
Citation: You, B.; Zhong, G.; Chen,

C.; Li, J.; Ma, E. A Simultaneous

Localization and Mapping System

Using the Iterative Error State

Kalman Filter Judgment Algorithm

for Global Navigation Satellite

System. Sensors 2023, 23, 6000.

https://doi.org/10.3390/s23136000

Academic Editor: Sameh Nassar

Received: 14 May 2023

Revised: 15 June 2023

Accepted: 26 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Simultaneous Localization and Mapping System Using the
Iterative Error State Kalman Filter Judgment Algorithm for
Global Navigation Satellite System
Bo You 1,2, Guangjin Zhong 1, Chen Chen 1,2,*, Jiayu Li 1,2 and Ersi Ma 1

1 Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University
of Science and Technology, Harbin 150080, China; youbo@hrbust.edu.cn (B.Y.);
2120510126@stu.hrbust.edu.cn (G.Z.); lijiayu@hrbust.edu.cn (J.L.); maersi97@163.com (E.M.)

2 Key Laboratory of Intelligent Technology for Cutting and Manufacturing Ministry of Education,
Harbin University of Science and Technology, Harbin 150080, China

* Correspondence: danny_cc@hrbust.edu.cn

Abstract: Outdoor autonomous mobile robots heavily rely on GPS data for localization. However,
GPS data can be erroneous and signals can be interrupted in highly urbanized areas or areas with
incomplete satellite coverage, leading to localization deviations. In this paper, we propose a SLAM
(Simultaneous Localization and Mapping) system that combines the IESKF (Iterated Extended
Kalman Filter) and a factor graph to address these issues. We perform IESKF filtering on LiDAR
and inertial measurement unit (IMU) data at the front-end to achieve a more accurate estimation
of local pose and incorporate the resulting laser inertial odometry into the back-end factor graph.
Furthermore, we introduce a GPS signal filtering method based on GPS state and confidence to
ensure that abnormal GPS data is not used in the back-end processing. In the back-end factor
graph, we incorporate loop closure factors, IMU preintegration factors, and processed GPS factors.
We conducted comparative experiments using the publicly available KITTI dataset and our own
experimental platform to compare the proposed SLAM system with two commonly used SLAM
systems: the filter-based SLAM system (FAST-LIO) and the graph optimization-based SLAM system
(LIO-SAM). The experimental results demonstrate that the proposed SLAM system outperforms the
other systems in terms of localization accuracy, especially in cases of GPS signal interruption.

Keywords: autonomous mobile robots; Global Positioning System (GPS); LiDAR; inertial measurement
unit (IMU); Iterative Error State Kalman Filter (IESKF); Simultaneous Localization and Mapping (SLAM)

1. Introduction

With the continuous development of outdoor mobile robots, research focuses mainly
on two directions: autonomous mobile robots and teleoperated mobile robots [1]. In
the field of autonomous mobile robots, relying on a single sensor is no longer sufficient
to meet the accuracy and robustness requirements of localization and mapping systems.
The integration of multiple sensors and the fusion of their data are core technologies for
achieving high-precision positioning and navigation in autonomous robots [2]. Among the
sensors commonly used in outdoor scenarios, the GPS global navigation satellite system
(GPS GNSS) and GNSS/INS (Inertial Navigation System) are widely utilized. Generally,
GPS can provide centimeter-level positioning. However, due to the presence of urban
high-rise buildings obstructing the surrounding area, GPS signals often result in inaccurate
positioning [3]. Consequently, the upper computer may provide code differences or single-
point positioning instead of fixed solutions. Therefore, it is common practice to either resort
to teleoperation for remote control [4] or incorporate various types of sensors such as IMU,
LiDAR, and cameras to assist with positioning.

Sensors 2023, 23, 6000. https://doi.org/10.3390/s23136000 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23136000
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136000?type=check_update&version=1

Sensors 2023, 23, 6000 2 of 18

Recently, numerous solutions have been proposed to address the localization problem
in autonomous mobile robots and unmanned vehicles. One of the most widely adopted
approaches is the Extended Kalman Filter [5], which combines GPS and IMU data fusion to
estimate the localization position. However, this solution heavily relies on GPS data, and
the unavailability of GPS signals can introduce significant errors in the localization results.

To overcome this challenge, computer vision and LiDAR based Simultaneous Local-
ization and Mapping techniques are extensively utilized for state estimation in mobile
robots. Compared to cameras, LiDAR can directly capture 3D structural information within
a specific radius and is less sensitive to lighting conditions. Therefore, laser-based SLAM
enhances system robustness and localization accuracy compared to vision-based SLAM.
However, due to its dependence on the surrounding environment, LiDAR can experience
drift during fast motion, leading to loss of robot positioning. Researchers addressing this
issue commonly employ filtering and graph optimization methods to fuse GPS, LiDAR,
and IMU data.

Gao [6] employed an Extended Kalman Filter (EKF) to estimate the positional atti-
tude by loosely coupling GPS and LiDAR, periodically correcting the IMU. Shamsudin [7]
utilized a Rao-Blackwellized Particle Filter (RBPF) to integrate GPS and LiDAR data for
detecting consistency in petrochemical enterprise maps and constructing maps using GPS
and LiDAR data in Fast-SLAM. Abdelaziz [8] implemented SLAM based on a loosely cou-
pled EKF, INS, and LiDAR, matching relative poses of 3D probability maps. The proposed
method was tested on the KITTI dataset to validate its robustness. Aboutaleb [9] utilized the
EKF with LiDAR data, GNSS, and simplified 3D inertial sensors, employing LO to constrain
system positioning drift. LIOM [10] utilized a CNN segmentation network to remove dy-
namic objects, fusing LiDAR and IMU data using ESKF, and generating a static global map
through scan matching. LINS [11] was the first method to employ the Iterated Error State
Kalman Filter (IESKF) for tightly-coupled LiDAR and IMU-based robot motion estimation.
It recursively corrected the robot’s estimated pose using LiDAR-extracted features, prevent-
ing filter divergence during long-term operation while maintaining computational speed.
FAST-LIO [12] fused LiDAR point cloud features with IMU data using IESKF, and pro-
posed a dimension-dependent Kalman gain formulation to reduce computational intensity
resulting from laser point cloud features. FAST-LIO2 [13] also utilized IESKF and improved
positioning by incorporating the original LiDAR point cloud information into the map,
enhancing accuracy by observing subtle environmental features. The system employed
an incremental K-D tree (IKD tree) data structure for incremental updates and dynamic
point cloud smoothing, reducing computational requirements and increasing real-time
performance. Li [14] proposed a bilateral haptic teleoperation method to enhance robot
adaptability. Faster-LIO [15] replaced the IKD tree with an incremental voxel-based point
cloud data structure (iVox) that supports incremental insertion and parallel approximation
queries, resulting in an efficient and robust LiDAR inertial odometry (LIO) framework.

Another approach to address the localization problem is to utilize graph optimiza-
tion [16] in the framework of SLAM algorithms. Although the aforementioned filter-based
approach offers significant advantages in terms of localization speed, it falls short of the
localization accuracy achieved by graph optimization.

Kukko [17] collected 3D point cloud data from the surrounding forest environment
using mobile laser scanning and combined the results with GNSS/INS to optimize the
trajectory using a graph optimization method. This approach accurately extracted the forest
map and tree parameters. Hess [18] implemented 2D LiDAR localization and mapping
based on graph optimization, employing the branch-and-bound method for scan calculation.
Chang [19] proposed IMU and ODO pre-integration that incorporates odometry. They
used a 3D probabilistic map at the front end to enhance point cloud matching effectiveness
in feature-limited environments and ensure system trajectory accuracy when GNSS signals
are unavailable. Pierzchała [20] employed a graph-based SLAM system with a 16-line
laser rangefinder, camera, IMU, and GPS to evaluate relative distances between wood
structures and trees. Google Cartographer [21] achieved the fusion of GNSS, 3D-LiDAR,

Sensors 2023, 23, 6000 3 of 18

and IMU data based on graph optimization. This method assumed that the mobile robot
moved at a low, uniform speed and used gravity to solve horizontal attitude, neglecting
modeling of IMU deviation errors. LOAM [22], proposed by Zhang and Singh, extracted
edge and planar features from LiDAR point clouds to reduce computational effort required
for matching. The framework used a high-frequency LiDAR odometry for positional
estimation at the front end and low-frequency map optimization at the back end for
map-building. This resulted in a low-computation, low-drift, and real-time SLAM system.
LOAM consistently performed well in the KITTI [23] dataset. Subsequently, several variants
and updated versions of LOAM were proposed, including LeGO-LOAM [24], R-LOAM [25],
and F-LOAM [26]. These SLAM algorithms primarily focused on improving the processing
time of the LOAM algorithm. For in-vehicle navigation systems, the integration of LiDAR
SLAM with GNSS/INS plays a crucial role in achieving system redundancy and robustness.
Shan’s proposed LIO-SAM [27] utilized point cloud feature extraction with key frames at
the front end to reduce computational effort. It also incorporated IMU pre-integration factor,
GPS factor, and laser odometry factor into the back-end factor map optimization to construct
P3-LOAM [28]. The system combines LiDAR-SLAM with GNSS precise point positioning
and estimates the covariance of laser SLAM based on the error propagation model of the
SVD Jacobi matrix. Additionally, it relies on laser SLAM when the GNSS observations
contain significant errors, eliminating PPP outliers and achieving high-accuracy positioning
in urban canyon environments.

