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A B S T R A C T

Purpose: The purpose of this study was to use an established model of work-
ing memory in children to predict an established model of word learning to
determine whether working memory explained word learning variance over and
above the contributions of expressive vocabulary and nonverbal IQ.
Method: One hundred sixty-seven English-speaking second graders (7- to 8-
year-olds) with typical development from two states participated. They com-
pleted a comprehensive battery of working memory assessments and six word
learning tasks that assessed the creation, storage, retrieval, and production of
phonological and semantic representations of novel nouns and verbs and the
ability to link those representations.
Results: A structural equation model with expressive vocabulary, nonverbal IQ,
and three working memory factors predicting two word learning factors fit the
data well. When working memory factors were entered as predictors after
expressive vocabulary and nonverbal IQ, they explained 45% of the variance in
the phonological word learning factor and 17% of the variance in the semantic
word learning factor. Thus, working memory explained a significant amount of
word learning variance over and above expressive vocabulary and nonverbal IQ.
Conclusion: Results show that working memory is a significant predictor of
dynamic word learning over and above the contributions of expressive vocabulary
and nonverbal IQ, suggesting that a comprehensive working memory assessment
has the potential to identify sources of word learning difficulties and to tailor word
learning interventions to a child’s working memory strengths and weaknesses.
Supplemental Material: https://doi.org/10.23641/asha.19125911
Working memory is the active human memory pro-
cess responsible for storing and manipulating incoming
information. There is compelling evidence that scores on
working memory measures are related to static measures
of past learning (Alloway et al., 2009; Maehler & Schuchardt,
2016) and to academic achievement (Alloway & Alloway,
2010; Alloway et al., 2009; Berninger et al., 2010; Chalmers &
Freeman, 2018; Gathercole et al., 2003; H. L. Swanson &
Berninger, 1996). Currently, however, we lack evidence
that working memory predicts variance in dynamic mea-
sures of learning. If we had this evidence, it could be an
important step toward determining if working memory is
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more than just a covariate of learning, but rather is a key
part of the learning mechanism. This is important to estab-
lish because if working memory has a causal relationship
with dynamic learning, it might create a path for improving
learning involving interventions that support working mem-
ory (e.g., by avoiding overloading working memory at any
point in the learning process; see the works of Cowan, 2014;
Jaroslawska et al., 2016; Sweller, 2011). If working memory
is directly involved in dynamic aspects of word learning, we
might expect working memory measures to account for vari-
ance in word learning even after removing variance from
standardized tests of nonverbal intelligence and static mea-
sures of vocabulary, a possibility examined here.

We present data and models to predict dynamic
measures of word learning in second-grade children using
an extensive working memory battery. In the following
sections of the introduction, to set the stage, we review
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several topics in turn. We first review models of working
memory in children, as these inform the breadth of assess-
ment necessary to fully represent the collection of working
memory processes. Next, we review research investigating
the relationship between different components of working
memory and important aspects of cognitive development,
including oral language, reading, and other areas of aca-
demic achievement, as well as limited research investigat-
ing the relationship between components of working mem-
ory and dynamic learning. Finally, we review findings
from a study investigating the structure of word learning
in children to establish the breadth of assessment neces-
sary to fully represent the early stages of word learning.
These topics all contribute to the rationale for this study,
which is then described.

Working Memory Models

Baddeley and colleagues developed two prominent
models of working memory, each influential in the area of
oral language learning. The first included three distinct
working memory components: central executive, phonological
loop, and visuospatial sketchpad (specified by Baddeley,
1986; initiated by Baddeley & Hitch, 1974). In 2000, Baddeley
added a fourth working memory component to the earlier
three-component model: the episodic buffer. In the Baddeley
models, the central executive is responsible for regulating
attention, linking working memory to long-term memory,
and directing use of other working memory components. The
phonological loop is dedicated to phonological information
processing, making it essential for oral and written lan-
guage learning. The phonological loop has its own tempo-
rary storage capacity, which can be refreshed by verbally
rehearsing material. The visuospatial sketchpad is dedicated
to processing visual and spatial information, but it may lack
the capacity for information rehearsal. Finally, the episodic
buffer was proposed as a temporary information store capa-
ble of binding and holding information from multiple stores
in relation to one another.

Cowan (1988, 1995, 1999, 2016, 2019) proposed a
third prominent model of working memory, the “embedded-
processes model,” which focuses on a three-level hierar-
chy of working memory emphasizing the role of attention.
These include central executive, focus of attention, and
phonological storage and rehearsal factors. According to
Cowan, there is the memory system as a whole and,
within it, a pool of currently activated long-term memory
(which can include just-learned as well as reactivated
information). Furthermore, within this pool of activated
long-term memory is the portion of working memory
information that is in the focus of attention, allowing fur-
ther processing of up to several items at once. Thus, in
Cowan’s historical model of working memory, there was
more reliance on the role of attention in processing active
information and less on separate components of working
memory, which are central to Baddeley’s models. Interfer-
ence between items was proposed to depend on inter-item
feature similarity, and the use of new binding was said to
originate in the focus of attention and to result in rapid
new learning that added to activated long-term memory
and could be used immediately. Baddeley and Cowan
agree on many issues, including central executive pro-
cesses and covert phonological rehearsal. The most pri-
mary remaining disagreement concerns whether attention
is needed for maintenance of phonological information,
when rehearsal is not possible, and for visual information.

Gray et al. (2017) compared the fit of Baddeley
(2000), Baddeley and Hitch (1974), and Cowan (1988,
1999, 2005) working memory models in second-grade chil-
dren with typical development (TD). They found that the
Baddeley and Hitch (1974) three-component model and
the Cowan embedded-processes model each demonstrated
good fit, but the Cowan model showed better fit overall.
Although the Baddeley (2000) four-component model con-
verged, the episodic buffer factor was empirically indistin-
guishable from the visuospatial sketchpad factor; therefore,
the Baddeley (2000) four-component model was not sup-
ported. Based on loadings from the two remaining models,
Gray et al. (2017) proposed a hybrid three-component
model of working memory with central executive, focus of
attention/visuospatial sketchpad, and phonological storage
and rehearsal/phonological loop components. This model
allowed cross-loadings between the visuospatial sketchpad/
focus of attention and phonological storage and rehearsal/
phonological loop factors. The fit for the hybrid model and
Cowan’s-embedded processes model was very close; there-
fore, we used the hybrid model in the current investigation
to represent the convergence of prominent models of work-
ing memory.

