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Abstract: The robust Kalman filter with correntropy loss has received much attention in recent years for
forecasting-aided state estimation in power systems, since it efficiently reduces the negative influence
of various abnormal situations, such as non-Gaussian communication, changing environment, and in-
strument failures, and obviously improves the stability of power systems. However, the existing
correntropy-based robust Kalman filters usually use the Gaussian function with a fixed center as
the kernel function in correntropy, which may not be a suitable choice in practical applications of
power system forecasting-aided state estimation (PSSE). To address this issue, a new and robust
unscented Kalman filter, called the maximum correntropy with variable center unscented Kalman
filter (MCVUKF), is proposed in this paper for PSSE. Specifically, MCVUKF adopts an extended
version of correntropy, whose center can be located at any position, to replace the original correntropy
in an unscented Kalman filter to improve the performance in PSSE. Moreover, by using an exponential
function of the innovation vector to adjust a covariance matrix, an enhanced MCVUKF (En-MCVUKF)
method is also developed for suppressing the influence of bad data to the innovation vector and
further improving the accuracy of PSSE. Finally, extensive simulations have been conducted on IEEE
14-bus, 30-bus, and 57-bus test power systems, and the simulation results have shown the superiority
of the proposed MCVUKF and En-MCVUKF methods compared with several related state-of-the-art
Kalman filter methods.

Keywords: correntropy with variable center; unscented Kalman filter; robustness; power system
state estimation

1. Introduction

State estimation has played an important role in the energy management system,
which is necessary for the reliability, safety, economic operation, and resiliency of power
systems. Generally speaking, the state estimation in power systems can be classified
into two categories, including static state estimation (SSE) and forecasting-aided state
estimation (FASE) [1]. Different from SSE that captures the real-time operating state of the
power system, FASE mainly focuses on predicting the trend of the power system. Due to
the variety of loads in the power system, which usually leads to the change of the state
information of buses, SSE fails to deal with the influence of the change of system loads.
By contrast, based on the obtained prior information, FASE can analyze and predict the
changing trend of the power system. Hence, in recent years, FASE has gained considerable
attention in the field of power systems for state estimation [2,3].

As one of the most useful power system forecasting-aided state estimation (PSSE)
techniques, the Kalman-type filters and their improvements have been widely applied in
FASE due to their excellent tracking ability in power systems [4–6]. Traditional Kalman
filters (KF) aim to obtain the accurate state estimation for a linear dynamic system, which
are difficult to achieve the optimal filter for nonlinear systems. However, in many practical
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applications, the power systems are usually nonlinear. To address the nonlinear filtering
issue, two typical nonlinear extensions of the traditional KF, i.e., extended Kalman filter
(EKF) [7,8] and unscented Kalman filter (UKF) [9,10], have been widely proposed. For
example, Zhao et al. proposed an H∞ EKF method for PSSE, which was based on the
control theory to bound the influence of the uncertainties, such as uncertain inputs or
varying generator transient reactance in different operation conditions [11]. Generally
speaking, to estimate the state of power system, the EKF methods aim at using the first-
order Taylor expansion to approximate the nonlinear functions, which seriously suffer
from the strong nonlinearities of the model. In order to overcome this drawback, the UKF
methods have been successfully developed in PSSE due to the good performance in highly
nonlinear systems and a simple calculation process. In fact, the UKF approaches mainly
utilize the unscented transformation (UT) to approximate the probability distribution
functions. It is worth noting that most of the existing KF methods are proposed by using the
popular minimum means square error (MMSE) criterion, because it can achieve the optimal
performance under Gaussian assumption. However, the distribution of noise in various
practical applications usually fails to satisfy the condition of Gaussian assumption [12–14].

