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Abstract: Outdoor autonomous mobile robots heavily rely on GPS data for localization. However,
GPS data can be erroneous and signals can be interrupted in highly urbanized areas or areas with
incomplete satellite coverage, leading to localization deviations. In this paper, we propose a SLAM
(Simultaneous Localization and Mapping) system that combines the IESKF (Iterated Extended
Kalman Filter) and a factor graph to address these issues. We perform IESKF filtering on LiDAR
and inertial measurement unit (IMU) data at the front-end to achieve a more accurate estimation
of local pose and incorporate the resulting laser inertial odometry into the back-end factor graph.
Furthermore, we introduce a GPS signal filtering method based on GPS state and confidence to
ensure that abnormal GPS data is not used in the back-end processing. In the back-end factor
graph, we incorporate loop closure factors, IMU preintegration factors, and processed GPS factors.
We conducted comparative experiments using the publicly available KITTI dataset and our own
experimental platform to compare the proposed SLAM system with two commonly used SLAM
systems: the filter-based SLAM system (FAST-LIO) and the graph optimization-based SLAM system
(LIO-SAM). The experimental results demonstrate that the proposed SLAM system outperforms the
other systems in terms of localization accuracy, especially in cases of GPS signal interruption.

Keywords: autonomous mobile robots; Global Positioning System (GPS); LiDAR; inertial measurement
unit (IMU); Iterative Error State Kalman Filter (IESKF); Simultaneous Localization and Mapping (SLAM)

1. Introduction

With the continuous development of outdoor mobile robots, research focuses mainly
on two directions: autonomous mobile robots and teleoperated mobile robots [1]. In
the field of autonomous mobile robots, relying on a single sensor is no longer sufficient
to meet the accuracy and robustness requirements of localization and mapping systems.
The integration of multiple sensors and the fusion of their data are core technologies for
achieving high-precision positioning and navigation in autonomous robots [2]. Among the
sensors commonly used in outdoor scenarios, the GPS global navigation satellite system
(GPS GNSS) and GNSS/INS (Inertial Navigation System) are widely utilized. Generally,
GPS can provide centimeter-level positioning. However, due to the presence of urban
high-rise buildings obstructing the surrounding area, GPS signals often result in inaccurate
positioning [3]. Consequently, the upper computer may provide code differences or single-
point positioning instead of fixed solutions. Therefore, it is common practice to either resort
to teleoperation for remote control [4] or incorporate various types of sensors such as IMU,
LiDAR, and cameras to assist with positioning.
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Recently, numerous solutions have been proposed to address the localization problem
in autonomous mobile robots and unmanned vehicles. One of the most widely adopted
approaches is the Extended Kalman Filter [5], which combines GPS and IMU data fusion to
estimate the localization position. However, this solution heavily relies on GPS data, and
the unavailability of GPS signals can introduce significant errors in the localization results.

To overcome this challenge, computer vision and LiDAR based Simultaneous Local-
ization and Mapping techniques are extensively utilized for state estimation in mobile
robots. Compared to cameras, LiDAR can directly capture 3D structural information within
a specific radius and is less sensitive to lighting conditions. Therefore, laser-based SLAM
enhances system robustness and localization accuracy compared to vision-based SLAM.
However, due to its dependence on the surrounding environment, LiDAR can experience
drift during fast motion, leading to loss of robot positioning. Researchers addressing this
issue commonly employ filtering and graph optimization methods to fuse GPS, LiDAR,
and IMU data.

Gao [6] employed an Extended Kalman Filter (EKF) to estimate the positional atti-
tude by loosely coupling GPS and LiDAR, periodically correcting the IMU. Shamsudin [7]
utilized a Rao-Blackwellized Particle Filter (RBPF) to integrate GPS and LiDAR data for
detecting consistency in petrochemical enterprise maps and constructing maps using GPS
and LiDAR data in Fast-SLAM. Abdelaziz [8] implemented SLAM based on a loosely cou-
pled EKF, INS, and LiDAR, matching relative poses of 3D probability maps. The proposed
method was tested on the KITTI dataset to validate its robustness. Aboutaleb [9] utilized the
EKF with LiDAR data, GNSS, and simplified 3D inertial sensors, employing LO to constrain
system positioning drift. LIOM [10] utilized a CNN segmentation network to remove dy-
namic objects, fusing LiDAR and IMU data using ESKF, and generating a static global map
through scan matching. LINS [11] was the first method to employ the Iterated Error State
Kalman Filter (IESKF) for tightly-coupled LiDAR and IMU-based robot motion estimation.
It recursively corrected the robot’s estimated pose using LiDAR-extracted features, prevent-
ing filter divergence during long-term operation while maintaining computational speed.
FAST-LIO [12] fused LiDAR point cloud features with IMU data using IESKF, and pro-
posed a dimension-dependent Kalman gain formulation to reduce computational intensity
resulting from laser point cloud features. FAST-LIO2 [13] also utilized IESKF and improved
positioning by incorporating the original LiDAR point cloud information into the map,
enhancing accuracy by observing subtle environmental features. The system employed
an incremental K-D tree (IKD tree) data structure for incremental updates and dynamic
point cloud smoothing, reducing computational requirements and increasing real-time
performance. Li [14] proposed a bilateral haptic teleoperation method to enhance robot
adaptability. Faster-LIO [15] replaced the IKD tree with an incremental voxel-based point
cloud data structure (iVox) that supports incremental insertion and parallel approximation
queries, resulting in an efficient and robust LiDAR inertial odometry (LIO) framework.