In summary, filter-based methods primarily rely on the first-order Markov assumption,
where the current state depends only on the previous state. While this reduces compu-
tational complexity, it also leads to accumulated drift errors. On the other hand, graph
optimization-based methods store the states of all previous time steps using keyframes
and continuously correct accumulated errors with subsequent observations. However, the
drawback is that it requires more computational resources and memory usage.

To address these challenges, this paper proposes a SLAM system that combines
filtering and graph optimization, aiming to improve localization speed while maintaining
accuracy. The main contributions of this work are as follows:

1. We employ the IESKF algorithm to achieve tight coupling of laser rangefinder and
IMU data, enabling robust pose estimation. This approach effectively integrates sensor
data to improve the accuracy and stability of frontend pose estimation.

2. We introduce a method for filtering out anomalous GPS data based on GPS state
variables and confidence. This method effectively reduces the interference and errors
caused by GPS data, thereby enhancing the localization performance of the SLAM
system under GPS interruption.

3. We utilize factor graph optimization to fuse the frontend-generated odometry, IMU,
GPS, and loop closure detection modules. By constructing a factor graph, the system
can leverage the information from each module during the optimization process,
improving the overall localization accuracy and consistency of the SLAM system.

4. The proposed SLAM framework’s localization accuracy improvements are tested and
evaluated using GPS uninterrupted/interrupted tests on the KITTI dataset and our
own experimental platform.

2. SLAM System

The framework for the GPS, IMU, and LiDAR localization and mapping system
presented in this paper is illustrated in Figure 1. The system comprises several modules,
including data preprocessing, front-end IESKF odometry, back-end factor graph global pose
optimization, GPS data filtering, and loop closure detection. The front-end utilizes a tightly
coupled laser inertial odometry based on IESKF, while the back-end employs a factor graph
(shown in Figure 2) to fuse the front-end LIO factors, IMU predicted measurement factors,
and GPS factors.

Sensors 2023, 23, 6000 4 of 18

 Sensors 2023, 23, x FOR PEER REVIEW 4 of 19

2. SLAM System

The framework for the GPS, IMU, and LiDAR localization and mapping system

presented in this paper is illustrated in Figure 1. The system comprises several modules,

including data preprocessing, front-end IESKF odometry, back-end factor graph global

pose optimization, GPS data filtering, and loop closure detection. The front-end utilizes

a tightly coupled laser inertial odometry based on IESKF, while the back-end employs a

factor graph (shown in Figure 2) to fuse the front-end LIO factors, IMU predicted meas-

urement factors, and GPS factors.

Figure 1. SLAM system framework diagram.

Figure 2. Factor graph model graph.

Factor Graph Optimization is a graph model used for probabilistic inference and

parameter estimation problems. It employs a graph structure composed of nodes and

edges to represent the dependencies and constraints between variables. In this model,

nodes represent the variables to be optimized, while edges represent the constraints. By

constructing such a graph, we can gain a better understanding of the problem’s structure

and utilize optimization algorithms to find the optimal variable configuration. Factor

Graph Optimization provides a flexible and effective approach for addressing complex

inference and estimation problems.

The process of Factor Graph Optimization involves iteratively minimizing an objec-

tive function that measures the difference between the predicted state vector and the ac-

LiDAR

IMU

GPS

Input
Data

Preprocess

Motion

Distortion

Feature

Extraction

Plane Points

IESKF Laser Inertial Odometer

Keyframe

Pose

Sparsification

Edge Points

IESKF

Historical Key

Frame Local

Map Point Cloud

Match

Loop Detection

Factor Graph

Optimization

IMU

Pre-Integration

Pose

Output

Map

GPS Status and

Confidence

Screen

10HZ

200HZ

Use This Frame

GPS Data

Drop This Frame

GPS Data

1HZ

Y

N

10HZ

GPS Data Filter

IMU

Solution

Keyframe

Local Map

Point Cloud

Match

Does it meet the

threshold

...

...

 ...

0L 1L
2L 3L kL 1kL +

... ...
2 iL − 2 iL +iL

0X 1X
2X 3X kX

1kX +

GPS GPS GPS GPS GPS GPS

 IMU

Measurements
Lidar Frame

LiDAR

Keyframe
GPS

GPS

Measurements
... Keyframe

Local Map

IMU Pre-

Integration

Factor

LiDAR Inertial

Odometer Factor

GPS

Factor

Loop Detection

Factor

Scan

Matching

Sliding Window

Keyframe

Pose StatekX
kL

Local Map Local Map Local Map Local Map

Figure 1. SLAM system framework diagram.

 Sensors 2023, 23, x FOR PEER REVIEW 4 of 19

2. SLAM System

The framework for the GPS, IMU, and LiDAR localization and mapping system

presented in this paper is illustrated in Figure 1. The system comprises several modules,

including data preprocessing, front-end IESKF odometry, back-end factor graph global

pose optimization, GPS data filtering, and loop closure detection. The front-end utilizes

a tightly coupled laser inertial odometry based on IESKF, while the back-end employs a

factor graph (shown in Figure 2) to fuse the front-end LIO factors, IMU predicted meas-

urement factors, and GPS factors.

Figure 1. SLAM system framework diagram.

Figure 2. Factor graph model graph.

Factor Graph Optimization is a graph model used for probabilistic inference and

parameter estimation problems. It employs a graph structure composed of nodes and

edges to represent the dependencies and constraints between variables. In this model,

nodes represent the variables to be optimized, while edges represent the constraints. By

constructing such a graph, we can gain a better understanding of the problem’s structure

and utilize optimization algorithms to find the optimal variable configuration. Factor

Graph Optimization provides a flexible and effective approach for addressing complex

inference and estimation problems.

The process of Factor Graph Optimization involves iteratively minimizing an objec-

tive function that measures the difference between the predicted state vector and the ac-

LiDAR

IMU

GPS

Input
Data

Preprocess

Motion

Distortion

Feature

Extraction

Plane Points

IESKF Laser Inertial Odometer

Keyframe

Pose

Sparsification

Edge Points

IESKF

Historical Key

Frame Local

Map Point Cloud

Match

Loop Detection

Factor Graph

Optimization

IMU

Pre-Integration

Pose

Output

Map

GPS Status and

Confidence

Screen

10HZ

200HZ

Use This Frame

GPS Data

Drop This Frame

GPS Data

1HZ

Y

N

10HZ

GPS Data Filter

IMU

Solution

Keyframe

Local Map

Point Cloud

Match

Does it meet the

threshold

...

...

 ...

0L 1L
2L 3L kL 1kL +

... ...
2 iL − 2 iL +iL

0X 1X
2X 3X kX

1kX +

GPS GPS GPS GPS GPS GPS

 IMU

Measurements
Lidar Frame

LiDAR

Keyframe
GPS

GPS

Measurements
... Keyframe

Local Map

IMU Pre-

Integration

Factor

LiDAR Inertial

Odometer Factor

GPS

Factor

Loop Detection

Factor

Scan

Matching

Sliding Window

Keyframe

Pose StatekX
kL

Local Map Local Map Local Map Local Map

Figure 2. Factor graph model graph.

Factor Graph Optimization is a graph model used for probabilistic inference and
parameter estimation problems. It employs a graph structure composed of nodes and
edges to represent the dependencies and constraints between variables. In this model,
nodes represent the variables to be optimized, while edges represent the constraints. By
constructing such a graph, we can gain a better understanding of the problem’s structure
and utilize optimization algorithms to find the optimal variable configuration. Factor
Graph Optimization provides a flexible and effective approach for addressing complex
inference and estimation problems.

The process of Factor Graph Optimization involves iteratively minimizing an objective
function that measures the difference between the predicted state vector and the actual
state vector. In this paper, we employ Incremental Smoothing and Mapping (iSAM2) [29]
using Bayesian tree mapping for the factor graph optimization process. The objective of
this process is to obtain the posterior pose distribution of the robot, given the known sensor
measurement noise, and further model it by iteratively decomposing a set of factors φ(X).
The objective function is described by Equation (1):

arg min
X

f (X) = arg max
X

∏
i

φi(Xi) (1)

where X is the vector to be estimated, and f (X) is the cost function.

