Physicochemical Properties of Guava Snacks as Affected by Drying Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Drying
3.2. Physicochemical Properties
3.3. Nutritional Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Guedes, A.; Perrone, D.; Monteiro, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Dalla Nora, C.; Müller, C.D.R.; de Bona, G.S.; De Oliveira Rios, A.; Hertz, P.F.; Jablonkski, A.; de Jong, E.V.; Flôres, S.H. Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabina) and guabiju (Myrcianthespungens). J. Food Compos. Anal. 2014, 34, 18–25. [Google Scholar] [CrossRef]
- Global Industry Analysts, Inc. Shift to Healthier Food Habits Drives the Global Dried Fruits and Edible Nuts Market. 2014. Available online: http://www.prweb.com/releases/dried_fruits_and_nuts/food_industry/prweb11723691.htm (accessed on 15 March 2017).
- Abonyi, B.; Feng, H.; Tang, J.; Edwards, C.; Chew, B.; Mattinso, D.; Fellman, J. Quality retention in strawberry and carrot purees dried with Refractance WindowTM system. J. Food Sci. 2002, 67, 1051–1056. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.; Fontana, A.; Schmidt, S.; Labuza, T. Water Activity in Foods: Fundamentals and Applications; IFT Press – Blackwell Publishing: Ames, IA, USA, 2007. [Google Scholar]
- Patil, V.; Kumar, A.; Pratap, R. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol. 2014, 253, 230–236. [Google Scholar] [CrossRef]
- Kong, K.; Ismail, A.; Tam, C.; Rajab, N. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT Food Sci. Technol. 2010, 43, 729–735. [Google Scholar] [CrossRef]
- Cabral, R.; Telis-Romero, J.; Telis, V.; Gabas, A.; Finzer, J. Effect of apparent viscosity on fluidized bed drying process parameters of guava pulp. J. Food Eng. 2007, 80, 1096–1106. [Google Scholar] [CrossRef]
- Hawlader, M.N.; Perera, C.; Tian, M.; Yeo, K. Drying of guava and papaya: Impact of different drying methods. Dry. Technol. 2006, 24, 77–87. [Google Scholar] [CrossRef]
- Marques, L.; Silveira, A.; Freire, J. Freeze-drying characteristics of tropical fruits. Dry. Technol. 2006, 24, 457–463. [Google Scholar] [CrossRef]
- Cichella Frabetti, A.C.; Durigon, A.; Laurindo, J.B. Effect of process variables on the drying of guava pulp by cast-tape drying. LWT Food Sci. Technol. 2018, 96, 620–626. [Google Scholar] [CrossRef]
- Sanjinez-Argandoña, E.; Cunha, R.; Menegalli, F.; Hubinger, M. Evaluation of total carotenoids and ascorbic acid in osmotic pretreated guavas during convective drying. Ital. J. Food Sci. 2005, 17, 305–314. [Google Scholar]
- Zhang, Z.; Wei, Q.; Nie, M.; Jiang, N.; Liu, C.; Liu, C.; Li, D.; Xu, L. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT Food Sci. Technol. 2018, 96, 357–363. [Google Scholar] [CrossRef]
- Garcia, L.; Welti, J.; Vergara, F.; Bermúdez, D. Freeze-drying: The Basic Process. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Oxford, UK, 2016; pp. 104–109. [Google Scholar]
- Nindo, C.; Sun, T.; Wang, S.; Tang, J.; Powers, J. Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis L.). LWT Food Sci. Technol. 2003, 36, 507–517. [Google Scholar] [CrossRef]
- Raghavi, L.M.; Moses, J.A.; Anandharamakrishnan, C. Refractance window drying of foods: A review. J. Food Eng. 2018, 222, 267–275. [Google Scholar] [CrossRef]