Another approach to address the localization problem is to utilize graph optimiza-
tion [16] in the framework of SLAM algorithms. Although the aforementioned filter-based
approach offers significant advantages in terms of localization speed, it falls short of the
localization accuracy achieved by graph optimization.

Kukko [17] collected 3D point cloud data from the surrounding forest environment
using mobile laser scanning and combined the results with GNSS/INS to optimize the
trajectory using a graph optimization method. This approach accurately extracted the forest
map and tree parameters. Hess [18] implemented 2D LiDAR localization and mapping
based on graph optimization, employing the branch-and-bound method for scan calculation.
Chang [19] proposed IMU and ODO pre-integration that incorporates odometry. They
used a 3D probabilistic map at the front end to enhance point cloud matching effectiveness
in feature-limited environments and ensure system trajectory accuracy when GNSS signals
are unavailable. Pierzchała [20] employed a graph-based SLAM system with a 16-line
laser rangefinder, camera, IMU, and GPS to evaluate relative distances between wood
structures and trees. Google Cartographer [21] achieved the fusion of GNSS, 3D-LiDAR,
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and IMU data based on graph optimization. This method assumed that the mobile robot
moved at a low, uniform speed and used gravity to solve horizontal attitude, neglecting
modeling of IMU deviation errors. LOAM [22], proposed by Zhang and Singh, extracted
edge and planar features from LiDAR point clouds to reduce computational effort required
for matching. The framework used a high-frequency LiDAR odometry for positional
estimation at the front end and low-frequency map optimization at the back end for
map-building. This resulted in a low-computation, low-drift, and real-time SLAM system.
LOAM consistently performed well in the KITTI [23] dataset. Subsequently, several variants
and updated versions of LOAM were proposed, including LeGO-LOAM [24], R-LOAM [25],
and F-LOAM [26]. These SLAM algorithms primarily focused on improving the processing
time of the LOAM algorithm. For in-vehicle navigation systems, the integration of LiDAR
SLAM with GNSS/INS plays a crucial role in achieving system redundancy and robustness.
Shan’s proposed LIO-SAM [27] utilized point cloud feature extraction with key frames at
the front end to reduce computational effort. It also incorporated IMU pre-integration factor,
GPS factor, and laser odometry factor into the back-end factor map optimization to construct
P3-LOAM [28]. The system combines LiDAR-SLAM with GNSS precise point positioning
and estimates the covariance of laser SLAM based on the error propagation model of the
SVD Jacobi matrix. Additionally, it relies on laser SLAM when the GNSS observations
contain significant errors, eliminating PPP outliers and achieving high-accuracy positioning
in urban canyon environments.

In summary, filter-based methods primarily rely on the first-order Markov assumption,
where the current state depends only on the previous state. While this reduces compu-
tational complexity, it also leads to accumulated drift errors. On the other hand, graph
optimization-based methods store the states of all previous time steps using keyframes
and continuously correct accumulated errors with subsequent observations. However, the
drawback is that it requires more computational resources and memory usage.

To address these challenges, this paper proposes a SLAM system that combines
filtering and graph optimization, aiming to improve localization speed while maintaining
accuracy. The main contributions of this work are as follows:

1. We employ the IESKF algorithm to achieve tight coupling of laser rangefinder and
IMU data, enabling robust pose estimation. This approach effectively integrates sensor
data to improve the accuracy and stability of frontend pose estimation.

2. We introduce a method for filtering out anomalous GPS data based on GPS state
variables and confidence. This method effectively reduces the interference and errors
caused by GPS data, thereby enhancing the localization performance of the SLAM
system under GPS interruption.

3. We utilize factor graph optimization to fuse the frontend-generated odometry, IMU,
GPS, and loop closure detection modules. By constructing a factor graph, the system
can leverage the information from each module during the optimization process,
improving the overall localization accuracy and consistency of the SLAM system.

4. The proposed SLAM framework’s localization accuracy improvements are tested and
evaluated using GPS uninterrupted/interrupted tests on the KITTI dataset and our
own experimental platform.