Sensors 2023, 23, 6000 5 of 18

Equation (1) can be equivalently expressed as a least squares form, as shown in
Equation (2):

arg min
X

f (X) , arg min
X

∑
i
‖hi(Xi)− zi‖2

Di
(2)

where h(X) is the observation equation, z is the observed value, and D is the covariance
matrix of the observed value.

The modeling of the robot state vector x consists of the rotation matrix R ∈ SO(3),
position p ∈ R3, velocity v, and IMU bias b. A transformation T ∈ SE(3) from the robot
base O to the world frame W is represented as T=[R | p].

x =
[
RT, pT, vT, bT

]T
(3)

2.1. IESKF LiDAR Inertial Odometry Factor

In this paper, we employ an IESKF in the front-end to achieve tight coupling of sensor
data from laser odometry and IMU, aiming to achieve higher algorithm accuracy than
LIO-SAM when GPS is interrupted. Compared to traditional Kalman filter methods, this
approach offers three main advantages [30]. Firstly, it reduces computational complexity
by ignoring second-order products, resulting in a smaller error state. Secondly, it addresses
parameterization and gimbal lock problems by keeping the orientation error state small.
Thirdly, the slow change in the error state allows for error correction at a lower rate than
prediction. The IESKF filtering method used in this paper is based on the approaches
presented in LINS and FAST-LIO, and the algorithm steps are outlined below:

(1) Input the posterior state variables
_
x k and covariance matrix

_
Pk output by the previous

IESKF, the laser point cloud after motion compensation, and the IMU data collected
during the current laser scan.

(2) Predict the state variables and covariance matrix as shown in Equations (4) and (5). In

Equation (4): ⊕ denotes the generalized addition;
^
x i+1 and

^
x k respectively represent

the prior system state variables between the laser frames k-th and k + 1-th when
receiving IMU data at times i and i+ 1; T = ti+1− ti denotes the IMU sampling period;
f (

^
x i, ui, ωi) denotes the system state transition matrix; and ui and ωi represent the

IMU measurement values and their measurement noise at time i. In Equation (5):
^
P i+1

represents the predicted covariance matrix at time i + 1; Fi represents the predicted
state matrix at time i; Bi represents the noise matrix; Q represents the noise covariance

matrix; and
_
Pk represents the posterior covariance matrix of the laser k-th frame.

^
x i+1=

^
x i ⊕ [T · f (

^
x i, ui, ωi)]

^
x 0=

_
x k

(4)

^
P i+1 = Fi

^
P iFT

i + BiQBT
i

^
P0 =

_
Pk

(5)

(3) Setting the initial value of the iteration count α to 1, the state quantity of the iteration

is
^
x

α=0
k+1 =

^
x k+1.

(4) Judge whether the absolute value of the difference between the state quantity obtained
after one iteration and the previous iteration is less than the threshold ∂, represented
by the symbol in Formula (6), where 	 denotes generalized subtraction. If it is less
than the threshold ∂, then repeat the following loop.∥∥∥∥^x α+1

k+1 	
^
x

α

k+1

∥∥∥∥ < ∂ (6)

Sensors 2023, 23, 6000 6 of 18

(a) Calculate the Jacobian matrix Jα
k+1 of the error state vector at δxα

k+1 = 0 point
using Formula (7), where δxk+1 represents the error state vector of k + 1-th

frame. Use Formula (8) to update the prior covariance matrix
^
Pk+1 during the

iteration process.

δxk+1 =
^
x

α

k+1 	
^
x k+1 + Jα

k+1δxα
k+1

Jα
k+1 =

[
Ak+1(δθk+1)

−T 03×15
015×3 I15×15

]
(7)

^
Pk+1 =

(
Jα
k+1
)−1^Pk+1

(
Jα
k+1
)−T (8)

(b) Transform the laser point cloud into the world coordinate system, and calculate
the residual equation f (xk

k+1) and covariance matrix Hk+1 of the observation us-
ing Formulas (9) and (10), respectively. Here, X̃Le

(k+1,i) and X̃Ls
(k+1,i) represent

the coordinate sets of feature points after motion compensation for corner points
Le and plane points Ls, respectively, between k-th frame and k + 1-th frame.
The covariance matrix Hk+1 is represented using the formula from LINS, Rk

k+1
represents the pose transformation of the laser between k-th frame and k + 1-th
frame, and [•]× denotes the skew-symmetric matrix of the variable.

f (xk
k+1) =

∣∣∣(X̃Le

(k+1,i)−XLe
(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLe

(k,l)

)∣∣∣∣∣∣XLe
(k,j)−XLe

(k,l)

∣∣∣∣∣∣(X̃Ls
(k+1,i)−XLs

(k,j))
(
(XLs

(k,j)−XLs
(k,l))×(XLs

(k,j)−XLs
(k,m)

)
)∣∣∣∣∣∣(XLs

(k,j)−XLs
(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)∣∣∣
(9)

Hk+1 = ∂ f
∂X̃L

(k+1,i)
·

∂X̃L
(k+1,i)
∂δx

=

{[(

X̃Le
(k+1,i)−XLe

(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLs

(k,l)

)]T

∣∣∣(X̃Le
(k+1,i)−XLe

(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLs

(k,l)

)∣∣∣
·
[

Rk
k+1

(
XLs
(k+1,i)

)
×

, I
]

{ [(
XLs
(k,j)−XLs

(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)]T∣∣∣(XLs
(k,j)−XLs

(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)∣∣∣
}
·
[

Rk
k+1

(
XLs
(k+1,i)

)
×

, I
] (10)

(c) Update the state variables
^
x

α+1
k+1 and Kalman gain Kk+1 using

Formulas (11) and (12).

^
x

α+1
k+1 =

^
x

α

k+1 − Kk+1 f α
k+1 − (I − Kk+1Hk+1)

(
Jα
k+1
)−1
(
^
x

α

k+1 	
^
x k+1

)
(11)

Kk+1 =

(
^
P
−1

k+1 + HT
k+1L−1

k+1Hk+1

)−1

HT
k+1L−1

k+1 (12)

(5) Output the posterior state quantity
_
x k+1 and posterior covariance

_
Pk+1 using

Equations (13) and (14).
_
x k+1 =

^
x

α+1
k (13)

_
Pk+1 = (I − Kk+1Hk+1)

^
Pk+1 (14)

During factor graph optimization, there is redundant information between IMU data
and laser point cloud data. Including IESKF odometry data of each frame in the back-end
factor graph optimization only leads to a slight improvement in localization accuracy but
consumes a significant amount of computational resources, which ultimately affects the
localization accuracy of the system. Therefore, we employ the keyframe and sliding window
strategy in factor graph optimization to reduce the computational resources required in
the back-end. Keyframes are selected based on representative laser-IMU odometry data

Sensors 2023, 23, 6000 7 of 18

over a specific period, helping to reduce the data volume. In the sliding window approach,
only the keyframe data within the window is optimized, while the regular data frames
are discarded.

In this paper, “ordinary frames” refers to laser frames observed by IESKF, while
“keyframes” are determined based on position or attitude changes estimated by IESKF’s
laser inertial odometry exceeding 1 m or 5◦, respectively. Adjacent keyframes are utilized
to construct local maps. Based on the current keyframe pose, i nearest keyframes are
extracted to form the adjacent keyframe set {Fi−k, · · · , Fk}, and the poses corresponding
to the adjacent keyframe set are transformed to the current keyframe F coordinate system.
After the transformation, the adjacent keyframe point clouds are merged into one local
map. As subsequent new keyframe point clouds are added to the local map, keyframe
point clouds that are far away from the local map are removed. To obtain a more accurate
pose transformation relationship between two keyframes, this paper adopts the ICP regis-
tration algorithm to match the current keyframe with the local map and derive the pose
transformation relationship. The residual equation between the k-th and k+1-th laser radar
keyframes can be obtained as shown in Equation (15):

rL =

[
∆t− RT

k (tk+1 − tk)
log
(
∆RTRT

k Rk+1
)] (15)

2.2. GPS Factor

Due to significant fluctuations in GPS data in highly urbanized environments, this
paper incorporates a GPS state and confidence filtering approach to screen the available
GPS data and include them as GPS factors in the factor graph. This method aims to exclude
anomalous GPS data from being included in the factor graph, thereby ensuring higher
accuracy. Specifically, this paper only utilizes GPS data with fixed solutions and narrow
lane fixed solutions.

In geometric positioning methods, the accuracy of localization is influenced by the
relative distances between multiple base stations and mobile stations, which is commonly
referred to as Dilution of Precision (DOP). To calculate the DOP factor, we introduce the
GPS single-point positioning model, which is represented by the following equation:

ρj =

√(
xj − xu

)2
+
(

yj − yu

)2
+
(
zj − zu

)2
+ c
(
tu − tj

)
(16)

where (xu, yu, zu) is the receiver coordinates,
(

xj, yj, zj

)
is the base station coordinates,

tu and tj are the clock bias between the receiver and the base station, ρj represents the
pseudorange from the receiver to the base station, and j represents the number of visible
base stations.