Due to unknown system inputs (e.g., tripping of customer loads and parameter vari-
ations), the power system model is subject to uncertainties. Moreover, the process and
observation noise in power systems are usually non-Gaussian with multi-peak or heavy-
tailed distribution, which is verified by the Pacific Northwest National Lab [15]. In this
situation, the performance of the MMSE criterion-based KF methods may degrade seriously
in PSSE. In order to improve the robustness of traditional KF methods, several informa-
tion theoretic criteria have been adopted as the robust criterion to replace the original
MMSE criterion in KF algorithms [16–20]. Typical examples include the minimum error
entropy criterion (MEE) [21–23] and the maximum correntropy criterion (MCC) [24–26].
For instance, Ma et al. respectively proposed a adaptive extended Kalman filter with
correntropy loss [27] and a unscented Kalman filter with the generalized correntropy loss
(GCL-UKF) [28] for the real-time state estimation of the power system; Chen et al. first
utilize the MEE criterion into UKF and proposed a minimum error entropy-based UKF
method for robust power system state estimation [29]. Although the MEE and MCC-based
KF methods have been demonstrated to be effective for suppressing the bad impact of
the heavy-tailed noise and outliers in the power system, they still have some drawbacks.
For example, the MEE-based KF methods usually require high computational complexity
in PSSE. The MCC-based KF methods have a reasonable computational cost in practical
tasks. However, the kernel function of correntropy used in MCC-based KF methods is
restricted to the zero-mean Gaussian function, which may not be a superior selection in
practical power system applications. The main reason is that when the error distribution in
a power system is non-zero mean, the performance of the error criteria located at zero may
decline obviously.

Toward this end, in this paper, a novel and robust unscented Kalman filter—namely,
the maximum correntropy with variable center unscented Kalman filter (MCVUKF)—is
proposed, which is used to enhance the performance in PSSE. As an extended version of
the original correntropy, the correntropy with variable center, has a flexible center that
can be located at any position, which can match well the error distribution for various
practical situations [30,31]. Instead of using the traditional MMSE and MCC criteria,
the proposed MCVUKF method utilizes the maximum correntropy with variable center
criterion to the UKF to improve the estimation accuracy and enhance the stability against
non-Gaussian noise. Moreover, to further improve the performance of PSSE, an enhanced
MCVUKF (En-MCVUKF) method is also developed by using an exponential function of the
innovation vector to adjust a covariance matrix to suppress the effect of abnormal data to
the innovation vector. Finally, extensive simulations have been conducted on IEEE 14-bus,
30-bus, and 57-bus test power systems, and the simulation results have shown the good
performance of the proposed MCVUKF and En-MCVUKF methods compared with several
related state-of-the-art traditional and robust KF methods.
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The rest of this paper is organized as follows. In Section 2, we briefly describe the
model of power system and the correntropy with variable center. The proposed MCVUKF
and En-MCVUKF methods are presented in Section 3. Extensive simulations are conducted
in Section 4. Finally, the conclusion is given in Section 5.

2. Related Work

In this section, the model of the power system is first introduced. Then, the definition
of the correntropy with a variable center is presented.

2.1. Model of the Power System

A general nonlinear dynamical power system can be described by a set of continuous-
time nonlinear differential and algebraic equations, which are frequently expressed in the
following discrete-time state space form at time instance i:

xi = f(xi−1) + wi (1)

yi = h(xi) + vi (2)

where xi ∈ Rn×1 responds to the state vector that consists of the subvectors of nodal voltage
magnitude Vi ∈ R1×n1 and nodal voltage angles θi ∈ R1×n2 with n = n1 + n2; f(·) is the
state-transition function that relates xi to xi−1; wi ∈ Rn×1 stands for the system process
noise with covariance matrix Qi ∈ Rn×n; yi ∈ Rn×1 denotes the measurement vector; h(·)
is the measurement function that consists of the subvectors of the real power injection
Ta ∈ R1×m1 , the reactive power injection Za ∈ R1×m2 , the real power flow Tab ∈ R1×m3 ,
and the reactive power flow Zab ∈ R1×m4 with m = m1 + m2 + m3 + m4; vi ∈ Rn×1 stands
for the measurement noise with covariance matrix Ri ∈ Rn×n. Generally speaking, in a
practical power system model, the distributions of the existing noises are usually non-
Gaussian. In this work, the main purpose is to develop the new and robust KF method.
Based on Holt’s two-parameter linear exponential smoothing technique [1], the function
f(·) can be expressed in the following form:

xi = ai−1 + bi−1 (3)

ai−1 = αi−1xi−1 + (1− αi−1)x∗i−1 (4)

bi−1 = βi−1(ai−1 − ai−2) + (1− βi−1)bi−2 (5)

where the parameters αi−1 and βi−1 are in [0, 1], x∗i−1 stands for the predicted state vector
at time instance i− 1. Here, the state forecasting function (3) is utilized in (1) to predict the
state vector in advance when the state prediction of the KF method is executed. Based on
the standard real power and reactive power balance as well as power flow equations, the
function h(·) is defined as follows [28,29]:

Ta = |Va|
N

∑
b=1
|Vb|(Gab cos θab + Bab sin θab) (6)

Za = |Va|
N

∑
b=1
|Vb|(Gab sin θab − Bab cos θab) (7)

Tab = V2
a
(
Gga + Gab

)
− |Va||Vb|(Gab cos θab + Bab sin θab) (8)

Zab = −V2
a
(
Bga + Bab

)
− |Va||Vb|(Gab sin θab − Bab cos θab) (9)

where Ta and Za, respectively, stand for the real and reactive power injection at bus a, Va
stands for the voltage magnitude at bus a, θab denotes the voltage angle between buses
a and b, Tab and Zab, respectively, denote the real power flow and reactive power flow
between buses a and b. Gab and Bab denote the conductance and susceptance of the line
between buses a and b, and Gga and Bga denote the conductance and susceptance of the
shunt at bus a.
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2.2. Correntropy with Variable Center

As one of the commonly used robust similarity measures, correntropy is first proposed
in information theoretical learning (ITL) [32]. Compared with the traditional squared Eu-
clidean distance (SED), correntropy can effectively reduce the bad impact of non-Gaussian
noise and outliers. Due to its simplicity and robustness, in recent decades, correntropy has
been successfully used in many practical tasks [33–35]. Considering two random variables
A and B, the definition of correntropy is given by [32,36]:

Vσ(A, B) = E[Gσ(A− B)] = E[Gσ(e)] =
∫

Gσ(a− b)dFAB(a, b) (10)

where Gσ(·) is a kernel function, σ is the kernel bandwidth parameter, and FAB(a, b)
represents the joint distribution function of (A, B) and e = A − B. In most cases, the
Gaussian kernel used in correntropy-based robust methods is usually the Gaussian kernel
function with the center located at zero because it has some outstanding advantages such
as strict positive-definiteness, simplicity, and smoothness. However, in many real-world
environments, the zero-mean Gaussian function is often not a good selection for correntropy,
since it fails to match well the error distribution in practical applications.

To overcome this drawback, correntropy with a variable center has been proposed in
recent years [30], whose definition is expressed as follows:

Vσ,c(A, B) = E[Gσ(e− c)] = E
[

1√
2πσ

exp
(
− (e− c)2

2σ2

)]
(11)

where c denotes the center location. It is worth noting that when c = 0, the correntropy
with a variable center will reduce to the original correntropy. Since the join distribution
FAB(a, b) is usually unknown in real-world applications, based on a finite number of data
points {(an, bn)}N

n=1, the estimation of the correntropy with a variable center is:

V̂N,σ,c(A, B) =
1
N

N

∑
n=1

G(an − bn − c) (12)

where V̂N,σ,c stands for the estimator of Vσ,c, and N is the number of samples. Using the
Taylor series expansion of the Gaussian kernel, we can rewrite (11) as follows:

Vσ,c(A, B) =
1√
2πσ

∞

∑
n=0

(−1)n

2nn!
E
[
(e− c)2n

2σ2n

]
(13)

Similar to the original correntropy, one can observe that from the viewpoint of statistics,
the correntopy with a variable center still can capture the higher order moments (i.e., all
the even order moments) of e that are useful to reduce the sensitivity to non-Gaussian noise
and outliers. Therefore, the correntopy with a variable center is robust to non-Gaussian
noise and outliers.

3. Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust
State Estimation

In this section, the maximum correntropy criterion with variable center (MCC-VC) is
used in the UKF, and the maximum correntropy with variable center unscented Kalman
filter (MCVUKF) approach is derived based on the discrete-time state space Equations (1)
and (2) in a nonlinear power system. The derivation process of MCVUKF includes time
update and measurement update.

3.1. MCVUKF
3.1.1. Time Update

Based on the unscented transformation technique, combining the estimated state
x̂i−1|i−1 and the covariance matrix Pi−1|i−1, a sequence of 2n + 1 sigma points can be gener-
ated:



Entropy 2022, 24, 516 5 of 14

Xs
i−1|i−1 =


x̂i−1|i−1, s = 0

x̂i−1|i−1 +
(√

(n + λ)Pi−1|i−1

)
s
, s = 1, . . . , n

x̂i−1|i−1 +
(√

(n + λ)Pi−1|i−1

)
s−n

, s = n + 1, . . . , 2n
(14)

where
(√

(n + λ)Pi−1|i−1

)
s

denotes the s-th column vector of the square root matrix, λ is

the scalar parameter with λ = δ2(n + κ)− n in which δ ∈ [0, 1] determines the diffusion
degree of the sigma point around, and the parameter κ = 3− n is used to reduce the higher
order errors of the mean and the covariance approximations. Assuming that x0 is an initial
state variable with the initial state mean x̂0|0 = E[x0], we have the initial state estimate
error covariance matrix P0|0 in the following form:

P0|0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (15)

where [·]T denotes the transpose operator. Afterward, we obtain x̂i|i−1 and Pi|i−1:

x̂i|i−1 =
2n

∑
s=0

ωi
ηf(Xs

i−1|i−1) (16)

Pi|i−1 =
2n

∑
s=0

ωi
ν

(
f(Xs

i−1|i−1)− x̂i|i−1

)(
f(Xs

i−1|i−1)− x̂i|i−1

)T
+ Qi−1 (17)

where ωi
η and ωi

ν, respectively, denote the weights of the sigma point mean with ω0
η = λ

n+λ ,
ω0

ν = λ
n+λ , and ωi

η = ωi
ν = 1

2(n+λ)
, i = 1, 2, . . . , 2n, in which λ is related to the distribution

of the state variable.

3.1.2. Measurement Update

Similar to the time update process, 2n + 1 sigma points should be calculated in the
measurement update process from x̂i|i−1 and Pi|i−1:

Xs
i−1|i−1 =


x̂i−1|i−1, s = 0

x̂i−1|i−1 +
(√

(n + λ)Pi|i−1

)
s
, s = 1, . . . , n

x̂i−1|i−1 +
(√

(n + λ)Pi|i−1

)
s−n

, s = n + 1, . . . , 2n
(18)

After that, we have the prior mean ŷi|i−1 and the predicted measurement cross-covariance
matrix Pxy,i:

ŷi|i−1 =
2n

∑
s=0

ωi
ηh(Xs

i|i−1) (19)

Pxy,i =
2n

∑
s=0

ωi
ν

(
Xs

i|i−1 − x̂i|i−1

)(
h(Xs

i|i−1)− ŷi|i−1

)T
(20)

In this work, we utilize the maximum correntropy criterion with a variable center to
a statistical linear regression model for completing the measurement update. Firstly, we
define a prior state estimation error η(xi) and a measurement slope matrix Hi as follows:

η(xi) = xi − x̂i|i−1 (21)

Hi = (P−1
i|i−1Pxy,i)

T (22)

Based on (21) and (22), we can approximate (2) in the following form:

yi ≈ ŷi|i−1 + Hi(xi − x̂i|i−1) + vi (23)
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Combining (1), (21) and (23), we obtain:[
x̂i|i−1

ŷi − ŷi|i−1 + Hi x̂i|i−1

]
=

[
I

Hi

]
xi + ξi (24)

where I denotes a unity matrix, ξi = [−η(xi), vi]
T and

E
[
ξiξ

T
i

]
=

[
Sp,i|i−1ST

p,i|i−1 0
0 Sr,iST

r,i

]
= SiST

i (25)

in which Si is the Cholesky decomposition factor of the matix E
[
ξiξ

T
i
]
. Obviously, we

derive by multiplying S−1
i in both sides of (24):

S−1
i

[
x̂i|i−1

ŷi − ŷi|i−1 + Hi x̂i|i−1

]
= S−1

i

[
I

Hi

]
xi + S−1

i ξi ⇒ Di = Wixi + Ei (26)

where

Di = S−1
i

[
x̂i|i−1

ŷi − ŷi|i−1 + Hi x̂i|i−1

]
(27)

Wi = S−1
i

[
I

Hi

]
(28)

Ei = S−1
i ξi (29)

with Di = [d1,i, . . . , dL,i], Wi = [w1,i, . . . , wL,i], and Ei = [e1,i, . . . , eL,i]. Clearly, based on
E
[
ξiξ

T
i
]
= SiST

i and (29), we have E
[
EiET

i
]
= I. Due to

ek,i = dk,i −wk,ixi (30)

where ek,i denotes the i-th element of ei, the maximum correntropy criterion with a variable
center is used to obtain the optimal values of the state variables, and the optimization
problem is given by

arg max
xi

1√
2πσ

[
1
L

L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)]
(31)

where L denotes the number of data samples. Based on (31), we have the optimal estimate
of xi by minimizing the following optimization problem:

x̂i = arg min
xi

J(xi) =
1√
2πσ

[
exp

(
− c2

2σ2

)
− 1

L

L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)]
(32)