2. SLAM System

The framework for the GPS, IMU, and LiDAR localization and mapping system
presented in this paper is illustrated in Figure 1. The system comprises several modules,
including data preprocessing, front-end IESKF odometry, back-end factor graph global pose
optimization, GPS data filtering, and loop closure detection. The front-end utilizes a tightly
coupled laser inertial odometry based on IESKF, while the back-end employs a factor graph
(shown in Figure 2) to fuse the front-end LIO factors, IMU predicted measurement factors,
and GPS factors.
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Factor Graph Optimization is a graph model used for probabilistic inference and
parameter estimation problems. It employs a graph structure composed of nodes and
edges to represent the dependencies and constraints between variables. In this model,
nodes represent the variables to be optimized, while edges represent the constraints. By
constructing such a graph, we can gain a better understanding of the problem’s structure
and utilize optimization algorithms to find the optimal variable configuration. Factor
Graph Optimization provides a flexible and effective approach for addressing complex
inference and estimation problems.

The process of Factor Graph Optimization involves iteratively minimizing an objective
function that measures the difference between the predicted state vector and the actual
state vector. In this paper, we employ Incremental Smoothing and Mapping (iSAM2) [29]
using Bayesian tree mapping for the factor graph optimization process. The objective of
this process is to obtain the posterior pose distribution of the robot, given the known sensor
measurement noise, and further model it by iteratively decomposing a set of factors φ(X).
The objective function is described by Equation (1):

arg min
X

f (X) = arg max
X

∏
i

φi(Xi) (1)

where X is the vector to be estimated, and f (X) is the cost function.
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Equation (1) can be equivalently expressed as a least squares form, as shown in
Equation (2):

arg min
X

f (X) , arg min
X

∑
i
‖hi(Xi)− zi‖2

Di
(2)

where h(X) is the observation equation, z is the observed value, and D is the covariance
matrix of the observed value.

The modeling of the robot state vector x consists of the rotation matrix R ∈ SO(3),
position p ∈ R3, velocity v, and IMU bias b. A transformation T ∈ SE(3) from the robot
base O to the world frame W is represented as T=[R | p].

x =
[
RT, pT, vT, bT

]T
(3)

2.1. IESKF LiDAR Inertial Odometry Factor

In this paper, we employ an IESKF in the front-end to achieve tight coupling of sensor
data from laser odometry and IMU, aiming to achieve higher algorithm accuracy than
LIO-SAM when GPS is interrupted. Compared to traditional Kalman filter methods, this
approach offers three main advantages [30]. Firstly, it reduces computational complexity
by ignoring second-order products, resulting in a smaller error state. Secondly, it addresses
parameterization and gimbal lock problems by keeping the orientation error state small.
Thirdly, the slow change in the error state allows for error correction at a lower rate than
prediction. The IESKF filtering method used in this paper is based on the approaches
presented in LINS and FAST-LIO, and the algorithm steps are outlined below:

(1) Input the posterior state variables
_
x k and covariance matrix

_
Pk output by the previous

IESKF, the laser point cloud after motion compensation, and the IMU data collected
during the current laser scan.

(2) Predict the state variables and covariance matrix as shown in Equations (4) and (5). In

Equation (4): ⊕ denotes the generalized addition;
^
x i+1 and

^
x k respectively represent

the prior system state variables between the laser frames k-th and k + 1-th when
receiving IMU data at times i and i+ 1; T = ti+1− ti denotes the IMU sampling period;
f (

^
x i, ui, ωi) denotes the system state transition matrix; and ui and ωi represent the

IMU measurement values and their measurement noise at time i. In Equation (5):
^
P i+1

represents the predicted covariance matrix at time i + 1; Fi represents the predicted
state matrix at time i; Bi represents the noise matrix; Q represents the noise covariance

matrix; and
_
Pk represents the posterior covariance matrix of the laser k-th frame.

^
x i+1=

^
x i ⊕ [T · f (

^
x i, ui, ωi)]

^
x 0=

_
x k

(4)

^
P i+1 = Fi

^
P iFT

i + BiQBT
i

^
P0 =

_
Pk

(5)

(3) Setting the initial value of the iteration count α to 1, the state quantity of the iteration

is
^
x

α=0
k+1 =

^
x k+1.

(4) Judge whether the absolute value of the difference between the state quantity obtained
after one iteration and the previous iteration is less than the threshold ∂, represented
by the symbol in Formula (6), where 	 denotes generalized subtraction. If it is less
than the threshold ∂, then repeat the following loop.∥∥∥∥^x α+1

k+1 	
^
x

α

k+1

∥∥∥∥ < ∂ (6)
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(a) Calculate the Jacobian matrix Jα
k+1 of the error state vector at δxα

k+1 = 0 point
using Formula (7), where δxk+1 represents the error state vector of k + 1-th

frame. Use Formula (8) to update the prior covariance matrix
^
Pk+1 during the

iteration process.