Working Memory and Oral Language

Because oral language is central to most learning,
many studies have examined the relationship between
scores on working memory measures and scores on oral
language measures. Typically, studies assess a single
aspect of working memory in relation to a single compo-
nent of oral language. They show that verbal working
memory measures positively correlate with vocabulary
and grammar scores in a person’s first language (Adams
& Gathercole, 1996, 2000; Baddeley et al., 1998) and sec-
ond language (French & O’Brien, 2008; Masoura &
Gathercole, 2005; Verhagen & Leseman, 2016). Con-
versely, verbal working memory deficits negatively corre-
late with recognition and production of words, grammati-
cal forms, and syntactic structures (Andrade & Baddeley,
2011; Gathercole & Baddeley, 1990; Marini et al., 2014;
Montgomery et al., 2010).
Gray et al.: Working Memory Predicts Word Learning 1045



In the area of language comprehension, Daneman
and Merikle (1996) conducted a meta-analysis of working
memory and language comprehension encompassing 77
studies. They set out to resolve the paradoxical results of
studies suggesting that even though short-term memory
capacity should be related to reading and listening compre-
hension, researchers often found no correlation between
short-term memory measures such as digit span and word
span and scores on language comprehension measures.
They argued that a working memory task (such as their
own working span measure; Daneman & Carpenter, 1980)
should assess combined processing and storage rather than
just capacity. Their meta-analysis showed that this type of
measure was more strongly correlated with language com-
prehension than with single-capacity measures. However, it
is important to note that their working span task is lan-
guage based as it requires participants to listen to or read a
series of unrelated sentences and then to recall the final
word of each sentence. Thus, it is not a suitable measure of
working memory in participants with known language defi-
cits because it may be a stronger indicator of oral language
than working memory. Meta-analysis results showed that
their processing and storage measure of working memory
consistently correlated with other language measures.
There have been entirely spatial analogues to the working
span measure, and it has been proposed that they involve
storage that is separate from the verbal tasks but that both
modalities of tasks share a common factor as well, termed
executive attention (Kane et al., 2004). The key point is
that tasks that require both storage and processing of
information are less likely to be targeted measures of
working memory capacity and more likely to reflect con-
tributions of multiple abilities.

Recently, Chow et al. (2021) evaluated the contribu-
tion of verbal working memory, as assessed by the Verbal
Attention and Numbers Reversed subtests of the Woodcock-
Johnson IV Tests of Cognitive Abilities (Schrank et al.,
2014); attention, as assessed by teacher completion of the
Strengths and Weaknesses of Attention-Deficit/Hyperactivity
Disorder Symptoms and Normal Behavior Scale (J. Swanson
et al., 2001); and static measures of child language, as mea-
sured by subtests from the Test for Auditory Comprehen-
sion of Language–Fourth Edition (TACL-4; Carrow-
Woolfolk, 2014) and the Clinical Evaluation of Language
Fundamentals–Fifth Edition (CELF-5; Wiig et al., 2013)
screening tool. Participants included 414 first and second
graders, 49 of whom were English learners and 20 who
received special education. Results of structural equation
modeling analyses suggested that the verbal working mem-
ory measures were stronger predictors of language than
attention. Results from exploratory multiple regression
analyses showed that verbal attention was the only cogni-
tive predictor of all language indicators (CELF-5 Screener;
Vocabulary, Morphology, and Syntax subtests from the
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TACL-4). The authors concluded that when assessing
working memory, it is important to consider the verbal
demands of the working memory task. They also noted that
their study lacked nonverbal and visuospatial measures.

Working Memory and Reading

A recent meta-analysis investigated the relationship
between working memory domains, reading decoding, and
reading comprehension across multiple grade levels, with
197 studies meeting inclusionary criteria (Peng et al.,
2018). Domains of working memory represented in the
studies included verbal, numerical, visuospatial, and com-
posite measures. Reading measures included phonological
coding, decoding, vocabulary, and comprehension. The
authors reported a moderate correlation between reading
and working memory overall (r = .29) with a range of
.21–.35. They reported that the domain of working mem-
ory and students’ grade level influenced the working
memory–reading relationship. Prior to fourth grade, find-
ings suggested that all domains of working memory
related to reading similarly; however, starting in fourth
grade, verbal working memory had a stronger relationship
with reading than visuospatial working memory. Results
of this comprehensive meta-analysis suggest there is a
small but significant and consistent relationship between
working memory domains and static measures of reading.

Working Memory and Academic Achievement

Previous research suggests that working memory
may be a unique predictor of academic outcomes in chil-
dren, over and above contributions of IQ (Alloway &
Alloway, 2010; Passolunghi et al., 2007; but see the works
of Giofre et al., 2017, for an exception). Alloway et al.
(2009) administered measures of working memory, verbal
and performance IQ, reading and spelling ability, and
math to 64 children ages 7–11 years who were receiving
special education for learning difficulties. Thirty-seven
children were retested 2 years later on standardized read-
ing and math measures. The authors reported that when
working memory and prior scores on reading and math
were controlled statistically, IQ was not a significant pre-
dictor of static learning outcomes. Alloway and Alloway
(2010) administered working memory, IQ, literacy, and
numeracy assessments to children in kindergarten and
again 6 years later. They found that working memory in
kindergarten was a more powerful predictor of later aca-
demic success than IQ.

Working Memory and Dynamic Word Learning

With a predictive relationship between working
memory and static measures of oral language, reading,
1044–1069 • March 2022



and academics well established, we argue that what is now
needed is an understanding of the relationship between
working memory and dynamic learning. That is key if we
are to determine whether supports for working memory
can actually improve learning in educational contexts.

Word learning experiments provide fertile ground
for examining the working memory–learning relationship
because word learning itself is central to language and
academic success. The advantages of dynamic word learn-
ing experiments include control for prior experience and
existing knowledge; reduced bias (e.g., Camilleri &
Botting, 2013); and the creation of a learning situation
where the child’s working memory abilities, stored infor-
mation in long-term memory (e.g., phonological represen-
tations), and other cognitive abilities interact dynamically.

Existing vocabulary and nonverbal IQ have each
been shown to relate to vocabulary acquisition in children.
For example, Verhagen and Leseman (2016) found that in
learning a second language, verbal short-term memory
was related to vocabulary learning, but verbal working
memory was related to grammar learning. Rowe et al.
(2012) showed that vocabulary growth in young children
predicted later vocabulary acquisition. Finally, Rice and
Hoffman (2015) showed that nonverbal IQ was a predic-
tor of receptive vocabulary in children and young adults
with and without specific language impairment (SLI) ages
2;6 (years;months) through 21.