Given the approximate values of receiver coordinates (x̃u, ỹu, z̃u), and clock error t̃u,
we can linearize the positioning model by performing a first-order Taylor series expansion,
as shown in Equation (17). Furthermore, we can represent Equation (17) in matrix form as
Equation (18):

∆ρj = lj∆xu + mj∆yu + nj∆zu − c∆tu (17)

∆P = H∆X (18)

∆P =

∆ρ1
∆ρ2

...
∆ρj

, H =

l1 m1 n1 1
l2 m2 n2 1
...

...
...

...
lj mj nj 1

, ∆X =

∆xu
∆yu
∆zu
−c∆tu

 (19)

where lj, mj, and nj represent the direction cosines of the unit vector pointing from the
approximate position towards the j-th base station.

Sensors 2023, 23, 6000 8 of 18

By applying the least squares method to solve Equation (18), we can derive quantitative
expressions for the components of the symmetric matrix G, which represent the accuracy
factors. These expressions are given by the following equation:

G =
(

HTH
)−1

=

g11 g12 g13 g14
g12 g22 g23 g24
g13 g23 g33 g34
g14 g24 g34 g44

 (20)

We select the square root of the sum of squared errors in dimensions, precision, and
elevation as the confidence criterion, which is commonly known as PDOP (Position Dilution
of Precision). It can be calculated using the following equation:

PDOP=
√

g11+g22+g33 (21)

First, the inspection robot is moved to an open area to allow for movement, and multi-
ple confidence values are recorded when the GPS state is a fixed solution. The maximum
value among these recorded confidences is selected as the threshold for fixed solution con-
fidence. Second, the steps mentioned above are repeated to obtain the confidence threshold
for narrow lane fixed solutions. Finally, during the operation of the SLAM system, the
corresponding confidence threshold is selected based on the GPS state. This threshold is
then compared with the current confidence value, and GPS data with a confidence lower
than the threshold are considered usable. Figure 3 illustrates the flowchart of the GPS state
and confidence filtering strategy employed in this paper.

 Sensors 2023, 23, x FOR PEER REVIEW 9 of 19

First, the inspection robot is moved to an open area to allow for movement, and
multiple confidence values are recorded when the GPS state is a fixed solution. The max-
imum value among these recorded confidences is selected as the threshold for fixed so-
lution confidence. Second, the steps mentioned above are repeated to obtain the confi-
dence threshold for narrow lane fixed solutions. Finally, during the operation of the
SLAM system, the corresponding confidence threshold is selected based on the GPS
state. This threshold is then compared with the current confidence value, and GPS data
with a confidence lower than the threshold are considered usable. Figure 3 illustrates the
flowchart of the GPS state and confidence filtering strategy employed in this paper.

Start

Mobile inspection
robot to open spaces

and buildings

Obtain the confidence of multiple sets of GPS
data, and set the maximum value as the

confidence threshold of the fixed solution and
the narrow lane fixed solution respectively

Receive a
frame of
GPS data

Whether the GPS data
is a fixed solution

Whether the GPS data is a
narrow lane fixed solution

Discard this frame
of GPS data

Y

N

N

Y

N

Add GPS data
to factor

graph

End

N

YWhether the GPS
confidence is less than the

threshold

Y

Whether the GPS
confidence is less than the

threshold

Y

N

Figure 3. Flow chart of screening strategies based on GPS status and confidence.

After filtering out unreliable data based on confidence, we utilize the remaining
GPS data to calculate the coordinates in the W-frame for latitude, longitude, and alti-
tude. These coordinates are then incorporated into the factor graph as a GPS position
constraint cost function. The GPS position constraint cost function is represented by the
following equation:

() ()2 2

i i
e

∈ ∈

=
g

i i
g

w w b w
g gD o D

o o
t o tR ,R R R T -T

 (22)

where
i

o
tR is the pose of the IMU in the vehicle coordinate system at time it , w

oR is the
transformation parameters between the vehicle coordinate system and the global coor-
dinate system W , w

gT is the GNSS positioning result in the global coordinate system W,
b
gT is the antenna lever arm for GNSS, gD is the variance-covariance matrix for w

gT
provided by the GNSS RTK positioning solution, and is the set of nodes with GNSS
position correction.

We conducted tests in practical scenarios, specifically at the rear of the supporting
service center building in the Intelligent Technology Park, where GPS data exhibited
fluctuations. Figure 4 illustrates the GPS trajectories before and after applying our filter-
ing approach. It can be observed that the GPS data exhibits significant fluctuations prior
to filtering, whereas the fluctuations are reduced after the application of our filtering
method.

Figure 3. Flow chart of screening strategies based on GPS status and confidence.

After filtering out unreliable data based on confidence, we utilize the remaining GPS
data to calculate the coordinates in the W-frame for latitude, longitude, and altitude. These
coordinates are then incorporated into the factor graph as a GPS position constraint cost
function. The GPS position constraint cost function is represented by the following equation:

∑
i∈G

∥∥∥e
(

Ro
ti

, Rw
o

)∥∥∥2

Dg
= ∑

i∈G

∥∥∥Rw
o

(
Ro

ti
Tb

g

)
− Tw

g

∥∥∥2

Dg
(22)

where Ro
ti

is the pose of the IMU in the vehicle coordinate system at time ti, Rw
o is the

transformation parameters between the vehicle coordinate system and the global coordinate

Sensors 2023, 23, 6000 9 of 18

system W, Tw
g is the GNSS positioning result in the global coordinate system W, Tb

g is the
antenna lever arm for GNSS, Dg is the variance-covariance matrix for Tw

g provided by the
GNSS RTK positioning solution, and G is the set of nodes with GNSS position correction.

We conducted tests in practical scenarios, specifically at the rear of the supporting
service center building in the Intelligent Technology Park, where GPS data exhibited
fluctuations. Figure 4 illustrates the GPS trajectories before and after applying our filtering
approach. It can be observed that the GPS data exhibits significant fluctuations prior to
filtering, whereas the fluctuations are reduced after the application of our filtering method.

 Sensors 2023, 23, x FOR PEER REVIEW 10 of 19

(a) Before GPS data filtering (b) After GPS data filtering

Figure 4. Filter GPS comparison chart based on GPS status and confidence.

2.3. Loop Detection Factor

Similar to LIO-SAM, this paper employs a keyframe-based Euclidean distance ap-

proach for loop closure detection. Firstly, the laser point cloud is transformed into the

world coordinate system. Based on the position of the current keyframe, a search range

of distance d is defined to identify historical keyframes that are in close proximity and

have a longer detection time. The positions of the keyframes within the search range are

further filtered based on a specified time interval. The local feature point cloud map is

constructed by aggregating feature point clouds from a range of 25 frames centered

around the identified historical keyframes. The current keyframe is then matched with

the local feature point cloud map using ICP point cloud registration to determine the

relative pose transformation relationship in the world coordinate system. For a more

comprehensive explanation of the loop closure detection process, please refer to LIO-

SAM.

2.4. IMU Pre-Integration

The angular velocity and acceleration measured from the IMU are defined as fol-

lows:

t t t tb n = + + (23)

()BW a a

t t t t ta R a g b n= − + + (24)

where t and ta are the measurements of the IMU at the moment t and the B coordi-

nate systems, t and ta are subject to the slowly transformed bias tb and white noise

tn ,
BW

tR is the rotation matrix from the coordinate system W to B, and g is a fixed gravi-

ty vector in the W coordinate system.

The robot motion was then inferred from the IMU measurements. The position, atti-

tude, and velocity of the robot during t t+ were calculated as follows:

()a a

t t t t t t tv v g t R a b n t+ = + + − − (25)

2 21 1
()

2 2

a a

t t t t t t t tp p v t g t R a b n t+ = + + + − − (26)

exp(())t t t t t tR R b n t + = − − (27)

Figure 4. Filter GPS comparison chart based on GPS status and confidence.

2.3. Loop Detection Factor

Similar to LIO-SAM, this paper employs a keyframe-based Euclidean distance ap-
proach for loop closure detection. Firstly, the laser point cloud is transformed into the
world coordinate system. Based on the position of the current keyframe, a search range
of distance d is defined to identify historical keyframes that are in close proximity and
have a longer detection time. The positions of the keyframes within the search range are
further filtered based on a specified time interval. The local feature point cloud map is
constructed by aggregating feature point clouds from a range of 25 frames centered around
the identified historical keyframes. The current keyframe is then matched with the local
feature point cloud map using ICP point cloud registration to determine the relative pose
transformation relationship in the world coordinate system. For a more comprehensive
explanation of the loop closure detection process, please refer to LIO-SAM.