δxk+1 =
^
x

α

k+1 	
^
x k+1 + Jα

k+1δxα
k+1

Jα
k+1 =

[
Ak+1(δθk+1)

−T 03×15
015×3 I15×15

]
(7)

^
Pk+1 =

(
Jα
k+1
)−1^Pk+1

(
Jα
k+1
)−T (8)

(b) Transform the laser point cloud into the world coordinate system, and calculate
the residual equation f (xk

k+1) and covariance matrix Hk+1 of the observation us-
ing Formulas (9) and (10), respectively. Here, X̃Le

(k+1,i) and X̃Ls
(k+1,i) represent

the coordinate sets of feature points after motion compensation for corner points
Le and plane points Ls, respectively, between k-th frame and k + 1-th frame.
The covariance matrix Hk+1 is represented using the formula from LINS, Rk

k+1
represents the pose transformation of the laser between k-th frame and k + 1-th
frame, and [•]× denotes the skew-symmetric matrix of the variable.

f (xk
k+1) =


∣∣∣(X̃Le

(k+1,i)−XLe
(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLe

(k,l)

)∣∣∣∣∣∣XLe
(k,j)−XLe

(k,l)

∣∣∣∣∣∣(X̃Ls
(k+1,i)−XLs

(k,j))
(
(XLs

(k,j)−XLs
(k,l))×(XLs

(k,j)−XLs
(k,m)

)
)∣∣∣∣∣∣(XLs

(k,j)−XLs
(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)∣∣∣
(9)

Hk+1 = ∂ f
∂X̃L

(k+1,i)
·

∂X̃L
(k+1,i)
∂δx

=




{[(

X̃Le
(k+1,i)−XLe

(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLs

(k,l)

)]T

∣∣∣(X̃Le
(k+1,i)−XLe

(k+1,i)

)
×
(

X̃Le
(k+1,i)−XLs

(k,l)

)∣∣∣
·
[

Rk
k+1

(
XLs
(k+1,i)

)
×

, I
]

{ [(
XLs
(k,j)−XLs

(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)]T∣∣∣(XLs
(k,j)−XLs

(k,l)

)
×
(

XLs
(k,j)−XLs

(k,m)

)∣∣∣
}
·
[

Rk
k+1

(
XLs
(k+1,i)

)
×

, I
] (10)

(c) Update the state variables
^
x

α+1
k+1 and Kalman gain Kk+1 using

Formulas (11) and (12).

^
x

α+1
k+1 =

^
x

α

k+1 − Kk+1 f α
k+1 − (I − Kk+1Hk+1)

(
Jα
k+1
)−1
(
^
x

α

k+1 	
^
x k+1

)
(11)

Kk+1 =

(
^
P
−1

k+1 + HT
k+1L−1

k+1Hk+1

)−1

HT
k+1L−1

k+1 (12)

(5) Output the posterior state quantity
_
x k+1 and posterior covariance

_
Pk+1 using

Equations (13) and (14).
_
x k+1 =

^
x

α+1
k (13)

_
Pk+1 = (I − Kk+1Hk+1)

^
Pk+1 (14)

During factor graph optimization, there is redundant information between IMU data
and laser point cloud data. Including IESKF odometry data of each frame in the back-end
factor graph optimization only leads to a slight improvement in localization accuracy but
consumes a significant amount of computational resources, which ultimately affects the
localization accuracy of the system. Therefore, we employ the keyframe and sliding window
strategy in factor graph optimization to reduce the computational resources required in
the back-end. Keyframes are selected based on representative laser-IMU odometry data
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over a specific period, helping to reduce the data volume. In the sliding window approach,
only the keyframe data within the window is optimized, while the regular data frames
are discarded.

In this paper, “ordinary frames” refers to laser frames observed by IESKF, while
“keyframes” are determined based on position or attitude changes estimated by IESKF’s
laser inertial odometry exceeding 1 m or 5◦, respectively. Adjacent keyframes are utilized
to construct local maps. Based on the current keyframe pose, i nearest keyframes are
extracted to form the adjacent keyframe set {Fi−k, · · · , Fk}, and the poses corresponding
to the adjacent keyframe set are transformed to the current keyframe F coordinate system.
After the transformation, the adjacent keyframe point clouds are merged into one local
map. As subsequent new keyframe point clouds are added to the local map, keyframe
point clouds that are far away from the local map are removed. To obtain a more accurate
pose transformation relationship between two keyframes, this paper adopts the ICP regis-
tration algorithm to match the current keyframe with the local map and derive the pose
transformation relationship. The residual equation between the k-th and k+1-th laser radar
keyframes can be obtained as shown in Equation (15):

rL =

[
∆t− RT

k (tk+1 − tk)
log
(
∆RTRT

k Rk+1
) ] (15)

2.2. GPS Factor

Due to significant fluctuations in GPS data in highly urbanized environments, this
paper incorporates a GPS state and confidence filtering approach to screen the available
GPS data and include them as GPS factors in the factor graph. This method aims to exclude
anomalous GPS data from being included in the factor graph, thereby ensuring higher
accuracy. Specifically, this paper only utilizes GPS data with fixed solutions and narrow
lane fixed solutions.