Although Baddeley et al. (1998) summarized a great
deal of work linking phonological working memory to
vocabulary acquisition, few experiments have investigated
relations between multiple types of working memory and
word learning. In one such experiment, Morra and
Camba (2009) investigated whether three constructs, pho-
nological sensitivity, attentional capacity, and rehearsal,
plus a static measure of vocabulary, predicted new paired-
word learning in 8- to 10-year-olds in Italy. They found
that phonological sensitivity, vocabulary, and attentional
capacity related differently to short and long words that
did or did not contain native phonology. The authors con-
cluded that vocabulary learning is a “complex multideter-
mined phenomenon – more complex than suggested by
other current models” (p. 175), suggesting that it requires
new psychological models to account for this complexity.

In another experiment on multiple forms of working
memory and word learning, Archibald and Joanisse
(2013) compared the performance of school-age children
with SLI, working memory impairment, or both disorders
to children with TD on phonological short-term memory,
working memory, and paired-associates word learning
tasks. To attain sufficient sample sizes, they added some
children with primary language impairment plus working
memory impairment to the SLI group and children with
primary working memory impairment plus SLI to the
working memory impairment group. Groupings were
based on standardized scores from nonverbal IQ and oral
language tests. The word learning task included one con-
dition that used proper nouns (real words) as names for
space aliens and a second that used nonwords for space
alien names. All groups learned word pairs best in the real
word condition. Phonological short-term memory was
linked more strongly to nonword learning, but working
memory was related to both real word and nonword
learning. The primarily working memory impairment
group had poor learning of both words and nonwords,
whereas the primarily SLI group had the most difficulty
with nonword learning. The authors concluded that
working memory was related to learning across modali-
ties, but domain-specific phonological memory was
related to nonword learning. These findings point to the
importance of investigating different working memory
factors in relation to learning to understand the nature of
their relationship.

Models of Word Learning

In response to the need for a unifying theoretical
model of word learning, Gray et al. (2020) tested four
latent variable models encompassing the triggering and
configuration stages of word learning in second-grade chil-
dren with TD. In the unidimensional model, phonological,
semantic, and phonological–semantic linking indicators all
loaded on a single word learning factor. In the receptive/
expressive model, indicators requiring children to recog-
nize new words loaded on the receptive factor, and indica-
tors requiring children to produce new words loaded on
the expressive factor. In the phonological/semantic model,
indicators assessing children’s recognition or production of
the phonological aspects of new words loaded on the pho-
nological factor, and indicators assessing children’s recog-
nition or recreation of the visual (semantic) representa-
tions of new words loaded on the semantic factor. Indica-
tors assessing the link between phonological and semantic
representations loaded on both factors. Finally, in the
create/recreate/link model, indicators assessing the creation
and storage of new phonological and semantic representa-
tions loaded on the create factor, indicators assessing the
ability to produce or recreate semantic features of refer-
ents loaded on the recreate factor, and indicators linking
phonological and semantic representations loaded on the
link factor. The phonological/semantic model best fit the
data and, therefore, was used as the measurement model
for word learning in this study.

This Study

The purpose of this study was to use an established
model of working memory components in children, which
included factors representing all working memory
Gray et al.: Working Memory Predicts Word Learning 1047



1Participants in this study represent a portion of the participants in a
larger sample from the Profiles of Working Memory and Word
Learning (POWWER) project funded by National Institute on Deaf-
ness and Other Communication Disorders Grant R01 DC010784.
The POWWER project includes the group reported, as well as chil-
dren with SLI (now referred to as developmental language disorder),
children with dyslexia, children with comorbid dyslexia and SLI, and
Spanish–English bilingual children with TD. All POWWER partici-
pants completed a total of six word learning games and a comprehen-
sive battery of working memory tasks (see the work of Cabbage
et al., 2017) over the course of at least 6 days.
processes (Gray et al., 2017), to predict an established
model of word learning (Gray et al., 2020). The working
memory and word learning models were derived from
analyses with the same group of second-grade children
with TD who participated in this study.

The word learning experiment assessed children’s
ability to learn novel words during the triggering (Hoover
et al., 2010) and configuration (Leach & Samuel, 2007)
stages of word learning. Each of these stages illustrates
how language knowledge stored in long-term memory can
interact with new information being processed by working
memory. Triggering occurs when a learner hears a new
word form, compares it to stored word forms in long-term
memory, and recognizes that the word does not match a
stored form. Children who have already stored the speech
sounds of their language need to recognize and remember
the order of sounds in a new word; thus, their stored rep-
resentations of sounds aid the creation of new phonolo-
gical word forms (Norris et al., 2018).

After triggering, the phonological (individual sounds)
and lexical (whole word) forms of a new word are stored in
long-term memory, followed by lexical configuration that
occurs with repeated exposures to the word in varying
contexts. Lexical configuration comprises the incremen-
tal storage of factual information about the word in
long-term memory including its meaning(s) and syntactic
roles. Leach and Samuel (2007) also described the
engagement stage of word learning (not included in this
study) as the dynamic behavior of the new word’s lexical
representation in relation to other words stored in the
lexicon. For example, words can activate each other
when they are related phonologically, semantically, or
orthographically.

This study was designed to ascertain the variance
that working memory could account for in word learning
over and above the contributions of existing expressive
vocabulary and nonverbal IQ, as each of these has been
shown to be related to vocabulary acquisition in children.
We expected that nonverbal IQ would be most strongly
related to the semantic aspects of word learning (repre-
sented visually in this study) because in our previous
investigation of the relationship between working memory
and nonverbal IQ (Gray et al., 2017), we found that the
focus of attention/visuospatial sketchpad factor was
strongly related to the Gv (general visual) factor of the
Kaufman Assessment Battery for Children, Second Edition
(KABC-II; Kaufman & Kaufman, 2004). Based on litera-
ture showing predictive relations between working mem-
ory and a variety of academic skills, our hypothesis was
that working memory processes as a whole would account
for variance in the phonological word learning factor
(PHON) and semantic word learning factor (SEM) over
and above that accounted for by extant vocabulary and
nonverbal IQ.
1048 Journal of Speech, Language, and Hearing Research • Vol. 65 •
Method

We enrolled 167 second-grade children with TD
who came from the Phoenix and Tucson metropolitan
areas of Arizona and the Boston metropolitan area of
Massachusetts (72 girls, 95 boys). Students were recruited
from multiple classrooms within multiple schools in more
than 25 different districts and charter school organiza-
tions. They were part of a larger study on word learning
and working memory.1 Of the total participants consented
for the larger study, 43% were from the Tucson metro
area, 42% from the Phoenix metro area, and 15% from
the Boston metro area.

