an application specified by one of the built-in Kubernetes controllers:
- Deployment
- ReplicationController
- ReplicaSet
- StatefulSet
In this case, make a note of the controller's .spec.selector
; the same
selector goes into the PDBs .spec.selector
.
From version 1.15 PDBs support custom controllers where the scale subresource is enabled.
You can also use PDBs with pods which are not controlled by one of the above controllers, or arbitrary groups of pods, but there are some restrictions, described in Arbitrary workloads and arbitrary selectors.
Think about how your application reacts to disruptions
Decide how many instances can be down at the same time for a short period due to a voluntary disruption.
- Stateless frontends:
- Concern: don't reduce serving capacity by more than 10%.
- Solution: use PDB with minAvailable 90% for example.
- Concern: don't reduce serving capacity by more than 10%.
- Single-instance Stateful Application:
- Concern: do not terminate this application without talking to me.
- Possible Solution 1: Do not use a PDB and tolerate occasional downtime.
- Possible Solution 2: Set PDB with maxUnavailable=0. Have an understanding (outside of Kubernetes) that the cluster operator needs to consult you before termination. When the cluster operator contacts you, prepare for downtime, and then delete the PDB to indicate readiness for disruption. Recreate afterwards.
- Concern: do not terminate this application without talking to me.
- Multiple-instance Stateful application such as Consul, ZooKeeper, or etcd:
- Concern: Do not reduce number of instances below quorum, otherwise writes fail.
- Possible Solution 1: set maxUnavailable to 1 (works with varying scale of application).
- Possible Solution 2: set minAvailable to quorum-size (e.g. 3 when scale is 5). (Allows more disruptions at once).
- Concern: Do not reduce number of instances below quorum, otherwise writes fail.
- Restartable Batch Job:
- Concern: Job needs to complete in case of voluntary disruption.
- Possible solution: Do not create a PDB. The Job controller will create a replacement pod.
- Concern: Job needs to complete in case of voluntary disruption.
Rounding logic when specifying percentages
Values for minAvailable
or maxUnavailable
can be expressed as integers or as a percentage.
- When you specify an integer, it represents a number of Pods. For instance, if you set
minAvailable
to 10, then 10 Pods must always be available, even during a disruption. - When you specify a percentage by setting the value to a string representation of a
percentage (eg.
"50%"
), it represents a percentage of total Pods. For instance, if you setminAvailable
to"50%"
, then at least 50% of the Pods remain available during a disruption.
When you specify the value as a percentage, it may not map to an exact number of Pods.
For example, if you have 7 Pods and you set minAvailable
to "50%"
, it's not
immediately obvious whether that means 3 Pods or 4 Pods must be available. Kubernetes
rounds up to the nearest integer, so in this case, 4 Pods must be available. When you
specify the value maxUnavailable
as a percentage, Kubernetes rounds up the number of
Pods that may be disrupted. Thereby a disruption can exceed your defined
maxUnavailable
percentage. You can examine the
code
that controls this behavior.
Specifying a PodDisruptionBudget
A PodDisruptionBudget
has three fields:
- A label selector
.spec.selector
to specify the set of pods to which it applies. This field is required. .spec.minAvailable
which is a description of the number of pods from that set that must still be available after the eviction, even in the absence of the evicted pod.minAvailable
can be either an absolute number or a percentage..spec.maxUnavailable
(available in Kubernetes 1.7 and higher) which is a description of the number of pods from that set that can be unavailable after the eviction. It can be either an absolute number or a percentage.
You can specify only one of maxUnavailable
and minAvailable
in a single PodDisruptionBudget
.
maxUnavailable
can only be used to control the eviction of pods
that have an associated controller managing them. In the examples below, "desired replicas"
is the scale
of the controller managing the pods being selected by the
PodDisruptionBudget
.
Example 1: With a minAvailable
of 5, evictions are allowed as long as they leave behind
5 or more healthy pods among those selected by the PodDisruptionBudget's selector
.
Example 2: With a minAvailable
of 30%, evictions are allowed as long as at least 30%
of the number of desired replicas are healthy.
Example 3: With a maxUnavailable
of 5, evictions are allowed as long as there are at most 5
unhealthy replicas among the total number of desired replicas.
Example 4: With a maxUnavailable
of 30%, evictions are allowed as long as the number of
unhealthy replicas does not exceed 30% of the total number of desired replica rounded up to
the nearest integer. If the total number of desired replicas is just one, that single replica
is still allowed for disruption, leading to an effective unavailability of 100%.
In typical usage, a single budget would be used for a collection of pods managed by a controller—for example, the pods in a single ReplicaSet or StatefulSet.