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Ortiz-Jerez, M.J.; Gulati, T.; Datta, A.K.; Ochoa-Martínez, C.I. Quantitative understanding of Refractance WindowTM drying. Food Bioprod. Process. 2015, 95, 237–253. [Google Scholar] [CrossRef]
- Nindo, C.I.; Tang, J.; Powers, J.R.; Bolland, K. Energy consumption during Refractance Window evaporation of selected berry juices. Int. J. Energy Res. 2004, 28, 1089–1100. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Topuz, A.; Feng, H.; Kushand, M. The effect of drying method and storage on color characteristics of paprika. LWT Food Sci. Technol. 2009, 42, 1667–1673. [Google Scholar] [CrossRef]
- Ochoa-Martínez, C.I.; Quintero, P.T.; Ayala, A.A.; Ortiz, M.J. Drying characteristics of mango slices using the Refractance WindowTM technique. J. Food Eng. 2012, 109, 69–75. [Google Scholar] [CrossRef]
- Kaur, G.; Saha, S.; Kumari, K.; Datta, A.K. Mango pulp drying by refractance window method. Agric. Eng. Int. CIGR J. 2017, 19, 145–151. [Google Scholar]
- Caparino, O.A.; Nindo, C.I.; Tang, J.; Sablani, S.S.; Chew, B.P.; Mathison, B.D.; Powers, J.R. Physical and chemical stability of Refractance Window®–dried mango (Philippine ‘Carabao’ var.) powder during storage. Dry. Techol. 2017, 35, 25–37. [Google Scholar] [CrossRef]
- Baeghbali, V.; Niakousari, M.; Farahnaky, A. Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT Food Sci. Technol. 2016, 66, 34–40. [Google Scholar] [CrossRef]
- Celli, G.B.; Khattab, R.; Ghanem, A.; Brooks, M.S.L. Refractance WindowTM drying of haskap berry—Preliminary results on anthocyanin retention and physicochemical properties. Food Chem. 2016, 194, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Jaques, A.; Pinto, M.; Fardella, M.; Valencia, P.; Núñez, H.; Simpson, R. Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance windowTM: Effect on diffusion behavior, texture, and color changes. Innov. Food Sci. Emerg. Technol. 2019, 52, 8–16. [Google Scholar] [CrossRef]
- Jafari, S.; Azizi, D.; Mirzaei, H.; Dehnad, D. Comparing quality characteristics of oven-dried and refractance window-dried kiwifruits. J. Food Process. Preserv. 2016, 40, 362–372. [Google Scholar] [CrossRef]
- Ocoró Zamora, M.U.; Ayala-Aponte, A. Influence of thickness on the drying of papaya puree (Carica papaya L.) through refractance windowTM technology. Dyna Rev. Fac. Nac. Minas 2014, 80, 147–154. [Google Scholar]
- Castoldi, M.; Zotarelli, M.; Durigon, A.; Carciofi, B.; Laurindo, J. Production of tomato powder by refractance window drying. Dry. Technol. 2015, 33, 1463–1473. [Google Scholar] [CrossRef]
- AOAC method 20.013. Official Methods of Analysis, 13th ed.; Association of the Official Analytical Chemists: Washington, DC, USA, 1980. [Google Scholar]
- Jaramillo, A.M.; Londoño, L.F.; Orozco, J.C.; Patiño, G.; Belalcazar, J.; Davrieux, F.; Talsmal, E.F. A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLoS ONE 2018, 13, e0209702. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.H.; Ding, Y.; Xiao, H.W.; Sablani, S.S.; Nie, Y.; Tang, X.M. Changes in the vitamin C content of mango with water state and ice crystals under state/phase transitions during frozen storage. J. Food Eng. 2018, 222, 49–53. [Google Scholar] [CrossRef]