Following institutional review board approval from
our universities and local school board or organizational
administrator approval, teachers, reading specialists, and
speech-language pathologists serving second graders were
asked to send home information packets to families. Each
packet contained a cover letter explaining the study in
brief and a parent consent form. Parents who wished to
consent to their child’s participation could return the form
to their child’s teacher or mail it back to us in a postage-
paid envelope. We also recruited more generally in the
community (e.g., through libraries, at community events
like Trunk-or-Treat, and via Facebook ads). Eighty-seven
percent reported their child’s ethnicity as non-Hispanic,
12% reported as Hispanic, and 1% did not report ethnic-
ity. Two percent reported American Indian or Alaska
Native as their race, 2% Asian, 2% Black, 81% White,
12% more than one race, and 1% did not report. Addi-
tional information about participants is in Table 1.

To be included in this as well as in the larger study,
children were required to (a) pass a bilateral hearing
screening, (b) pass a color vision screening, (c) pass a
near-vision acuity screening, (d) be enrolled in or have just
completed second grade, (e) have no history of neuropsy-
chiatric disorders (e.g., attention-deficit/hyperactivity dis-
order, autism spectrum disorder) by parent report, (f)
speak monolingual English by parent report, (g) achieve a
standard score ≥ 75 on the Nonverbal Index of the
KABC-II (Kaufman & Kaufman, 2004), (h) have no his-
tory of special education services or grade repetition, (i)
achieve a standard score > 30th percentile on the
1044–1069 • March 2022



Table 1. Participant characteristics and test scores.

Measure M SD

Age in months 92.82 4.98
Mother’s education in years 15.39 1.66
GFTA-2 articulation accuracy percentile 50.89 8.54
KABC II Nonverbal Index standard score 117.60 15.53
TOWRE-2 Word/Nonword standard score 109.45 8.40
CELF-4 Core Language standard score 108.75 9.58
EVT-2 standard score 112.39 10.95
WRMT-III PC standard score 108.23 9.85

Note. GFTA-2 = Goldman-Fristoe Test of Articulation–Second
Edition (Goldman & Fristoe, 2000); KABC II = Kaufman Assess-
ment Battery for Children, Second Edition (Kaufman & Kaufman,
2004); TOWRE-2 = Test of Word Reading Efficiency–Second Edi-
tion (Torgesen et al., 2012); CELF-4 = Clinical Evaluation of Lan-
guage Fundamentals–Fourth Edition (Semel et al., 2003); EVT-2 =
Expressive Vocabulary Test–Second Edition (Williams, 2007);
WRMT-III PC = Woodcock Reading Mastery Tests–Third Edition,
Passage Comprehension subtest (Woodcock, 2011).
Goldman-Fristoe Test of Articulation–Second Edition
(Goldman & Fristoe, 2000; unless scores below that percentile
were due to consonant errors on a single sound), (j) achieve a
standard score > 87 on the Core Language composite of the
Clinical Evaluation of Language Fundamentals–Fourth Edi-
tion (Semel et al., 2003), and (k) achieve a second-grade com-
posite standard score > 95 on the Test of Word Reading
Efficiency–Second Edition (Torgesen et al., 2012). We also
administered the Woodcock Reading Mastery Tests–Third
Edition Passage Comprehension subtest (Woodcock, 2011)
and the Expressive Vocabulary Test–Second Edition (EVT-2;
Williams, 2007) for descriptive purposes.

General Procedure

After securing parental consent and child assent, we
administered all assessments and experimental measures
individually at a quiet location convenient for the family.
All experimental tasks were from the Comprehensive
Assessment Battery for Children–Word Learning and the
Comprehensive Assessment Battery for Children–Working
Memory (Gray et al., n.d.; summarized by Cabbage et al.,
2017). Descriptives for TD group performance on the
individual word learning measures (Gray et al., 2020) and
individual working memory measures (Gray et al., 2017)
may be found in these referenced publications. Internal
consistency reliability estimates for the individual working
memory tasks are reported in the study of Green et al.
(2016).

Each task was presented as part of a computer-
based, pirate-themed game that took approximately six
2-hr sessions to complete over about 2 weeks per child. One
set of word learning tasks and working memory tasks
were completed during each session in random order as
determined by the computer. To encourage attention and
provide a fun learning environment, children earned vir-
tual coins at the end of each game that they could spend
on their virtual pirate at the virtual pirate store. During
the experiment, children sat in front of a touchscreen com-
puter monitor next to a trained research assistant (RA).
Both wore headsets with integrated microphones so that
audio-recorded child responses could be transcribed later
in the lab. Prior to working in the field, RAs were
required to pass a quiz and two fidelity checks showing
that they could administer and score each assessment and
task correctly.

Word Learning

Nonwords
A pool of low-phonotactic-probability two- and four-

syllable consonant-vowel-consonant (CVC) syllable struc-
ture nonwords were used. Their duration in milliseconds,
biphone frequency, and summed biphone probability were
very similar. Four 2-syllable nonwords from the pool were
randomly assigned to each game (except that when word
length was manipulated, two 2-syllable and two 4-syllable
words were randomly assigned). No nonword had a pho-
nological neighbor. Nonwords used as verbs were intransi-
tive. Alt et al. (2017) provide a more detailed description
of word characteristics.

Referents
A different set of colored sea monster drawings was

used in each game. The monsters differed in shape, color,
arm style, eye shape, and type of head covering but were
similar in size.

Experimental Procedures
Five different word learning games each taught four

different nonwords and took about 30 min to complete.
Four games used nouns: one manipulated word length,
one phonological similarity, one location of the referent
(stationary vs. changing position), and one visual similar-
ity of the referents. One game used verbs and manipulated
actions. A more detailed description of each word learning
game is in Table 2 and may also be found in the work of
Gray et al. (2017).