If you set maxUnavailable
to 0% or 0, or you set minAvailable
to 100% or the number of replicas,
you are requiring zero voluntary evictions. When you set zero voluntary evictions for a workload
object such as ReplicaSet, then you cannot successfully drain a Node running one of those Pods.
If you try to drain a Node where an unevictable Pod is running, the drain never completes.
This is permitted as per the semantics of PodDisruptionBudget
.
You can find examples of pod disruption budgets defined below. They match pods with the label
app: zookeeper
.
Example PDB Using minAvailable:
Example PDB Using maxUnavailable:
For example, if the above zk-pdb
object selects the pods of a StatefulSet of size 3, both
specifications have the exact same meaning. The use of maxUnavailable
is recommended as it
automatically responds to changes in the number of replicas of the corresponding controller.
Create the PDB object
You can create or update the PDB object using kubectl.
kubectl apply -f mypdb.yaml
Check the status of the PDB
Use kubectl to check that your PDB is created.
Assuming you don't actually have pods matching app: zookeeper
in your namespace,
then you'll see something like this:
kubectl get poddisruptionbudgets
NAME MIN AVAILABLE MAX UNAVAILABLE ALLOWED DISRUPTIONS AGE
zk-pdb 2 N/A 0 7s
If there are matching pods (say, 3), then you would see something like this:
kubectl get poddisruptionbudgets
NAME MIN AVAILABLE MAX UNAVAILABLE ALLOWED DISRUPTIONS AGE
zk-pdb 2 N/A 1 7s
The non-zero value for ALLOWED DISRUPTIONS
means that the disruption controller has seen the pods,
counted the matching pods, and updated the status of the PDB.
You can get more information about the status of a PDB with this command:
kubectl get poddisruptionbudgets zk-pdb -o yaml
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
annotations:
…
creationTimestamp: "2020-03-04T04:22:56Z"
generation: 1
name: zk-pdb
…
status:
currentHealthy: 3
desiredHealthy: 2
disruptionsAllowed: 1
expectedPods: 3
observedGeneration: 1
Healthiness of a Pod
The current implementation considers healthy pods, as pods that have .status.conditions
item with type="Ready"
and status="True"
.
These pods are tracked via .status.currentHealthy
field in the PDB status.
Unhealthy Pod Eviction Policy
Kubernetes v1.27 [beta]
PDBUnhealthyPodEvictionPolicy
feature gate
on the API server.
PodDisruptionBudget guarding an application ensures that .status.currentHealthy
number of pods
does not fall below the number specified in .status.desiredHealthy
by disallowing eviction of healthy pods.
By using .spec.unhealthyPodEvictionPolicy
, you can also define the criteria when unhealthy pods
should be considered for eviction. The default behavior when no policy is specified corresponds
to the IfHealthyBudget
policy.
Policies:
IfHealthyBudget
- Running pods (
.status.phase="Running"
), but not yet healthy can be evicted only if the guarded application is not disrupted (.status.currentHealthy
is at least equal to.status.desiredHealthy
). -
This policy ensures that running pods of an already disrupted application have the best chance to become healthy. This has negative implications for draining nodes, which can be blocked by misbehaving applications that are guarded by a PDB. More specifically applications with pods in
CrashLoopBackOff
state (due to a bug or misconfiguration), or pods that are just failing to report theReady
condition. AlwaysAllow
- Running pods (
.status.phase="Running"
), but not yet healthy are considered disrupted and can be evicted regardless of whether the criteria in a PDB is met. -
This means prospective running pods of a disrupted application might not get a chance to become healthy. By using this policy, cluster managers can easily evict misbehaving applications that are guarded by a PDB. More specifically applications with pods in
CrashLoopBackOff
state (due to a bug or misconfiguration), or pods that are just failing to report theReady
condition.
Pending
, Succeeded
or Failed
phase are always considered for eviction.
Arbitrary workloads and arbitrary selectors
You can skip this section if you only use PDBs with the built-in
workload resources (Deployment, ReplicaSet, StatefulSet and ReplicationController)
or with custom resources
that implement a scale
subresource,
and where the PDB selector exactly matches the selector of the Pod's owning resource.
You can use a PDB with pods controlled by another resource, by an "operator", or bare pods, but with these restrictions:
- only
.spec.minAvailable
can be used, not.spec.maxUnavailable
. - only an integer value can be used with
.spec.minAvailable
, not a percentage.
It is not possible to use other availability configurations, because Kubernetes cannot derive a total number of pods without a supported owning resource.
You can use a selector which selects a subset or superset of the pods belonging to a workload resource. The eviction API will disallow eviction of any pod covered by multiple PDBs, so most users will want to avoid overlapping selectors. One reasonable use of overlapping PDBs is when pods are being transitioned from one PDB to another.