2.4. IMU Pre-Integration

The angular velocity and acceleration measured from the IMU are defined as follows:

_
ωt = ωt + bω

t + nω
t (23)

_
a t = RBW

t (at − g) + ba
t + na

t (24)

where
_
ωt and

_
a t are the measurements of the IMU at the moment t and the B coordinate

systems,
_
ωt and

_
a t are subject to the slowly transformed bias bt and white noise nt, RBW

t is
the rotation matrix from the coordinate system W to B, and g is a fixed gravity vector in the
W coordinate system.

The robot motion was then inferred from the IMU measurements. The position,
attitude, and velocity of the robot during t + ∆t were calculated as follows:

vt+∆t = vt + g∆t + Rt(
_
a t − ba

t − na
t)∆t (25)

Sensors 2023, 23, 6000 10 of 18

pt+∆t = pt + vt∆t +
1
2

g∆t2 +
1
2

Rt(
_
a t − ba

t − na
t)∆t2 (26)

Rt+∆t = Rt exp((
_
ωt − bω

t − nω
t)∆t) (27)

where R = RWB
t = RBW

t
T RBW

t are the rotation matrices of the coordinate systems B to
W, and the angular velocity and acceleration of the base coordinates B are assumed to be
constant during the integration process. Then, we use the IMU pre-integration method
to obtain the relative motion of the carriers within adjacent timestamps, where the pre-
integrated measurements ∆vij, ∆pij, and ∆Rij between moments i and j are calculated by
the following equations:

∆vij = Ri
T(vj − vi − g∆tij) (28)

∆pij = Ri
T(pj − pi − vi∆tij −

1
2

g∆tij
2) (29)

∆Rij = Ri
T Rj (30)

3. Experimental
3.1. KITTI Dataset Testing and Evaluation

This paper presents an experimental study on the fusion of filtering and graph op-
timization SLAM algorithms using the KITTI datasets 05, 07, and 10. The trajectories
and ATE statistical indicators generated are compared and analyzed with an open-source
multi-sensor fusion SLAM algorithm using the EVO [31] trajectory evaluation tool. The
filtering algorithm used in this experiment is FAST-LIO, while the graph optimization
algorithm used is LIO-SAM. To evaluate the robustness of the algorithm when GPS is
suddenly interrupted, GPS data is also interrupted. Since FAST-LIO does not incorporate
GPS, its accuracy is not affected by GPS interruption. Therefore, its ATE statistical indicator
is not presented in the GPS interruption experiment.

3.1.1. GPS Uninterrupted Experiment

To start, we performed the GPS non-interruption experiment and obtained trajectories
for sequences 05, 07, and 10, as depicted in Figures 5–8, respectively. Our algorithm
exhibited superior trajectory results compared to the two open-source algorithms, with
trajectories that closely aligned with the true values.

 Sensors 2023, 23, x FOR PEER REVIEW 11 of 19

where
WB BWT

t tR R R= = BW

tR are the rotation matrices of the coordinate systems B to W,

and the angular velocity and acceleration of the base coordinates B are assumed to be

constant during the integration process. Then, we use the IMU pre-integration method

to obtain the relative motion of the carriers within adjacent timestamps, where the pre-

integrated measurements ijv
, ijp

, and ijR
 between moments i and j are calculated

by the following equations:

()T

ij i j i ijv R v v g t = − − (28)

21
()

2

T

ij i j i i ij ijp R p p v t g t = − − − (29)

T

ij i jR R R = (30)

3. Experimental

3.1. KITTI Dataset Testing and Evaluation

This paper presents an experimental study on the fusion of filtering and graph op-

timization SLAM algorithms using the KITTI datasets 05, 07, and 10. The trajectories and

ATE statistical indicators generated are compared and analyzed with an open-source

multi-sensor fusion SLAM algorithm using the EVO [31] trajectory evaluation tool. The

filtering algorithm used in this experiment is FAST-LIO, while the graph optimization

algorithm used is LIO-SAM. To evaluate the robustness of the algorithm when GPS is

suddenly interrupted, GPS data is also interrupted. Since FAST-LIO does not incorporate

GPS, its accuracy is not affected by GPS interruption. Therefore, its ATE statistical indi-

cator is not presented in the GPS interruption experiment.

3.1.1. GPS Uninterrupted Experiment

To start, we performed the GPS non-interruption experiment and obtained trajecto-

ries for sequences 05, 07, and 10, as depicted in Figures 5–8, respectively. Our algorithm

exhibited superior trajectory results compared to the two open-source algorithms, with

trajectories that closely aligned with the true values.

Figure 5. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI05 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

A

B

A B

Figure 5. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI05 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Sensors 2023, 23, 6000 11 of 18
 Sensors 2023, 23, x FOR PEER REVIEW 12 of 19

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are

the road sections where our trajectory is better than LIO-SAM.

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO

and LIO-SAM.

Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI da-

taset.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05

Ours 1.572958 0.555240 0.623827 0.054046

LIO-SAM 1.140164 0.604368 0.666729 0.050848

FAST-LIO 12.143285 5.453287 6.046867 0.743559

07

Ours 1.333466 0.555258 0.605827 0.079949

LIO-SAM 1.323349 0.617591 0.665901 0.147816

FAST-LIO 4.248161 2.376953 2.522683 0.456325

A

B

A B

A

B

A B

A

B

A B

GPS outage

origin
GPS outage

endpoint

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

 Sensors 2023, 23, x FOR PEER REVIEW 12 of 19

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are

the road sections where our trajectory is better than LIO-SAM.

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO

and LIO-SAM.

Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI da-

taset.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05

Ours 1.572958 0.555240 0.623827 0.054046

LIO-SAM 1.140164 0.604368 0.666729 0.050848

FAST-LIO 12.143285 5.453287 6.046867 0.743559

07

Ours 1.333466 0.555258 0.605827 0.079949

LIO-SAM 1.323349 0.617591 0.665901 0.147816

FAST-LIO 4.248161 2.376953 2.522683 0.456325

A

B

A B

A

B

A B

A

B

A B

GPS outage

origin
GPS outage

endpoint

Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

 Sensors 2023, 23, x FOR PEER REVIEW 12 of 19

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence. (A)

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.

Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are

the road sections where our trajectory is better than LIO-SAM.

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO

and LIO-SAM.

Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI da-

taset.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05

Ours 1.572958 0.555240 0.623827 0.054046

LIO-SAM 1.140164 0.604368 0.666729 0.050848

FAST-LIO 12.143285 5.453287 6.046867 0.743559

07

Ours 1.333466 0.555258 0.605827 0.079949

LIO-SAM 1.323349 0.617591 0.665901 0.147816

FAST-LIO 4.248161 2.376953 2.522683 0.456325

A

B

A B

A

B

A B

A

B

A B

GPS outage

origin
GPS outage

endpoint

Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO
and LIO-SAM.

In terms of performance metrics on the 05 sequence, the algorithm proposed in this
paper outperformed both LIO-SAM and FAST-LIO. Specifically, it achieved improvements
of 21.57%, 44.75%, 43.19%, and 12.22% in maximum error, average error, root mean square
error, and minimum error, respectively, when compared to LIO-SAM. Furthermore, com-
pared to FAST-LIO, the proposed algorithm showed improvements of 74.09%, 79.64%,
63.68%, and 58.57% in the same metrics.

Sensors 2023, 23, 6000 12 of 18

Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI dataset.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05
Ours 1.572958 0.555240 0.623827 0.054046

LIO-SAM 1.140164 0.604368 0.666729 0.050848
FAST-LIO 12.143285 5.453287 6.046867 0.743559

07
Ours 1.333466 0.555258 0.605827 0.079949

LIO-SAM 1.323349 0.617591 0.665901 0.147816
FAST-LIO 4.248161 2.376953 2.522683 0.456325

10
Ours 2.751671 1.146823 1.293698 0.262802

LIO-SAM 5.528663 1.544244 1.914991 0.140108
FAST-LIO 5.772416 2.933960 3.189745 0.497090

On the 07 sequence, the algorithm presented in this paper did not perform as well
as LIO-SAM in terms of minimum error. However, it outperformed both LIO-SAM and
FAST-LIO in other statistical indicators. Specifically, it achieved improvements of 20.14%
and 52.19% in maximum error, 30.95% and 61.28% in average error, and 43.47% and 61.27%
in root mean square error, respectively.

Finally, on the 10 sequence, the algorithm proposed in this paper outperformed both
LIO-SAM and FAST-LIO in all metrics. In particular, it achieved improvements of 32.42%
and 50.24% in maximum error, 48.09% and 58% in average error, 46.28% and 57.9% in root
mean square error, and 65.88% and 47.13% in minimum error, respectively.