The experimental procedures were the same for each
of the five word learning games (see Table 2). Each game
proceeded across four blocks. The first block provided
two exposures (opportunities to hear the name and see the
referent) to each of the four nonwords during the
phonological–visual linking task. The second, third, and
fourth blocks each presented 15 more exposures to the
same four words. The computer randomized the order of
task presentation (mispronunciation detection, naming,
visual difference decision, visual feature recall) for Blocks
2, 3, and 4. Thus, by the end of the game, children had
Gray et al.: Working Memory Predicts Word Learning 1049



Table 2. Description of word learning stimuli, tasks, and manipulations.

Stimuli Process assessed Experimental manipulation
Type of working
memory assessed Assessment task

Noun nonwords
CVC-CVC two-syllable

structure; no phonological
neighbors (low
neighborhood density);
low biphone phonotactic
probability (1.0039–1.009)

Create and store phonological
form

2- vs. 4-syllable Phonological loop capacity
(length)

Mispronunciation detection
(see monster, hear correct
name or foil, press “yes” if
correct name or “no” if incorrect
name, receive immediate
feedback)

Phonologically similar vs.
phonologically
dissimilar words

Specificity of stored phonological
representation

Retrieve and produce
phonological form

2- vs. 4-syllable Phonological loop capacity
(length)

Naming (see monster, name it,
positive feedback for trying)

Phonologically similar vs.
phonologically dissimilar

Specificity of stored phonological
representation

Noun referents
Virtual sea monsters all the

same size, but varied body
shapes, colors, limb shapes,
head coverings, and facial
features

Create and store semantic
representation

Stationary referent vs.
referent changes location

Spatial memory Visual difference decision
(see monster, press “yes”
if monster shown is an
accurate depiction of one
of the learned monsters or “no”
if incorrect, receive immediate
feedback)

Visually similar referent vs.
visually dissimilar referent

Specificity of stored semantic
(visual) representation

Retrieve and recreate
semantic representation

Stationary referent vs.
referent changes location

Spatial memory Visual feature recall (move
correct color, eyes, arms,
and head covering onto
outline of monster, feedback
based on number of correct
selections)

Visually similar referent vs.
visually dissimilar referent

Specificity of stored semantic
representation

Link phonological
form and semantic
representation

2- vs. 4-syllable Phonological loop capacity
(length)

Phonological–visual linking
(hear monster name, choose
1 of 4 monsters, receive
immediate feedback)

Phonologically similar vs.
phonologically dissimilar
words

Specificity of stored phonological
representation

Stationary referent vs. referent
changes location

Spatial memory

Visually similar referent vs.
visually dissimilar referent

Specificity of stored semantic
representation

(table continues)
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Table 2. (Continued).

Stimuli Process assessed Experimental manipulation
Type of working
memory assessed Assessment task

Verb nonwords
CVC-CVC two-syllable structure;

no phonological neighbors (low
neighborhood density); low
biphone phonotactic probability
(1.0039–1.009)

Create and store phonological
form

None Specificity of stored phonological
representation

Mispronunciation detection
(see monster perform action,
hear correct command or foil,
press “yes” if correct command
for that action or “no” if incorrect
command, receive immediate
feedback)

Retrieve and produce
phonological form

None Specificity of stored phonological
representation

Naming (see monster perform an
action, name it, positive
feedback for trying)

Verb referents
Single virtual sea monster with

movement varied by speed,
direction, nature of movement,
and special effects such as
glowing or pulsating

Create and store semantic
representation

Four different referent
actions

Spatial memory Visual difference decision (see
monster perform an action,
press “yes” if action shown is an
accurate depiction of one of
the learned actions or “no” if not,
receive immediate feedback)

Specificity of stored semantic
representation

Retrieve and recreate
semantic representation

Four different referent
actions

Spatial memory Visual feature recall (see an
action and judge whether it is
the correct speed, direction,
nature of movement, and special
effect, feedback based
on number of correct choices)

Specificity of stored semantic
representation

Link phonological form and
semantic representation

All of the above All of the above Phonological–visual linking (pirate
gives a command, choose 1
of 4 actions, receive immediate
feedback)

Note. Reprinted from Gray et al., 2020. CVC = consonant–vowel–consonant.
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heard each name spoken 47 times across the four blocks
(2 + 15 + 15 + 15), they had completed five tasks per
block for a total of 20 tasks (4 blocks × 5 tasks) com-
pleted by the end of each game, and they had responded
to four prompts per task for a total of four possible cor-
rect responses per task.

To begin each block, pictures of four sea monsters
appeared on the screen for the phonological–visual linking
task. The child heard the sea monster’s name or a name
for the action in the case of verbs. The task was to touch
the monster that corresponded to the name (or action).
This task assessed their ability to link the label and refer-
ent for each of four monsters. Children received a gold
coin for each correct answer and a rock for each incorrect
answer. The dependent variable was the total number of
correct responses across blocks.

For the mispronunciation detection task, four sea
monsters appeared on the screen, one at a time. The child
heard either the correct name (or action) for the monster
or a foil with a different final consonant sound than the
correct name. Children indicated whether the name was
correct by pressing a key. They completed this task 1 time
per block for a total of four decisions per monster. Their
choice received immediate feedback in the form of a coin
or a rock. The dependent variable was the correct number
of responses adjusted for the 50% chance of guessing the
correct yes/no answer. To determine the score, we calcu-
lated the proportion of correct recognition responses on
trials with the correct target minus the proportion of
incorrect yes responses on trials containing foils.

For the naming task, four different monsters
appeared on the screen, one at a time, and the child’s task
was to name the monster (or action). They completed this
task 1 time per block for a total of four productions for
each monster. Children’s responses were recorded by the
computer for later transcription in the lab. Twenty percent
of the responses were double-scored, with a point-to-point
agreement between .90 and .93 across the different games.
In this game, feedback was not tied to correct or incorrect
responses; rather, children received gold coins for attempt-
ing to name the monster (action). The dependent variable
was the total number of consonants produced correctly in
each word per condition.

For the visual difference detection task, a familiar
monster from the current game or a visually similar foil
monster (e.g., color, type of head covering, or shape or
multiple features varied) appeared on the screen. Children
pressed a “yes” or “no” key to indicate whether the mon-
ster was the monster they had seen before, followed by
feedback with a gold coin or a rock. They competed this
task once for each monster for each block for a total of
four decisions per monster. The dependent variable was
calculated the same way as for the mispronunciation
detection task described above.
1052 Journal of Speech, Language, and Hearing Research • Vol. 65 •
For the visual feature recall task, a line drawing out-
line of a monster appeared on the screen next to a visual
menu of semantic features that included four choices each
of color, eye shapes, arms, and types of head covering.
Children selected one of each feature to put on their mon-
ster, followed by a gold coin or a rock for each selected
semantic feature. They completed this task 1 time per
block for each of the four monsters, totaling 16 decisions
for each of four monsters. The dependent variable was the
percentage of features identified correctly across blocks.