Then, the partial derivative of J(xi) with respect to xi is derived as follows:

∂J(xi)

xi
= − 1√

2πσ
× 1

2σ2
1
L

L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)
(dk,i −wk,ixi)wk,i (33)

By setting ∂J(xi)
xi

= 0, we have

xi =

(
L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)
wT

k,iwk,i

)−1( L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)
wT

k,idk,i

)
(34)

Obviously, (34) is a fixed-point equation with respect to xi. According to [28], it can be
further rewritten in the form of matrix:
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xi =
(

WT
i CiWi

)−1(
WT

i CiDi

)
(35)

where

Ci =

[
Cx,i 0

0 Cy,i

]
(36)

Cx,i = diag

{
exp

(
− (e1,i − c)2

2σ2

)
, . . . , exp

(
− (en,i − c)2

2σ2

)}
(37)

Cy,i = diag

{
exp

(
− (en+1,i − c)2

2σ2

)
, . . . , exp

(
− (en+m,i − c)2

2σ2

)}
(38)

Combining (25) and (28) yields

Wi =

[
S−1

p,i|i−1 0

0 S−1
r,i

][
I

Hi

]
=

[
S−1

p,i|i−1
S−1

r,i Hi

]
(39)

Assume that Sp, Sr, Cx, and Cy stand for Sp,i|i−1, Sr,i, Cx,i, and Cy,i respectively. One can
easily derive by using (36) and (39):(

WT
i CiWi

)−1
=
(
((Sp)

−1)TCxS−1
p + HT

i ((Sp)
−1)TCyS−1

p Hi

)−1
(40)

Based on the matrix inversion lemma, (40) can be rewritten as:(
WT

i CiWi

)−1
=(A + BDC)−1 = SpC−1

x ST
p − SpC−1

x ST
p Hi×(

Hi(Sp)
−1SpC−1

x ST
p HT

i + SrC−1
y ST

r

)−1
HiSpC−1

x ST
p (41)

where ((Sp)−1)TCxS−1
p = A, HT

i = B, ((Sp)−1)TCyS−1
p = C, and Hi = D. Using the

definition of a, one can obtain:

Di =

 S−1
p,i|i−1x̂i|i−1

S−1
r

(
yi − h(x̂i|i−1) + Hi x̂i|i−1

)  (42)

Moreover, combining (36) and (42), we have

WT
i CiDi =(S−1

p )TCxS−1
p x̂i|i−1 + HT

i (S
−1
p )TCyS−1

r (yi − h(x̂i|i−1) + Hi x̂i|i−1) (43)

Finally, one can derive the following update rule by using (35) and (43):

xi = x̂i|i−1 + K̂i(yi − ŷi|i−1) (44)

where

K̂i = P̂i|i−1HT
i (HiP̂i|i−1HT

i + R−1
i ) (45)

P̂i|i−1 = Ŝp,i|i−1C−1
x,i (Ŝp,i|i−1)

T (46)

Ri = Ŝr,iC−1
y,i (Ŝr,i)

T (47)

Furthermore, we also derive the corresponding update rule for the covariance matrix:

P̂i|i = (I− K̂iHi)P̂i|i−1(I− K̂iHi)
T + K̂iRiK̂T

i (48)
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3.1.3. Optimization of the Free Parameters σ and c

For the proposed MCVUKF method, there are two important parameters (e.g, the
kernel width σ and the center location c) that have great influence on the performance
of MCVUKF in PSSE. Particularly, the parameter σ controls all robust properties of the
correntropy with a variable center, and the parameter c enhances the learning performance
of the correntropy with a variable center in various practical applications with non-zero-
mean error distribution. Similar to [30,31], an efficient method is adopted in this subsection
to optimize the two parameters by using the following optimization problem:

{σ(i), c(i)} = arg min
σ∈T,c∈C

1√
2πσ

[
exp

(
− c2

2σ2

)
− 1

L

L

∑
k=1

exp

(
−
(ek,i − c)2

2σ2

)]
(49)

where σ(i) and c(i) denote the adapted parameters at iteration time i, and T and C, respec-
tively, stand for the admissible sets of parameters σ and c. In fact, many approaches can
be adopted to solve the above optimization problem. In this work, for the kernel width
parameter σ, a traditional gradient-based approach is utilized to optimize the optimization
problem (49) for selecting the appropriate value in each iteration. Moreover, for the param-
eter c, in order to simplify the computation complexity of the proposed method, we set the
center location c in MCVUKF to the mean or median value of the error by using the Parzen
window theory. The update rule of c can be expressed as follows:

c(i) = median{|e1,i|, |e2,i, |, . . . , eL,i||} (50)

It is remarkable that when the window length is large enough, the obtained value of
the parameter c is suitable for the error curve, whose efficiency can be observed in the
simulation results.