- Da Silva Oliveira, D.; Lemos Lobato, A.; Machado Rocha Ribeiro, S.; Campos Santana, A.M.; Paes Chaves, J.B.; Pinheiro-Sant’Ana, H.M. Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. J. Agric. Food Chem. 2010, 58, 6166–6172. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze drying of high value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Mastrocola, D.; Lerici, C. Colorimetric measurements of enzymatic and non-enzymatic browning in apples purees. Ital. J. Food Sci. 1991, 3, 219–229. [Google Scholar]
- Krokida, M.; Maroulis, Z. Structural properties of dehydrated products during rehydration. Int. J. Food Sci. Technol. 2001, 36, 529–538. [Google Scholar] [CrossRef]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Levi, G.; Karel, M. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 1995, 28, 145–151. [Google Scholar] [CrossRef]
- Achanta, S.; Okos, M. Quality changes during drying of food polymers. Dry. Technol. Agric. Food Sci. 2000, 2, 133–147. [Google Scholar]
- McCook-Russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-Forbes, C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem. 2012, 134, 1069–1073. [Google Scholar] [CrossRef]
- Nwaichi, E.O.; Chuku, L.C.; Oyibo, N.J. Profile of Ascorbic Acid, Beta-Carotene and Lycopene in Guava, Tomatoes, Honey and Red Wine. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 39–43. [Google Scholar]
- Shi, J.; Dai, Y.; Kakuda, Y.; Mittal, G.; Xue, S.J. Effect of heating and exposure to light on the stability of lycopene in tomato pureé. Food Control 2008, 19, 514–520. [Google Scholar] [CrossRef]
- Lim, Y.; Lim, T.; Tee, J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
Method | Time (Min) | Aw | Color | ΔV (%) | ε (%) | |||
---|---|---|---|---|---|---|---|---|
ΔL* | Δa* | Δb* | ΔE* | |||||
CD | 240 a | 0.421 a | 5.39a | 3.54 a | 12.89 a | 18.78 a | 81.34 a | 5.89 a |
FD | 107 b | 0.420 a | 21.57b | −1.67 b | 1.49 b | 24.40 b | 22.75 b | 73.41 b |
RW | 76 c | 0.431 a | 8.75c | 2.74 c | 11.55 a | 8.46 c | 42.31 c | 19.00 c |
Sample | Dry Matter | Beta-Carotene | Lycopene | Total Carotene (450 nm) | |||
---|---|---|---|---|---|---|---|
% | µg/g (db) | SD | µg/g (db) | SD | µg/g (db) | SD | |
Fresh | 11.95 | 8.45 a | 0.30 | 86.73 a | 5.01 | 95.24 a | 4.64 |
CD | 88.10 | 8.67 a | 0.65 | 61.83 b | 5.86 | 73.14 b | 6.75 |
FD | 89.50 | 10.67 b | 0.50 | 52.89 c | 1.44 | 67.67 b | 2.48 |
RW | 86.95 | 8.09 a | 0.79 | 61.08 b | 1.99 | 72.04 b | 2.53 |
Vitamin C Content (mg/100 g Dry Sample) | Loss of Vitamin C (%) | |
---|---|---|
Fresh | 664.21 ± 1.0 | |
CD | 51.17 ± 0.80 | 92.30 ± 0.12 a |
FD | 251.55 ± 0.16 | 62.13 ± 0.02 b |
RW | 202.15 ± 1.42 | 69.57 ± 0.21 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiton-Ramírez, Y.M.; Ayala-Aponte, A.; Ochoa-Martínez, C.I. Physicochemical Properties of Guava Snacks as Affected by Drying Technology. Processes 2020, 8, 106. https://doi.org/10.3390/pr8010106
Leiton-Ramírez YM, Ayala-Aponte A, Ochoa-Martínez CI. Physicochemical Properties of Guava Snacks as Affected by Drying Technology. Processes. 2020; 8(1):106. https://doi.org/10.3390/pr8010106
Chicago/Turabian StyleLeiton-Ramírez, Yuri M., Alfredo Ayala-Aponte, and Claudia I. Ochoa-Martínez. 2020. "Physicochemical Properties of Guava Snacks as Affected by Drying Technology" Processes 8, no. 1: 106. https://doi.org/10.3390/pr8010106