Working Memory

We administered 13 different experimental working
memory tasks on a touchscreen computer. The order of
administration was randomized across and within research
sessions. A general description of each task is included
below with a more detailed description in Table 3.

Experimental Procedures
Children began the series of 13 working memory

games by selecting a pirate avatar. When they completed
each game, they received gold coins that they could spend
on their pirate avatar at a virtual store.

A (different) pirate guide delivered instructions at
the beginning of each game and showed the child how to
play. After the demonstration, the child was required to
pass training trials specific to each task (see Table 3).
Training trials were similar to real trials but with more
explanation. Children saw the pirate play the game first,
often with animations to illustrate, to limit the language
comprehension load. Then, children were asked to
attempt the game and, for the first training trials, were
given explicit feedback from the pirate about whether
they were correct or incorrect. Then, they simply
attempted the game. Incorrect attempts would be met
with additional feedback from the pirate about why the
response was incorrect. If they did not pass training, the
game stopped, and they moved on to the next game.
When they did play, children received no feedback on
the accuracy of their responses; however, at the end of
the game, they received a virtual pile of rocks and gold
coins that reflected their overall performance.

Central Executive Tasks
These tasks assessed working memory using visual

and auditory updating tasks that required storage and
manipulation of information. To complete the tasks, chil-
dren had to maintain activated memory representations
while processing incoming information.

N-back auditory. This working memory updating task
presented children with a sequence of stimuli after which
they were asked to judge whether a stimulus was the same
as or different from the preceding stimulus. Children saw a
1044–1069 • March 2022



Table 3. Description of working memory experimental tasks included in the Comprehensive Assessment Battery for Children–Working Memory (Gray et al., n.d.).

Task Stimuli Trial types

Number of training
blocks and trials
(in parentheses)

Number of
trials correct

to pass training
Number of trials

and stimuli

Task
length
(min) Dependent variable(s)

Central executive tasks
N-back auditory • Image of robot band

• Tones
• Same
• Different

1 training block:
• Same (3)
• Different (3)

4/6 54 (3 blocks each with
9 Same, 9 Different)

6.50 Mean accuracy for
same and different
trials combined

N-back visual • Images of black
squares with
white dots

• Same
• Different

1 training block:
• Same (3)
• Different (3)

4/6 54 (3 blocks each with
9 Same, 9 Different)

7.50 Mean accuracy for
same and different
trials combined

Number updating • Visual presentation
of numbers and
operations

Not applicable 2 training blocks:
• Each block (5)

5/5 each block 15 (3 blocks each with
5 trials)

7.20 Mean accuracy for all
trials

Short-term phonological memory tasks
Digit span • Auditory recordings

of digits 1–9 (except
7 because it is
2 syllables)

Span length
(2–8 digits)

1 training block:
• (2)

2/2 14 (2 trials at each
span length of
2–8 digits)

4.50 Number of trials correct
at each span length ×
span length then
sum products

Digit span –
running

• Auditory recordings
of digits 1–9 (except
7 because it is
2 syllables)

Span length
(7–10 digits)

3 training blocks:
• Each block (3)

At least 1 correct
for each of
3 blocks

12 (3 trials at each
span length of
7–10 digits)

6.00 Average number of
digits recalled in
the correct order

Nonword repetition • Auditory recordings
of nonwords

Word length
(2- to 5-syllable
nonwords)

1 training block:
• (3 two-syllable trials)

3 attempted 16 nonwords (4 each
at 2-, 3-, 4-, and
5-syllable lengths)

3.00 Number of words
repeated with correct
consonants at each
syllable length ×
syllable length then
sum products

Short-term visuospatial memory tasks
Location span • An arrow pointing

toward a location
arranged in a circular
pattern

Span length
(2–6 locations)

3 training blocks:
• 1 location (1)
• 2 locations (2)

At least 1 at 1
location and 1
at 2 locations

12 (2 trials at each
span length of
2–6 locations)

4.50 Correct number of
trials at each span
length × span length
then sum productsa

Location span –
running

• An arrow pointing
toward a location
arranged in a
circular pattern

Span length
(5–8 locations)

3 training blocks:
• 6 locations (1)
• 7 locations (1)
• 8 locations (1)

1/1 correct at
each length

12 (3 trials at each
span length of
5–8 locations)

7.50 Average number of
locations correctly
identified across all
trials

Visual span • Black polygons Span length
(1–6 polygons)

1 training block:
• 1 polygon (1)
• 2 polygons (2)

3/3 12 (2 trials at each
span length
of 1–6)

6.50 Correct number of trials
at each span length ×
span length then
sum productsa

Visual span –
running

• Black polygons Span length
(3–6 polygons)

1 training block:
• 3 polygons (1)
• 4 polygons (1)

1 correct at
each length

12 (3 trials at each
span length of
3–6 polygons)

7.00 Average number of
polygons correctly
identified in order
across all trials

(table continues)
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Table 3. (Continued).

Task Stimuli Trial types

Number of training
blocks and trials
(in parentheses)

Number of
trials correct

to pass training
Number of trials

and stimuli

Task
length
(min) Dependent variable(s)

Binding tasks
Phonological

binding span
• Auditory nonspeech

sounds (e.g.,
mechanical noise)

• Auditory recordings
of nonwords

Span length
(1–4)

1 training block:
• 1 sound–nonword

pair (1)
• 2 sound–nonword

pairs (1)

Attempt 2/2 20 sound–nonword
pairs (2 trials each
of 1–4 pairs per
trial)

5.20 Correct number of trials
at each span length ×
span length then
sum productsa

Visual–spatial
binding span

• Image of a grid
• Black polygons

Span length
(1–6 polygons)

1 training block:
• 1 polygon (1)
• 2 polygons (1)

2/2 12 (2 trials at each
span length of
1–6 polygons)

5.20 Correct number of trials
at each span length ×
span length then
sum productsa

Cross-modal
binding

• Black polygons
• Auditory recordings

of nonwords

Span length
(1–6 polygons)

1 training block:
• 1 nonword–polygon

pair (1)
• 2 nonword–polygon

pairs (1)

2/2 12 (2 trials at each
span length of
1–6 polygons)

6.50 Correct number of trials
at each span length ×
span length then
sum productsa

Note. Reprinted from Gray et al., 2017, with permission. Copyright © 2017 Elsevier.
aThis scoring method yields the total number of items within correctly recalled lists.
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still picture of a robot band playing different instruments on
the screen for 1,000 ms. They heard a series of tones that
varied in frequency (1000, 1250, 1500, 1750, and 2000 Hz)
for 1,000 ms per tone. After each tone was heard, children
were asked to decide whether the new tone was the same as
or different from the previous tone in the sequence by push-
ing keys labeled “same” and “different” on the keyboard. If
they did not respond by the end of 3 s, the next stimulus was
presented. Response accuracy was recorded by the com-
puter. Our pilot work showed that children of the same age
as those in this study were only able to complete 1-back
tasks such as this.