In geometric positioning methods, the accuracy of localization is influenced by the
relative distances between multiple base stations and mobile stations, which is commonly
referred to as Dilution of Precision (DOP). To calculate the DOP factor, we introduce the
GPS single-point positioning model, which is represented by the following equation:

ρj =

√(
xj − xu

)2
+
(

yj − yu

)2
+
(
zj − zu

)2
+ c
(
tu − tj

)
(16)

where (xu, yu, zu) is the receiver coordinates,
(

xj, yj, zj

)
is the base station coordinates,

tu and tj are the clock bias between the receiver and the base station, ρj represents the
pseudorange from the receiver to the base station, and j represents the number of visible
base stations.

Given the approximate values of receiver coordinates (x̃u, ỹu, z̃u), and clock error t̃u,
we can linearize the positioning model by performing a first-order Taylor series expansion,
as shown in Equation (17). Furthermore, we can represent Equation (17) in matrix form as
Equation (18):

∆ρj = lj∆xu + mj∆yu + nj∆zu − c∆tu (17)

∆P = H∆X (18)

∆P =


∆ρ1
∆ρ2

...
∆ρj

, H =


l1 m1 n1 1
l2 m2 n2 1
...

...
...

...
lj mj nj 1

, ∆X =


∆xu
∆yu
∆zu
−c∆tu

 (19)

where lj, mj, and nj represent the direction cosines of the unit vector pointing from the
approximate position towards the j-th base station.
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By applying the least squares method to solve Equation (18), we can derive quantitative
expressions for the components of the symmetric matrix G, which represent the accuracy
factors. These expressions are given by the following equation:

G =
(

HTH
)−1

=


g11 g12 g13 g14
g12 g22 g23 g24
g13 g23 g33 g34
g14 g24 g34 g44

 (20)

We select the square root of the sum of squared errors in dimensions, precision, and
elevation as the confidence criterion, which is commonly known as PDOP (Position Dilution
of Precision). It can be calculated using the following equation:

PDOP=
√

g11+g22+g33 (21)

First, the inspection robot is moved to an open area to allow for movement, and multi-
ple confidence values are recorded when the GPS state is a fixed solution. The maximum
value among these recorded confidences is selected as the threshold for fixed solution con-
fidence. Second, the steps mentioned above are repeated to obtain the confidence threshold
for narrow lane fixed solutions. Finally, during the operation of the SLAM system, the
corresponding confidence threshold is selected based on the GPS state. This threshold is
then compared with the current confidence value, and GPS data with a confidence lower
than the threshold are considered usable. Figure 3 illustrates the flowchart of the GPS state
and confidence filtering strategy employed in this paper.
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After filtering out unreliable data based on confidence, we utilize the remaining GPS
data to calculate the coordinates in the W-frame for latitude, longitude, and altitude. These
coordinates are then incorporated into the factor graph as a GPS position constraint cost
function. The GPS position constraint cost function is represented by the following equation:

∑
i∈G

∥∥∥e
(

Ro
ti

, Rw
o

)∥∥∥2

Dg
= ∑

i∈G

∥∥∥Rw
o

(
Ro

ti
Tb

g

)
− Tw

g

∥∥∥2

Dg
(22)

where Ro
ti

is the pose of the IMU in the vehicle coordinate system at time ti, Rw
o is the

transformation parameters between the vehicle coordinate system and the global coordinate
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system W, Tw
g is the GNSS positioning result in the global coordinate system W, Tb

g is the
antenna lever arm for GNSS, Dg is the variance-covariance matrix for Tw

g provided by the
GNSS RTK positioning solution, and G is the set of nodes with GNSS position correction.