3.1.2. GPS Interrupted Experiment

This paper aims to simulate sudden interruptions of GPS signals by applying interrup-
tion processing to GPS data in the KITTI dataset, starting from the 20th second. Specifically,
interruptions of approximately 268 s, 95 s, and 107 s were applied to the KITTI05, KITTI07,
and KITTI10 sequences, respectively. The trajectories of these sequences are shown in
Figures 8–10, respectively. From Figures A and B in each of these figures, it can be observed
that the trajectory generated by the algorithm proposed in this paper is superior to that
generated by LIO-SAM in GPS signal interruption scenarios.

 Sensors 2023, 23, x FOR PEER REVIEW 13 of 19

10

Ours 2.751671 1.146823 1.293698 0.262802

LIO-SAM 5.528663 1.544244 1.914991 0.140108

FAST-LIO 5.772416 2.933960 3.189745 0.497090

In terms of performance metrics on the 05 sequence, the algorithm proposed in this

paper outperformed both LIO-SAM and FAST-LIO. Specifically, it achieved improve-

ments of 21.57%, 44.75%, 43.19%, and 12.22% in maximum error, average error, root

mean square error, and minimum error, respectively, when compared to LIO-SAM. Fur-

thermore, compared to FAST-LIO, the proposed algorithm showed improvements of

74.09%, 79.64%, 63.68%, and 58.57% in the same metrics.

On the 07 sequence, the algorithm presented in this paper did not perform as well

as LIO-SAM in terms of minimum error. However, it outperformed both LIO-SAM and

FAST-LIO in other statistical indicators. Specifically, it achieved improvements of 20.14%

and 52.19% in maximum error, 30.95% and 61.28% in average error, and 43.47% and

61.27% in root mean square error, respectively.

Finally, on the 10 sequence, the algorithm proposed in this paper outperformed

both LIO-SAM and FAST-LIO in all metrics. In particular, it achieved improvements of

32.42% and 50.24% in maximum error, 48.09% and 58% in average error, 46.28% and

57.9% in root mean square error, and 65.88% and 47.13% in minimum error, respectively.

3.1.2. GPS Interrupted Experiment

This paper aims to simulate sudden interruptions of GPS signals by applying inter-

ruption processing to GPS data in the KITTI dataset, starting from the 20th second. Spe-

cifically, interruptions of approximately 268 s, 95 s, and 107 s were applied to the KIT-

TI05, KITTI07, and KITTI10 sequences, respectively. The trajectories of these sequences

are shown in Figures 8–10, respectively. From Figures A and B in each of these figures, it

can be observed that the trajectory generated by the algorithm proposed in this paper is

superior to that generated by LIO-SAM in GPS signal interruption scenarios.

Figure 9. Comparison of our trajectory with LIO-SAM on the KITTI07 sequence. (A) and (B) are

the road sections where our trajectory is better than LIO-SAM.

A

B

A B

GPS outage

origin

GPS outage

endpoint

Figure 9. Comparison of our trajectory with LIO-SAM on the KITTI07 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

Table 2 presents the ATE statistical data for the proposed algorithm and LIO-SAM in
GPS signal interruption scenarios.

For the KITTI05 sequence, the proposed algorithm has a slightly higher minimum error
value than LIO-SAM, with an increase of 0.126808 m. However, the proposed algorithm
outperforms LIO-SAM in all other statistical indicators, with improvements of 40.92%,
29.01%, and 28.2%, respectively.

Sensors 2023, 23, 6000 13 of 18
 Sensors 2023, 23, x FOR PEER REVIEW 14 of 19

Figure 10. Comparison of our trajectory with LIO-SAM on the KITTI10 sequence. (A) and (B) are

the road sections where our trajectory is better than LIO-SAM.

Table 2 presents the ATE statistical data for the proposed algorithm and LIO-SAM

in GPS signal interruption scenarios.

Table 2. Comparing the absolute error of our method with LIO-SAM on KITTI.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05
Ours 2.936086 1.242616 1.392347 0.177911

LIO-SAM 4.969321 1.750427 1.939206 0.051103

07
Ours 1.272413 0.667964 0.723489 0.139385

LIO-SAM 2.237385 0.775331 0.872355 0.135207

10
Ours 2.978839 1.422265 1.524391 0.331625

LIO-SAM 6.073832 1.803528 2.169900 0.122156

For the KITTI05 sequence, the proposed algorithm has a slightly higher minimum

error value than LIO-SAM, with an increase of 0.126808 m. However, the proposed algo-

rithm outperforms LIO-SAM in all other statistical indicators, with improvements of

40.92%, 29.01%, and 28.2%, respectively.

For the KITTI07 sequence, the proposed algorithm has a slightly higher minimum

error value than LIO-SAM, but it outperforms LIO-SAM in all other statistical indicators,

with improvements of 43.13%, 13.85%, and 17.06%, respectively.

For the KITTI10 sequence, the proposed algorithm has a slightly higher minimum

error value than LIO-SAM, with an increase of 0.209469 m. However, the proposed algo-

rithm outperforms LIO-SAM in all other indicators, with improvements of 50.96%,

21.14%, and 29.75%, respectively.

3.2. Experiments on a Real Platform

In a subsequent evaluation of the method proposed in this paper, we conducted lo-

calization map-building experiments on an actual autonomous mobile robot in an out-

door environment. All datasets of real scenes in the park were collected on an experi-

mental platform, as shown in Figure 11. The experimental platform was equipped with a

1.60 GHz Intel i5-8250U IPC and connected to an RS-LiDAR-16 LiDAR with a frequency

of 10 Hz, a Witt Smart IWT905 IMU with a frequency of 200 Hz, and a GPS consisting of

a 10 Hz BeiDou XingTong base station NC502-D and a mobile station NC507-S.

A

B

A B

GPS outage

origin

GPS outage

endpoint

Figure 10. Comparison of our trajectory with LIO-SAM on the KITTI10 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

Table 2. Comparing the absolute error of our method with LIO-SAM on KITTI.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05
Ours 2.936086 1.242616 1.392347 0.177911

LIO-SAM 4.969321 1.750427 1.939206 0.051103

07
Ours 1.272413 0.667964 0.723489 0.139385

LIO-SAM 2.237385 0.775331 0.872355 0.135207

10
Ours 2.978839 1.422265 1.524391 0.331625

LIO-SAM 6.073832 1.803528 2.169900 0.122156

For the KITTI07 sequence, the proposed algorithm has a slightly higher minimum
error value than LIO-SAM, but it outperforms LIO-SAM in all other statistical indicators,
with improvements of 43.13%, 13.85%, and 17.06%, respectively.

For the KITTI10 sequence, the proposed algorithm has a slightly higher minimum error
value than LIO-SAM, with an increase of 0.209469 m. However, the proposed algorithm
outperforms LIO-SAM in all other indicators, with improvements of 50.96%, 21.14%, and
29.75%, respectively.

3.2. Experiments on a Real Platform

In a subsequent evaluation of the method proposed in this paper, we conducted
localization map-building experiments on an actual autonomous mobile robot in an outdoor
environment. All datasets of real scenes in the park were collected on an experimental
platform, as shown in Figure 11. The experimental platform was equipped with a 1.60 GHz
Intel i5-8250U IPC and connected to an RS-LiDAR-16 LiDAR with a frequency of 10 Hz,
a Witt Smart IWT905 IMU with a frequency of 200 Hz, and a GPS consisting of a 10 Hz
BeiDou XingTong base station NC502-D and a mobile station NC507-S.

 Sensors 2023, 23, x FOR PEER REVIEW 15 of 19

(a) (b)

Figure 11. (a) Outdoor autonomous mobile robot experimental platform equipped with GPS, Li-

DAR, and IMU sensors for data collection; and (b) closer view of the LiDAR and IMU sensors.

An experiment was conducted to evaluate the positioning accuracy of our algorithm

applied to data collected with a mobile autonomous robot in an outdoor environment

where fluctuations or interruptions occurred in the GPS data. A navigation area with an

approximate size of 280 × 280 m2 was created in the park, and the resulting map is pre-

sented in Figure 12.

Figure 12. Point cloud map built on our own dataset using our method.

3.2.1. GPS Uninterrupted Experiment

First, an experiment was conducted with uninterrupted GPS, and the resulting tra-

jectory within the intelligent technology park is illustrated in Figure 13. The trajectory

generated by the algorithm proposed in this paper closely aligns with the true trajectory,

demonstrating superior trajectory accuracy compared to LIO-SAM. For instance, in the

road section depicted in Figure 13A, the algorithm proposed in this paper exhibits the

closest match to the true trajectory. Similarly, in the road section shown in Figure 13B,

the proposed algorithm outperforms both LIO-SAM and FAST-LIO.

Figure 11. (a) Outdoor autonomous mobile robot experimental platform equipped with GPS, LiDAR,
and IMU sensors for data collection; and (b) closer view of the LiDAR and IMU sensors.