N-back visual. This task proceeded like the auditory
N-back task, except that children saw robots playing a
game with patterned game pieces. Each game piece was a
black square with different patterns of white dots that
stayed on the screen for 1,000 ms. After each piece in a
series was shown, the image left the screen and then the
child was asked to judge whether the most recent pat-
terned game piece was the same as or different from the
preceding patterned game piece. If they did not respond
by the end of 3 s, the next stimulus was presented.
Response accuracy was recorded by the computer.

Number updating. This task assessed children’s abil-
ity to maintain information in working memory and to
update it when additional information was provided. This
task was presented in the context of a toy factory. The
child’s task was to keep track of the running total of
yoyos and teddy bears to manufacture. Initially, children
were shown two digits to remember outlined by two black
squares, one for the number of yoyos and the other for
the number of teddy bears. These remained on the screen
for 2,000 ms. Next, the children were shown an addition
operation (e.g., +1) outlined in a red square for either the
yoyos or the teddy bears, which they use to update the
digit totals. The operation squares stayed on the screen
for 500 ms. Finally, squares outlined in green (with yoyos
and teddy bears in the background) appeared on the
screen, which cued the child to report the updated running
total for each type of toy. A correct response required the
child to report correct running totals for both toys. If the
child responded with an incorrect number but used that
number from that trial onward to correctly report the run-
ning total, they scored a 0 for the initial incorrect trial
response but received credit for subsequent responses in
that trial that were correct relative to the single mistaken
response. The next stimulus appeared on the screen 50 ms
after the RA entered the child’s response.

Short-Term Phonological Memory Tasks
These tasks assessed phonological short-term storage

capacity using stimuli that minimized reliance on lexical
or semantic knowledge. In running tasks, to reduce the
ability to group items or to verbally rehearse them, the
child did not know how many items they would see before
being asked to respond.

Digit span. The digit span task required children to
repeat strings of digits that varied in length from two to
eight digits. Children were not explicitly told how many
digits would be presented in the digit span task, but the
number of digits presented steadily increased (e.g., two pre-
sentations of two digits, two presentations of three digits),
making it predictable. Digits were presented 1 s apart. This
task was presented to children in the context of playing a
copycat game with a robot where the child repeated what
the robot said. The robot read lists of numbers aloud in an
adult male voice (digits 1–9 excluding 7 because it has two
syllables) in random order. After a series of numbers was
presented, the child saw a green rectangle on the screen to
prompt them to verbally recall as many numbers as possi-
ble in sequence. The computer audio-recorded the child’s
responses, and the RA also entered them into the computer
using a separate keyboard. The next span was presented
after the RA keyed in the child’s responses.

Digit span–running. The running task was similar to
the digit span task, except the child saw sea monsters that
spoke lists of numbers with spans from seven to 10 digits
in length. Digits were presented 1 s apart. The procedures
were the same as digit span, but the child did not know
how many digits would be presented. The computer ran-
domly presented three trials each at span of seven to 10
digits for 12 trials total. Children were asked to recall as
many numbers as they could from the end of the list in
forward order. For example, if the list presented was “5,
2, 8, 9, 4” and the children remembered three items, a cor-
rect response would be “8, 9, 4”. The next span was pre-
sented after the RA keyed in the child’s responses.

Nonword repetition. In this task, children helped the
pirate build a candy bridge over a river by listening to a
nonword and then repeating it. Each repeated nonword
(correct or not) added one candy piece to the bridge. The
16 nonwords (four each at two-, three-, four-, and five-
syllable lengths) each contained low-frequency biphones
with no phonological neighbors. Words were presented in
order from those with the fewest (two syllables) to those
with the most (five syllables) syllables. After the child
repeated each nonword, the RA pressed the advance key.
The computer audio-recorded responses for later scoring in
the lab. Children scored 1 point for each nonword with all
consonants repeated correctly. We elected to score only con-
sonants to achieve higher interrater reliability than would be
possible if vowels were also scored (e.g., van Haaften et al.,
2019). In addition, although RAs transcribed the children’s
production of consonants in nonwords for scoring, we chose
to score each whole nonword production as correct or incor-
rect because many future users of this task may not have
trained assistants to transcribe productions phonetically.
Twenty percent of all transcriptions were double-scored
Gray et al.: Working Memory Predicts Word Learning 1055



with an interrater transcription reliability for phoneme-
by-phoneme consonant scoring of 87%. If there were any
discrepancies, the primary coder’s transcription was
included in the analysis.

Short-Term Visuospatial Memory Tasks
These tasks assessed children’s short-term memory

for shapes and locations that could not easily be remem-
bered using verbal labels. In the running tasks, the child
did not know how many items would be presented.

Location span. This task required children to recall a
series of points displayed in sequence on the computer
screen in a game to help the pirate locate buried treasure.
Children saw a black dot in the center of the screen,
followed by a series of arrows pointing to discrete loca-
tions radiating out from the black dot. Each arrow
appeared on the screen for 1,000 ms and then disap-
peared, followed by the next arrow 1.3 s later. After the
sequence of arrows was presented, eight red dots appeared
in a circular pattern around the screen to show all the possi-
ble locations where arrows could point. The locations did
not correspond to those seen on a clock face. Children were
asked to touch the red dots to represent the locations of the
sequence of arrows they had seen. The game advanced after
the expected number of locations was touched by the child.