3.2. En-MCVUKF

Due to anomaly conditions, the measurements usually include large error, which
may affect the estimation performance of the proposed MCVUKF method in the power
system [28,37]. In order to avoid the performance degradation and improve the reliability
of the state estimation for MCVUKF, an enhanced MCVUKF (En-MCVUKF) method is
developed, which can be considered as a potential weighting method to solve the state
estimation problems compared with traditional approaches. Specifically, the En-MCVUKF
method uses an exponential function of the innovation vector to adjust a covariance matrix
such that the estimation performance can be maintained. The main reason is that when
the absolute residual vector increases because of unwanted disturbances, this exponential
weight function will efficiently restrict the magnitude of the residual and suppress the
negative influence of bad data to the estimation performance in PSSE. Motivated by the
idea in [28,37], we also apply an exponential function to the proposed MCVUKF method
for updating the covariance matrix, which is given by:

Ri = Ri exp(−|yi − h(xi)|) (51)

Ri = R−1
i (52)

Obviously, when (51) and (52) are utilized to replace the (47) in the proposed MCVUKF
approach for updating Ri, the En-MCVUKF approach is derived. Next, based on the above-
derived procedure, the detailed steps of the En-MCVUKF algorithm for state estimation in
a power system can be summarized in Algorithm 1:
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Algorithm 1 En-MCVUKF Algorithm for Power System State Estimation

Input: An initial estimation of state vector x̂0|0 = E[x0] with the covariance matrix P0, two
initial values for free parameters σ and c, a small enough positive value ε, and the
number of max iterations maxIter,set i = 0.

Output: The estimation of state vector x̂i|i,t and the posterior covariance matrix Pi|i.
1: repeat
2: Calculate the prior estimation of x̂i|i−1 and Pi|i−1 by using (16) and (17), and Sp,i|i−1

by using the Cholesky decomposition.
3: Calculate the prior measurement ŷi|i−1 by using (18)–(20), and the measurement

slope matrix Hi by using (22).
4: Build the statistical linear regression model by using (24).
5: Transform (23) into (26), and set t = 1 and the initial value of x̂i|i,t as x̂i|i,0 at time

instant t = 0
6: repeat
7: Calculate the residual error ek,i by using:

ek,i = dk,i −wk,i x̂i|i,t−1 (53)

8: Calculate the covariance matrix Ri by using (51) and (52):
9: Update x̂i|i by using the following equation:

x̂i|i,t = x̂i|i−1 + K̂i(yi − ŷi|i−1) (54)

10: t = t + 1.
11: until

‖x̂i|i,t−x̂i|i,t−1‖
‖x̂i|i,t−1‖

> ε

12: Calculate Pi|i by using (48).
13: i = i + 1.
14: until i > maxIter
15: Return The estimation of state vector x̂i|i,t and the posterior covariance matrix Pi|i.

4. Numerical Results
4.1. Simulation Settings

In the simulations, three test systems, including the IEEE 14-bus system, the IEEE
30-bus system, and the IEEE 57-bus system are adopted for PSSE to illustrate the effec-
tiveness and superiority of the proposed MCVUKF and En-MCVUKF algorithms un-
der different types of non-Gaussian noises. Figure 1 shows the structure of the IEEE
30-bus test system [29]. The data used for the simulation are the power system data,
which are obtained from the University of Washington Power System Test Case Archive
(http://www.ee.washington.edu/research/pstca/, accessed on 13 March 2022). In order to
demonstrate the filtering performance of the proposed algorithms, three different scenarios
are used in the simulations [28].

Figure 1. Structure of the IEEE 30 bus test system.