Sensors 2023, 23, 6000 14 of 18

An experiment was conducted to evaluate the positioning accuracy of our algorithm
applied to data collected with a mobile autonomous robot in an outdoor environment
where fluctuations or interruptions occurred in the GPS data. A navigation area with
an approximate size of 280 × 280 m2 was created in the park, and the resulting map is
presented in Figure 12.

 Sensors 2023, 23, x FOR PEER REVIEW 15 of 19

(a) (b)

Figure 11. (a) Outdoor autonomous mobile robot experimental platform equipped with GPS, Li-

DAR, and IMU sensors for data collection; and (b) closer view of the LiDAR and IMU sensors.

An experiment was conducted to evaluate the positioning accuracy of our algorithm

applied to data collected with a mobile autonomous robot in an outdoor environment

where fluctuations or interruptions occurred in the GPS data. A navigation area with an

approximate size of 280 × 280 m2 was created in the park, and the resulting map is pre-

sented in Figure 12.

Figure 12. Point cloud map built on our own dataset using our method.

3.2.1. GPS Uninterrupted Experiment

First, an experiment was conducted with uninterrupted GPS, and the resulting tra-

jectory within the intelligent technology park is illustrated in Figure 13. The trajectory

generated by the algorithm proposed in this paper closely aligns with the true trajectory,

demonstrating superior trajectory accuracy compared to LIO-SAM. For instance, in the

road section depicted in Figure 13A, the algorithm proposed in this paper exhibits the

closest match to the true trajectory. Similarly, in the road section shown in Figure 13B,

the proposed algorithm outperforms both LIO-SAM and FAST-LIO.

Figure 12. Point cloud map built on our own dataset using our method.

3.2.1. GPS Uninterrupted Experiment

First, an experiment was conducted with uninterrupted GPS, and the resulting tra-
jectory within the intelligent technology park is illustrated in Figure 13. The trajectory
generated by the algorithm proposed in this paper closely aligns with the true trajectory,
demonstrating superior trajectory accuracy compared to LIO-SAM. For instance, in the
road section depicted in Figure 13A, the algorithm proposed in this paper exhibits the
closest match to the true trajectory. Similarly, in the road section shown in Figure 13B, the
proposed algorithm outperforms both LIO-SAM and FAST-LIO.

 Sensors 2023, 23, x FOR PEER REVIEW 16 of 19

Figure 13. Comparison charts with LIO-SAM trajectory on our own data set (A) and (B) are road

sections where our trajectory is better than LIO-SAM.

Within the intelligent technology park, Table 3 presents the ATE statistical data

comparing the algorithm proposed in this paper, FAST-LIO, and LIO-SAM. In all statis-

tical indicators, the algorithm proposed in this paper outperforms the two mentioned

open-source algorithms. The maximum error value has been improved by 51.03% and

64.64%, the average error value has been improved by 21.68% and 55.5%, the root mean

square error has been improved by 24.98% and 58.58%, and the minimum error value

has been improved by 71.30% and 68.92%, respectively. These results affirm the high ac-

curacy of the algorithm proposed in this paper.

Table 3. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Method Max (m) Mean (m) Median (m) Min (m)

Ours 7.827892 3.801397 4.189983 0.245139

LIO-SAM 15.985649 4.853936 5.585050 0.854267

FAST-LIO 22.136492 8.540459 10.115659 0.788699

3.2.2. GPS Interrupted Experiment

The experiment was conducted with intermittent GPS signal, and its trajectory

within the Intelligent Technology Park is shown in Figure 14. Table 4 shows the ATE sta-

tistical data of this paper’s algorithm and LIO-SAM under GPS interruption conditions.

Table 4. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Time(s) Method Max (m) Mean (m) Median (m) Min (m)

50
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

100
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

200
Ours 7.927294 4.952018 5.397438 0.245139

LIO-SAM 15.90683 5.630523 7.022866 0.854267

A

B

A B

Figure 13. Comparison charts with LIO-SAM trajectory on our own data set (A) and (B) are road
sections where our trajectory is better than LIO-SAM.

Within the intelligent technology park, Table 3 presents the ATE statistical data com-
paring the algorithm proposed in this paper, FAST-LIO, and LIO-SAM. In all statistical
indicators, the algorithm proposed in this paper outperforms the two mentioned open-
source algorithms. The maximum error value has been improved by 51.03% and 64.64%,
the average error value has been improved by 21.68% and 55.5%, the root mean square
error has been improved by 24.98% and 58.58%, and the minimum error value has been
improved by 71.30% and 68.92%, respectively. These results affirm the high accuracy of the
algorithm proposed in this paper.

Sensors 2023, 23, 6000 15 of 18

Table 3. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Method Max (m) Mean (m) Median (m) Min (m)

Ours 7.827892 3.801397 4.189983 0.245139
LIO-SAM 15.985649 4.853936 5.585050 0.854267
FAST-LIO 22.136492 8.540459 10.115659 0.788699

3.2.2. GPS Interrupted Experiment

The experiment was conducted with intermittent GPS signal, and its trajectory within
the Intelligent Technology Park is shown in Figure 14. Table 4 shows the ATE statistical
data of this paper’s algorithm and LIO-SAM under GPS interruption conditions.

 Sensors 2023, 23, x FOR PEER REVIEW 17 of 19

Figure 14. Comparison with LIO-SAM trajectory on our own data set (A–C) are road sections

where our trajectory is better than LIO-SAM.

Despite varying GPS interruption times, the minimum error value remains un-

changed, and the maximum error value changes relatively little. This is because the pos-

es associated with the minimum and maximum error values in the entire trajectory of

the Intelligent Technology Park are not part of the trajectory produced during GPS inter-

ruption. Therefore, the subsequent analysis of ATE statistical indicators will exclude the

maximum and minimum error values.

Under the GPS interruption condition for 50 s, this paper’s algorithm shows better

average error and root-mean-square error compared to LIO-SAM, with improvements of

19.61% and 30.53%, respectively. Under the GPS interruption condition for 100 s, this

paper’s algorithm demonstrates improvements of 17.33% and 29.11% in terms of average

error and root-mean-square error compared to LIO-SAM. Under the GPS interruption

condition for 200 s, this paper’s algorithm still outperforms LIO-SAM, with improve-

ments of 12.05% and 23.14%, respectively. These results indicate that this paper’s algo-

rithm maintains relatively good accuracy improvement even when GPS data is suddenly

interrupted for 50 s, and the improvement rate gradually decreases with longer GPS da-

ta interruption time. However, the overall trajectory accuracy of this paper ’s algorithm

remains higher than that of LIO-SAM.

C

A

B

A

B
C

GPS outage

origin

GPS outage

endpoint

Figure 14. Comparison with LIO-SAM trajectory on our own data set (A–C) are road sections where
our trajectory is better than LIO-SAM.

Despite varying GPS interruption times, the minimum error value remains unchanged,
and the maximum error value changes relatively little. This is because the poses associated
with the minimum and maximum error values in the entire trajectory of the Intelligent
Technology Park are not part of the trajectory produced during GPS interruption. There-
fore, the subsequent analysis of ATE statistical indicators will exclude the maximum and
minimum error values.

Under the GPS interruption condition for 50 s, this paper’s algorithm shows better
average error and root-mean-square error compared to LIO-SAM, with improvements
of 19.61% and 30.53%, respectively. Under the GPS interruption condition for 100 s, this

Sensors 2023, 23, 6000 16 of 18

paper’s algorithm demonstrates improvements of 17.33% and 29.11% in terms of average
error and root-mean-square error compared to LIO-SAM. Under the GPS interruption
condition for 200 s, this paper’s algorithm still outperforms LIO-SAM, with improvements
of 12.05% and 23.14%, respectively. These results indicate that this paper’s algorithm main-
tains relatively good accuracy improvement even when GPS data is suddenly interrupted
for 50 s, and the improvement rate gradually decreases with longer GPS data interruption
time. However, the overall trajectory accuracy of this paper’s algorithm remains higher
than that of LIO-SAM.

Table 4. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Time(s) Method Max (m) Mean (m) Median (m) Min (m)

50
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

100
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

200
Ours 7.927294 4.952018 5.397438 0.245139

LIO-SAM 15.90683 5.630523 7.022866 0.854267

4. Conclusions

This paper presents a SLAM system that combines the IESKF and factor graph ap-
proaches. The proposed algorithm tightly integrates the laser rangefinder and IMU to
obtain an initial pose estimation using IESKF in the front-end. In the back-end, it fuses front-
end odometry, IMU, GPS, and loop closure factors, using a factor graph to achieve precise
pose estimation. Additionally, a filtering strategy based on GPS status and confidence is
applied to remove abnormal GPS data. Multiple experiments were conducted on the KITTI
dataset and our own dataset to verify the accuracy of the SLAM system in scenarios with
GPS signal interruption. The results demonstrate that our method outperforms LIO-SAM
and FAST-LIO in terms of accuracy when GPS data is interrupted.