We conducted tests in practical scenarios, specifically at the rear of the supporting
service center building in the Intelligent Technology Park, where GPS data exhibited
fluctuations. Figure 4 illustrates the GPS trajectories before and after applying our filtering
approach. It can be observed that the GPS data exhibits significant fluctuations prior to
filtering, whereas the fluctuations are reduced after the application of our filtering method.
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2.3. Loop Detection Factor

Similar to LIO-SAM, this paper employs a keyframe-based Euclidean distance ap-
proach for loop closure detection. Firstly, the laser point cloud is transformed into the
world coordinate system. Based on the position of the current keyframe, a search range
of distance d is defined to identify historical keyframes that are in close proximity and
have a longer detection time. The positions of the keyframes within the search range are
further filtered based on a specified time interval. The local feature point cloud map is
constructed by aggregating feature point clouds from a range of 25 frames centered around
the identified historical keyframes. The current keyframe is then matched with the local
feature point cloud map using ICP point cloud registration to determine the relative pose
transformation relationship in the world coordinate system. For a more comprehensive
explanation of the loop closure detection process, please refer to LIO-SAM.

2.4. IMU Pre-Integration

The angular velocity and acceleration measured from the IMU are defined as follows:

_
ωt = ωt + bω

t + nω
t (23)

_
a t = RBW

t (at − g) + ba
t + na

t (24)

where
_
ωt and

_
a t are the measurements of the IMU at the moment t and the B coordinate

systems,
_
ωt and

_
a t are subject to the slowly transformed bias bt and white noise nt, RBW

t is
the rotation matrix from the coordinate system W to B, and g is a fixed gravity vector in the
W coordinate system.

The robot motion was then inferred from the IMU measurements. The position,
attitude, and velocity of the robot during t + ∆t were calculated as follows:

vt+∆t = vt + g∆t + Rt(
_
a t − ba

t − na
t )∆t (25)
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pt+∆t = pt + vt∆t +
1
2

g∆t2 +
1
2

Rt(
_
a t − ba

t − na
t )∆t2 (26)

Rt+∆t = Rt exp((
_
ωt − bω

t − nω
t )∆t) (27)

where R = RWB
t = RBW

t
T RBW

t are the rotation matrices of the coordinate systems B to
W, and the angular velocity and acceleration of the base coordinates B are assumed to be
constant during the integration process. Then, we use the IMU pre-integration method
to obtain the relative motion of the carriers within adjacent timestamps, where the pre-
integrated measurements ∆vij, ∆pij, and ∆Rij between moments i and j are calculated by
the following equations:

∆vij = Ri
T(vj − vi − g∆tij) (28)

∆pij = Ri
T(pj − pi − vi∆tij −

1
2

g∆tij
2) (29)

∆Rij = Ri
T Rj (30)

3. Experimental
3.1. KITTI Dataset Testing and Evaluation

This paper presents an experimental study on the fusion of filtering and graph op-
timization SLAM algorithms using the KITTI datasets 05, 07, and 10. The trajectories
and ATE statistical indicators generated are compared and analyzed with an open-source
multi-sensor fusion SLAM algorithm using the EVO [31] trajectory evaluation tool. The
filtering algorithm used in this experiment is FAST-LIO, while the graph optimization
algorithm used is LIO-SAM. To evaluate the robustness of the algorithm when GPS is
suddenly interrupted, GPS data is also interrupted. Since FAST-LIO does not incorporate
GPS, its accuracy is not affected by GPS interruption. Therefore, its ATE statistical indicator
is not presented in the GPS interruption experiment.

3.1.1. GPS Uninterrupted Experiment

To start, we performed the GPS non-interruption experiment and obtained trajectories
for sequences 05, 07, and 10, as depicted in Figures 5–8, respectively. Our algorithm
exhibited superior trajectory results compared to the two open-source algorithms, with
trajectories that closely aligned with the true values.
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Figure 5. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI05 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.



Sensors 2023, 23, 6000 11 of 18
 Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence. (A) 

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO. 

 

Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence. (A) 

and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO. 

 

Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are 

the road sections where our trajectory is better than LIO-SAM. 

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO 

and LIO-SAM. 

Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI da-

taset. 

Sequence Method Max (m) Mean (m) Median (m) Min (m) 

05 

Ours 1.572958 0.555240 0.623827 0.054046 

LIO-SAM 1.140164 0.604368 0.666729 0.050848 

FAST-LIO 12.143285 5.453287 6.046867 0.743559 

07 

Ours 1.333466 0.555258 0.605827 0.079949 

LIO-SAM 1.323349 0.617591 0.665901 0.147816 

FAST-LIO 4.248161 2.376953 2.522683 0.456325 

A

B

A B

A

B

A B

A

B

A B

GPS outage 

origin
GPS outage 

endpoint

Figure 6. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI07 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.
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Figure 7. Comparison of our trajectory with LIO-SAM and FAST-LIO on the KITTI10 sequence.
(A) and (B) are the sections where our trajectory is better than LIO-SAM and FAST-LIO.
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Figure 8. Comparison of our trajectory with LIO-SAM on the KITTI05 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

In Table 1, we present our algorithm alongside the ATE statistical data for FAST-LIO
and LIO-SAM.