Moreover, two commonly used performance metrics, i.e., the performance index J (in
p.u.) and the absolute error of the phase angle and amplitude of each node voltage [37], are

http://www.ee.washington.edu/research/pstca/
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utilized to evaluate the filtering performance of the proposed methods in the simulations.
Particularly, the smaller the values of J (in p.u.) and absolute error, the better the filtering
performance. Due to the fact that the used evaluation metrics penalize different properties
in the power system for PSSE, extensive simulation results are reported on these diverse
criteria to achieve a comprehensive filtering performance evaluation for different methods.

To show the effectiveness and robustness of MCVUKF and En-MCVUKF in PSSE, we
also make a comparison between the proposed methods and the five most related methods,
which are EKF [8], UKF [38], EnUKF [28], MCCEKF [17], and MCUF [16]. Specifically, EKF,
UKF, and EnUKF are the traditional KF methods that are derived by using the MMSE
criterion, and MCCEKF and MCUF are the robust KF methods by using the MCC criterion.
Furthermore, all methods are conducted on the platform of MATLAB 2018a running on
i9-10900K and 3.70-GHz CPU. Without otherwise mentioned, we set the initial state error
covariance matrix to be 0.0001I. We implement 100 random trials for all comparison
methods to achieve the reliable simulations results, and all simulations results are obtained
by calculating the average results on every test system.

4.2. Case 1: Non-Gaussian Noise with Outliers in Measurements

In this subsection, we conduct simulation on the practical power system with the
measurement noises corrupted by non-Gaussian noise with random outliers. Here, two
widely used non-Gaussian noise models (i.e., mixed-Gaussian noise model and Laplace
noise model) are adopted in this work, whose detailed descriptions are given by [22]:

1. Mixed-Gaussian noise model: The model for the mixed-Gaussian noise is expressed as:

(1− θ)N
(

λ1, υ2
1

)
+ θN

(
λ2, υ2

2

)
(55)

whereN
(
λi, υ2

i
)
(i = 1, 2) denotes the Gaussian distributions with mean values λi and

variances υ2
i , and θ stands for the mixture coefficient. Usually, υ2

2 � υ2
1. Hence, the

parameter vector for the mixed Gaussian noise is defined as Vmix =
(
λ1, λ2, υ2

1, υ2
2, θ
)
.

2. Laplace noise model: The Laplace noise is distributed with probability density func-
tion (PDF):

p(υ) =
1
2

exp−|υ| (56)

First, we use the mixed-Gaussian noise with the noise parameter vector
Vmix = (0, 0, 1, 100, 0.15) to model the measurement noises in three test systems. The
simulation results in terms of the performance index J (in p.u.) are shown in Figure 2
for the test systems at each time instant i. From this figure, one can draw the following
conclusions:

• The overall filtering performance of the proposed MVCUKF and En-MVCUKF meth-
ods is the best and the second best in three used test power systems when compared
with five state-of-the-art methods, indicating that the proposed method is of superior-
ity. The main reasons can be summarized as follows:

(1) Compared with the MMSE criterion-based KF methods (i.e., EKF, UKF, and
EnUKF), the proposed methods adopt the robust maximum correntropy criterion
with a variable center to suppress the bad influence of the heavy-tailed non-
Gaussian noise in PSSE;

(2) Compared with the MCC-based robust KF methods (i.e., MCCEKF and MCUF)
that have a fixed center in correntropy, the MVCUKF and En-MVCUKF methods
utilize an enhanced version of the traditional correntropy whose center can be
located at any position; thus, they can be more robust to the non-zero-mean
non-Gaussian noise;

• In the same situation, the original MCC and MCC with variable center-based KF
methods can achieve better filtering performance than the MMSE-based KF methods,
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which indicates the robustness of correntropy and its enhanced version used in the
KF model.

• Clearly, the enhanced KF methods (e.g., EnUKF and En-MVCUKF) usually have
slightly better filtering performance than the original UKF and MVCUKF methods.
That demonstrates that using an exponential function of the innovation vector to
adjust a covariance matrix can effectively improve the filtering performance in power
systems for state estimation.
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Figure 2. Filtering performance index J (in p.u.) of the proposed methods and EKF, MCCEKF, EnUKF,
UKF, and MCUF under mixed-Gaussian measurement noise with Vmix = (0, 0, 1, 100, 0.15) in three
test systems. (Left) IEEE 14-bus test system; (Middle) IEEE 30-bus test system; (Right) IEEE 57-bus
test system.