Author Contributions: Conceptualization, B.Y. and G.Z.; methodology, B.Y. and G.Z.; validation,
G.Z.; data analysis, G.Z.; writing—original draft preparation, G.Z.; writing—review and editing, B.Y.,
J.L., C.C., E.M. and G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Heilongjiang Provincial Natural Science Fund Joint
Guidance Project, project approval No. LH2020E088, Open Fund Project of State Key Laboratory
of Robotics and System, grant number SKLRS-2022-KF-18, National Natural Science Foundation
of China, grant number 91948202, National Natural Science Foundation of China, grant number
52175012, and the Fundamental Research Foundation for Universities of Heilongjiang Province, grant
number 2022-KYYWF-0122.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, J.; You, B.; Ding, L.; Yu, X.; Li, W.; Zhang, T.; Gao, H. Dual-Master/Single-Slave Haptic Teleoperation System for Semiau-

tonomous Bilateral Control of Hexapod Robot Subject to Deformable Rough Terrain. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52,
2435–2449. [CrossRef]

2. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robots 2018, 34,
1004–1020. [CrossRef]

3. Li, X.; Zhang, W.; Zhang, K.; Zhang, Q.; Li, X.; Jiang, Z.; Ren, X.; Yuan, Y. GPS satellite differential code bias estimation with
current eleven low earth orbit satellites. J. Geod. 2021, 95, 76. [CrossRef]

https://doi.org/10.1109/TSMC.2021.3049848
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1007/s00190-021-01536-2

Sensors 2023, 23, 6000 17 of 18

4. You, B.; Li, J.; Ding, L.; Xu, J.; Li, W.; Li, K.; Gao, H. Semi-Autonomous Bilateral Teleoperation of Hexapod Robot Based on Haptic
Force Feedback. J. Intell. Robot. Syst. 2018, 91, 583–602. [CrossRef]

5. Schmid, K.; Lutz, P.; Tomíc, T.; Mair, E.; Hirschmüller, H. Autonomous vision-based microair vehicle for indoor and outdoor
navigation. J. Field Robots 2014, 31, 537–570. [CrossRef]

6. Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments
Using Hybrid Scan Matching Algorithm. Sensors 2015, 15, 23286–23302. [CrossRef]

7. Shamsudin, A.U.; Ohno, K.; Hamada, R.; Kojima, S.; Westfechtel, T.; Suzuki, T.; Okada, Y.; Tadokoro, S.; Fujita, J.; Amano, H.
Consistent map building in petrochemical complexes for firefighter robots using SLAM based on GPS and LIDAR. Robomech. J.
2018, 5, 7. [CrossRef]

8. Abdelaziz, N.; El-Rabbany, A. An Integrated INS/LiDAR SLAM Navigation System for GNSS-Challenging Environments. Sensors
2022, 22, 4327. [CrossRef]

9. Aboutaleb, A.; El-Wakeel, A.S.; Elghamrawy, H.; Noureldin, A. LiDAR/RISS/GNSS dynamic integration for land vehicle robust
positioning in challenging GNSS environments. Remote Sens. 2020, 12, 2323. [CrossRef]

10. Zhao, S.; Fang, Z.; Li, H.; Scherer, S. A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway
Environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau,
China, 3–8 November 2019; pp. 1285–1292. [CrossRef]

11. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 8899–8906. [CrossRef]

12. Xu, W.; Zhang, F. Fast-LIO: A fast, robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter. IEEE Robots
Autom. Lett. 2021, 6, 3317–3324. [CrossRef]

13. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robots 2022, 38, 2053–2073.
[CrossRef]

14. Li, J.; You, B.; Ding, L.; Xu, J.; Li, W.; Chen, H.; Gao, H. A Novel Bilateral Haptic Teleoperation Approach for Hexapod Robot
Walking and Manipulating with Legs. Robot. Auton. Syst. 2018, 108, 1–12. [CrossRef]

15. Bai, C.; Xiao, T.; Chen, Y.; Wang, H.; Zhang, F.; Gao, X. Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial Odometry Using
Parallel Sparse Incremental Voxels. IEEE Robots Autom. Lett. 2022, 7, 4861–4868. [CrossRef]

16. Chang, L.; Niu, X.; Liu, T.; Tang, J.; Qian, C. GNSS/INS/LiDAR-SLAM Integrated Navigation System Based on Graph Optimiza-
tion. Remote Sens. 2019, 11, 1009. [CrossRef]

17. Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Lehtola, V.V.; Jaakkola, A.; Hyyppä, J. Graph SLAM correction for single scanner MLS
forest data under boreal forest canopy. Isprs J. Photogramm. Remote Sens. 2017, 132, 199–209. [CrossRef]

18. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the IEEE International
Conference Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [CrossRef]

19. Chang, L.; Niu, X.; Liu, T. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration.
Sensors 2020, 20, 4702. [CrossRef]

20. Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM.
Comput. Electron. Agric. 2018, 145, 217–225. [CrossRef]

21. Google Cartographer. Available online: https://google-cartographer.readthedocs.io/en/latest/ (accessed on 9 July 2018).
22. Zhang, J.; Singh, S. Low-drift and Real-time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [CrossRef]
23. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robots Res. 2013, 32, 1231–1237.

[CrossRef]
24. Xue, G.; Wei, J.; Li, R.; Cheng, J. LeGO-LOAM-SC: An Improved Simultaneous Localization and Mapping Method Fusing

LeGO-LOAM and Scan Context for Underground Coalmine. Sensors 2022, 22, 520. [CrossRef]
25. Oelsch, M.; Karimi, M.; Steinbach, E. R-LOAM: Improving LiDAR odometry and mapping with point-to-mesh features of

a known 3D Reference Object. IEEE Robots Autom. Lett. 2021, 6, 2068–2075. [CrossRef]
26. Wang, H.; Wang, C.; Chen, C.L.; Xie, L. F-LOAM: Fast LiDAR odometry and mapping. In Proceedings of the 2021 IEEE/RSJ

International Conference Intelligent Robots and Systems (IROS) IEEE, Prague, Czech Republic, 27 September–1 October 2021;
pp. 4390–4396. [CrossRef]

27. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled LiDAR inertial odometry via smoothing
and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24 October 2020–24 January 2021; pp. 5135–5142. [CrossRef]

28. Li, T.; Pei, L.; Xiang, Y.; Wu, Q.; Xia, S.; Tao, L.; Guan, X.; Yu, W. P3-LOAM: PPP/LiDAR loosely coupled SLAM with accurate
covariance estimation and robust RAIM in urban canyon environment. IEEE Sensors J. 2021, 21, 6660–6671. [CrossRef]

29. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.; Dellaert, F. iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011; pp. 3281–3288. [CrossRef]

https://doi.org/10.1007/s10846-017-0738-8
https://doi.org/10.1002/rob.21506
https://doi.org/10.3390/s150923286
https://doi.org/10.1186/s40648-018-0104-z
https://doi.org/10.3390/s22124327
https://doi.org/10.3390/rs12142323
https://doi.org/10.1109/IROS40897.2019.8967880
https://doi.org/10.1109/ICRA40945.2020.9197567
https://doi.org/10.1109/LRA.2021.3064227
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1016/j.robot.2018.06.001
https://doi.org/10.1109/LRA.2022.3152830
https://doi.org/10.3390/rs11091009
https://doi.org/10.1016/j.isprsjprs.2017.09.006
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.3390/s20174702
https://doi.org/10.1016/j.compag.2017.12.034
https://google-cartographer.readthedocs.io/en/latest/
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1177/0278364913491297
https://doi.org/10.3390/s22020520
https://doi.org/10.1109/LRA.2021.3060413
https://doi.org/10.1109/IROS51168.2021.9636655
https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1109/JSEN.2020.3042968
https://doi.org/10.1109/ICRA.2011.5979641

Sensors 2023, 23, 6000 18 of 18

30. He, J.; Sun, C.; Zhang, B.; Wang, P. Adaptive error-state Kalman filter for attitude determination on a moving platform.
IEEE Trans. Instrum. Meas. 2021, 70, 9513110. [CrossRef]

31. Evo: Python Package for the Evaluation of Odometry and SLAM. Available online: https://github.com/MichaelGrupp/evo
(accessed on 5 June 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIM.2021.3111971
https://github.com/MichaelGrupp/evo

	Introduction
	SLAM System
	IESKF LiDAR Inertial Odometry Factor
	GPS Factor
	Loop Detection Factor
	IMU Pre-Integration

	Experimental
	KITTI Dataset Testing and Evaluation
	GPS Uninterrupted Experiment
	GPS Interrupted Experiment

	Experiments on a Real Platform
	GPS Uninterrupted Experiment
	GPS Interrupted Experiment

	Conclusions
	References