In terms of performance metrics on the 05 sequence, the algorithm proposed in this
paper outperformed both LIO-SAM and FAST-LIO. Specifically, it achieved improvements
of 21.57%, 44.75%, 43.19%, and 12.22% in maximum error, average error, root mean square
error, and minimum error, respectively, when compared to LIO-SAM. Furthermore, com-
pared to FAST-LIO, the proposed algorithm showed improvements of 74.09%, 79.64%,
63.68%, and 58.57% in the same metrics.
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Table 1. Comparing the absolute error of our method, LIO-SAM and FAST-LIO on the KITTI dataset.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05
Ours 1.572958 0.555240 0.623827 0.054046

LIO-SAM 1.140164 0.604368 0.666729 0.050848
FAST-LIO 12.143285 5.453287 6.046867 0.743559

07
Ours 1.333466 0.555258 0.605827 0.079949

LIO-SAM 1.323349 0.617591 0.665901 0.147816
FAST-LIO 4.248161 2.376953 2.522683 0.456325

10
Ours 2.751671 1.146823 1.293698 0.262802

LIO-SAM 5.528663 1.544244 1.914991 0.140108
FAST-LIO 5.772416 2.933960 3.189745 0.497090

On the 07 sequence, the algorithm presented in this paper did not perform as well
as LIO-SAM in terms of minimum error. However, it outperformed both LIO-SAM and
FAST-LIO in other statistical indicators. Specifically, it achieved improvements of 20.14%
and 52.19% in maximum error, 30.95% and 61.28% in average error, and 43.47% and 61.27%
in root mean square error, respectively.

Finally, on the 10 sequence, the algorithm proposed in this paper outperformed both
LIO-SAM and FAST-LIO in all metrics. In particular, it achieved improvements of 32.42%
and 50.24% in maximum error, 48.09% and 58% in average error, 46.28% and 57.9% in root
mean square error, and 65.88% and 47.13% in minimum error, respectively.

3.1.2. GPS Interrupted Experiment

This paper aims to simulate sudden interruptions of GPS signals by applying interrup-
tion processing to GPS data in the KITTI dataset, starting from the 20th second. Specifically,
interruptions of approximately 268 s, 95 s, and 107 s were applied to the KITTI05, KITTI07,
and KITTI10 sequences, respectively. The trajectories of these sequences are shown in
Figures 8–10, respectively. From Figures A and B in each of these figures, it can be observed
that the trajectory generated by the algorithm proposed in this paper is superior to that
generated by LIO-SAM in GPS signal interruption scenarios.
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Figure 9. Comparison of our trajectory with LIO-SAM on the KITTI07 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

Table 2 presents the ATE statistical data for the proposed algorithm and LIO-SAM in
GPS signal interruption scenarios.

For the KITTI05 sequence, the proposed algorithm has a slightly higher minimum error
value than LIO-SAM, with an increase of 0.126808 m. However, the proposed algorithm
outperforms LIO-SAM in all other statistical indicators, with improvements of 40.92%,
29.01%, and 28.2%, respectively.
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Figure 10. Comparison of our trajectory with LIO-SAM on the KITTI10 sequence. (A) and (B) are the
road sections where our trajectory is better than LIO-SAM.

Table 2. Comparing the absolute error of our method with LIO-SAM on KITTI.

Sequence Method Max (m) Mean (m) Median (m) Min (m)

05
Ours 2.936086 1.242616 1.392347 0.177911

LIO-SAM 4.969321 1.750427 1.939206 0.051103

07
Ours 1.272413 0.667964 0.723489 0.139385

LIO-SAM 2.237385 0.775331 0.872355 0.135207

10
Ours 2.978839 1.422265 1.524391 0.331625

LIO-SAM 6.073832 1.803528 2.169900 0.122156

For the KITTI07 sequence, the proposed algorithm has a slightly higher minimum
error value than LIO-SAM, but it outperforms LIO-SAM in all other statistical indicators,
with improvements of 43.13%, 13.85%, and 17.06%, respectively.

For the KITTI10 sequence, the proposed algorithm has a slightly higher minimum error
value than LIO-SAM, with an increase of 0.209469 m. However, the proposed algorithm
outperforms LIO-SAM in all other indicators, with improvements of 50.96%, 21.14%, and
29.75%, respectively.