Secondly, due to the fact that the measurement error of real-world power flows from
the voltage amplitude and voltage phase angle in power systems may follow Laplace
distribution, we also incorporate the combination of Gaussian noise and Laplace noise
into the IEEE-14 bus test system as the measurement noise, and we further confirm the
effectiveness of the proposed methods. Specifically, the measurement noise is generated by

0.85N (0, 100) + 0.15Lap(0, 1) (57)

where Lap(0, 1) stands for the Laplace noise with 0 mean and scale 1. Figure 3 shows the
absolute error of voltage amplitude and voltage phase angle at bus 3 in the IEEE-14 bus test
system. From the simulation results, one can see that the proposed methods significantly
outperform these compared KF methods in terms of the absolute error of voltage amplitude
and voltage phase angle.
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Figure 3. Absolute error of the voltage amplitude and voltage phase angle of the proposed methods
and EKF, MCCEKF, EnUKF, UKF, and MCUF at bus 3 in an IEEE 14-bus test system under mixed-
Laplacian measurement noise. (Left) Absolute error of the voltage amplitude; (Right) Absolute error
of the voltage phase angle.
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4.3. Case 2: Bad Measurement Data and Sudden Load State Change

Apart from the non-Gaussian noise with outliers in measurements, there are many
undesired events that may take place in power systems for dynamic state estimation: for
example, bad measurement data and sudden load state change. In order to further verify
the robustness of the proposed MVCUKF and En-MVCUKF methods, this scenario is tested
in which the bad data are incorporated in the measurement. Specifically, we expand 20% of
the reactive power measurements at i = 25 and conduct the simulation in the IEEE-30 bus
test system. The overall filtering performance of all KF methods at all times is shown in
Figure 4. Obviously, one can observe that from this figure, the proposed methods still have
better filtering performance than other compared KF methods. Moreover, these robust
KF methods, e.g., MVCUKF, En-MVCUKF, MCUF, and MCCEKF, are not sensitive to this
abnormal measurement.
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Figure 4. Filtering performance index J (in p.u.) of the proposed methods and EKF, MCCEKF, EnUKF,
UKF, and MCUF in an IEEE 30-bus test system with bad measurement data at i = 25.

Then, we also tested the scenario that a sudden load change happened in the power
system to study the robustness of the proposed methods. Similar to previous simulation,
the IEEE-30 bus test system is utilized, and the state estimation at bus 3 is captured when
the power load at bus 3 has a 20% drop at this time. The absolute error of voltage amplitude
and voltage phase angle at bus 3 in the IEEE-30 bus test system are illustrated in Figure 5,
in which the values of absolute error (in terms of voltage amplitude and voltage phase
angle) for MVCUKF and En-MVCUKF are still lower than those of the other compared KF
methods, which confirms the effectiveness and robustness of the proposed methods for
dealing with the case of sudden load change.
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Figure 5. Absolute error of the voltage amplitude and voltage phase angle of the proposed methods
and EKF, MCCEKF, EnUKF, UKF, and MCUF at bus 3 in an IEEE 30-bus test system with sudden load
state change. (Left) Absolute error of the voltage amplitude; (Right) Absolute error of the voltage
phase angle.
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5. Conclusions

In this paper, a novel unscented Kalman filter, called the maximum correntropy with
variable center unscented Kalman filter (MCVUKF), is proposed for robust dynamic state
estimation in power systems. Instead of using the traditional correntropy, the MCVUKF
method utilizes an extended version of the correntropy that has a flexible center to un-
scented Kalman filter for improving the filtering performance in PSSE. In addition, an
enhanced version of MCVUKF, namely En-MCVUKF, is also derived by using an exponen-
tial weight function of the innovation vector to adjust the covariance matrix for reducing
the negative impact of bad data and improving the accuracy of PSSE. Extensive simulation
results have illustrated that the proposed MCVUKF and En-MCVUKF methods can achieve
better filtering performance for PSSE tasks in three different test systems compared with
several related robust and non-robust Kalman filter approaches.

Although the proposed MCVUKF and En-MCVUKF methods have shown good results
in three different test systems for PSSE tasks, they still have a limitation on selecting the
optimal values for the free parameters σ and c. For the proposed methods, σ and c have
great influence on the overall filtering performance for PSSE tasks. However, up to now,
there has been no useful approach to select these parameters. In future work, a more
effective adaptive update method will be adopted in the proposed methods to learn the
optimal values for σ and c for further improving the filtering performance.
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