3.2. Experiments on a Real Platform

In a subsequent evaluation of the method proposed in this paper, we conducted
localization map-building experiments on an actual autonomous mobile robot in an outdoor
environment. All datasets of real scenes in the park were collected on an experimental
platform, as shown in Figure 11. The experimental platform was equipped with a 1.60 GHz
Intel i5-8250U IPC and connected to an RS-LiDAR-16 LiDAR with a frequency of 10 Hz,
a Witt Smart IWT905 IMU with a frequency of 200 Hz, and a GPS consisting of a 10 Hz
BeiDou XingTong base station NC502-D and a mobile station NC507-S.
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An experiment was conducted to evaluate the positioning accuracy of our algorithm
applied to data collected with a mobile autonomous robot in an outdoor environment
where fluctuations or interruptions occurred in the GPS data. A navigation area with
an approximate size of 280 × 280 m2 was created in the park, and the resulting map is
presented in Figure 12.
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3.2.1. GPS Uninterrupted Experiment

First, an experiment was conducted with uninterrupted GPS, and the resulting tra-
jectory within the intelligent technology park is illustrated in Figure 13. The trajectory
generated by the algorithm proposed in this paper closely aligns with the true trajectory,
demonstrating superior trajectory accuracy compared to LIO-SAM. For instance, in the
road section depicted in Figure 13A, the algorithm proposed in this paper exhibits the
closest match to the true trajectory. Similarly, in the road section shown in Figure 13B, the
proposed algorithm outperforms both LIO-SAM and FAST-LIO.
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Figure 13. Comparison charts with LIO-SAM trajectory on our own data set (A) and (B) are road
sections where our trajectory is better than LIO-SAM.

Within the intelligent technology park, Table 3 presents the ATE statistical data com-
paring the algorithm proposed in this paper, FAST-LIO, and LIO-SAM. In all statistical
indicators, the algorithm proposed in this paper outperforms the two mentioned open-
source algorithms. The maximum error value has been improved by 51.03% and 64.64%,
the average error value has been improved by 21.68% and 55.5%, the root mean square
error has been improved by 24.98% and 58.58%, and the minimum error value has been
improved by 71.30% and 68.92%, respectively. These results affirm the high accuracy of the
algorithm proposed in this paper.
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Table 3. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Method Max (m) Mean (m) Median (m) Min (m)

Ours 7.827892 3.801397 4.189983 0.245139
LIO-SAM 15.985649 4.853936 5.585050 0.854267
FAST-LIO 22.136492 8.540459 10.115659 0.788699

3.2.2. GPS Interrupted Experiment

The experiment was conducted with intermittent GPS signal, and its trajectory within
the Intelligent Technology Park is shown in Figure 14. Table 4 shows the ATE statistical
data of this paper’s algorithm and LIO-SAM under GPS interruption conditions.
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Figure 14. Comparison with LIO-SAM trajectory on our own data set (A–C) are road sections where
our trajectory is better than LIO-SAM.

Despite varying GPS interruption times, the minimum error value remains unchanged,
and the maximum error value changes relatively little. This is because the poses associated
with the minimum and maximum error values in the entire trajectory of the Intelligent
Technology Park are not part of the trajectory produced during GPS interruption. There-
fore, the subsequent analysis of ATE statistical indicators will exclude the maximum and
minimum error values.

Under the GPS interruption condition for 50 s, this paper’s algorithm shows better
average error and root-mean-square error compared to LIO-SAM, with improvements
of 19.61% and 30.53%, respectively. Under the GPS interruption condition for 100 s, this
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paper’s algorithm demonstrates improvements of 17.33% and 29.11% in terms of average
error and root-mean-square error compared to LIO-SAM. Under the GPS interruption
condition for 200 s, this paper’s algorithm still outperforms LIO-SAM, with improvements
of 12.05% and 23.14%, respectively. These results indicate that this paper’s algorithm main-
tains relatively good accuracy improvement even when GPS data is suddenly interrupted
for 50 s, and the improvement rate gradually decreases with longer GPS data interruption
time. However, the overall trajectory accuracy of this paper’s algorithm remains higher
than that of LIO-SAM.

Table 4. Comparing the absolute error of our method with LIO-SAM on our own dataset.

Time(s) Method Max (m) Mean (m) Median (m) Min (m)

50
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

100
Ours 7.955014 4.338442 4.700273 0.245139

LIO-SAM 15.671642 5.396973 6.765650 0.854267

200
Ours 7.927294 4.952018 5.397438 0.245139

LIO-SAM 15.90683 5.630523 7.022866 0.854267

4. Conclusions

This paper presents a SLAM system that combines the IESKF and factor graph ap-
proaches. The proposed algorithm tightly integrates the laser rangefinder and IMU to
obtain an initial pose estimation using IESKF in the front-end. In the back-end, it fuses front-
end odometry, IMU, GPS, and loop closure factors, using a factor graph to achieve precise
pose estimation. Additionally, a filtering strategy based on GPS status and confidence is
applied to remove abnormal GPS data. Multiple experiments were conducted on the KITTI
dataset and our own dataset to verify the accuracy of the SLAM system in scenarios with
GPS signal interruption. The results demonstrate that our method outperforms LIO-SAM
and FAST-LIO in terms of accuracy when GPS data is interrupted.
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