Location span–running. As in the location span task,
children saw a black dot in the center of the screen
followed by arrows pointing to locations, but they did not
know how many locations they would need to remember.
Each arrow appeared on the screen for 1,000 ms and then
disappeared, followed by the next arrow 1.3 s later. The
computer randomly presented three trials each at spans of
three to six locations for 12 trials total. At the end of the
sequence, eight red dots appeared in a circular pattern
around the screen, and children were asked to touch the
red dots to represent as many locations as they could
remember from the end of the list in forward order. When
they were finished, they touched a “NEXT” button to
indicate they were ready to begin the next trial.

Visual span. This task was similar to the location
span task except children saw a black polygon shape rep-
resenting a gem appearing in the center of the screen one
at a time for 1,000 ms. Polygons were spaced 2 s apart.
We purposefully selected polygon shapes that would be diffi-
cult to name. When all polygons in the series had been
shown, a selection screen appeared with empty response
boxes equivalent to the number of polygons in the sequence.
From a field of six available polygons, children selected
polygons they had seen in the order in which they had
appeared. When they were finished, the next trial began.

Visual span–running. As in the visual span task, chil-
dren saw black polygon shapes in the center of the screen
one at a time for 1,000 ms spaced 2 s apart, but they did
not know how many would appear in the series. The
1056 Journal of Speech, Language, and Hearing Research • Vol. 65 •
computer randomly presented three trials each at a span of
three to six polygons for 12 trials total. At the end of the
series, children were prompted to recall the polygons in
order by choosing from the six polygons displayed on the
screen. When they were finished, they touched a “NEXT”
button to indicate they were ready to begin the next trial.

Binding Tasks
For binding tasks, two different types of stimuli were

presented from the phonological and/or the visuospatial
domains, and children were asked to bind this information
within working memory to respond to the prompt correctly.

Phonological binding span. The task was to remem-
ber pairings of auditory sounds and spoken nonwords in
the context of a robot speaking a robot language ordering
candy at a candy store. First, children saw a robot on the
screen and heard the nonspeech sound (e.g., beep,
mechanical noise) emitted by the robot for 500 ms. This
was followed 2,000 ms later by a speaker icon on the cen-
ter of the next screen presenting the nonword naming the
candy that the robot ordered using the robot sound. A
green rectangle appeared on the next screen, prompting
the child to say the nonword paired with the previous
nonspeech sound. For example, for a span of two, chil-
dren heard one sound followed by a nonword and then
another sound followed by a nonword. Then, they heard
each sound one at a time and were asked to repeat each
nonword as they heard each sound. By asking children to
repeat the correct nonword (i.e., match it to the proper
nonspeech sound), we were able to assess whether they
successfully bound the nonword and the nonspeech sound
together. After the child said the nonword, an RA
advanced the program to the next trial.

The candy names were 11 single-syllable CVC non-
words with low phonotactic probability (seven to 13
neighbors each), which were drawn randomly by the com-
puter for each trial. No sound or nonword was repeated
within a trial. Children heard from one to four pairings in
a trial. The computer audio-recorded the child’s responses
for later scoring in the lab. A nonword was scored correct
if all consonant sounds were produced correctly. Consis-
tent articulatory substitutions were not counted as incor-
rect. Interrater transcription reliability was 94%.

Visual–spatial binding span. This task required chil-
dren to remember one paired visual-and-spatial piece of
information at a time. Children saw a 4 × 4 grid with 16
squares on the screen. One polygon at a time appeared at
a location in the grid for 1,000 ms and then the screen
went blank for 500 ms, followed 1,000 ms later by the next
polygon. There were 12 trials (two each at span lengths of
one to six polygons). To respond, children selected poly-
gons from a field of six that appeared on the screen next to
the grid. They were asked to drag the polygons to their cor-
rect location in the order they originally appeared. The
1044–1069 • March 2022



game advanced after the child pushed the “NEXT” button
to indicate they were finished with their selections.

Cross-modal binding. This task required children to
bind auditory and visual information via the pairing of
single-syllable nonwords with black polygons. Children
saw a black polygon on the screen for 1,000 ms and heard
a nonword name for the polygon. From one to six, poly-
gons were presented 2,000 ms apart in a single series. At
the end of the series, a field of the six polygons appeared
on the screen. As children heard a nonword name spoken,
they were to touch the correct polygon on the screen.
After they provided a response, the game advanced. The
order of presentation on the test screen differed from the
original presentation order. The nonwords used to name
the polygons were dissimilar from each other. They did
not contain the same vowels, and each had low phonotac-
tic probability and neighborhood density.

Analytic Approach

Building off existing factor-analytic work on the
structure of working memory (Gray et al., 2017) and word
learning (Gray et al., 2020) factors, we pursued the rela-
tionships among working memory and word learning con-
structs via structural equation modeling (Bollen, 1989).
The correlations among the working memory and word
learning variables are presented in Supplemental Material S1,
owing to the large size of the table.

Beginning with working memory, Gray et al. (2017)
found support for a three-factor model based on a combi-
nation of the three-component model from Baddeley and
Hitch (1974) and Cowan’s embedded process model
(Cowan, 1988, 1995, 1999, 2001, 2005). The resulting
model specifies three latent factors: central executive,
focus of attention/visuospatial sketchpad, and phonolo-
gical storage and rehearsal/phonological loop (see Figure 1a).
Turning to word learning, Gray et al. (2020) found sup-
port for a model with two latent factors: phonological (see
Figure 1b) and semantic (see Figure 1c).

In the present work, we specified a structural equa-
tion model in which the factor-analytic models for the
working memory factors and the word learning factors
served as measurement models. The predictors of the two
word learning factors included the (a) three working mem-
ory factors and (b) EVT-2 (expressive vocabulary) and
KABC-II (nonverbal IQ) standard scores.2 The EVT-2
scores were modeled as a single indicator of a factor, and
2The models described were initially fitted using the KABC-II scores.
However, the fitted models exhibited numerical instability, possibly
due to the large variance associated with the KABC-II scores. These
scores were rescaled by dividing them by 10 before fitting the models;
no evidence of numerical instability was found for any of the models
using the rescaled KABC-II scores.
KABC-II nonverbal scores were modeled as a single
indicator of a factor. This approach distinguishes between
the observed scores and the theoretical underlying latent
construct via the use of estimates of the reliability of the
scores (Kline, 2015). Based on their test manuals, the esti-
mated reliability for the EVT-2 scores is .92 (Williams,
2007), and the estimated reliability for the KABC-II non-
verbal scale scores is .95 (Kaufman & Kaufman, 2004).

The word learning factors were also permitted to be
correlated above and beyond that due to their dependence
on these predictors, as there is no theoretical reason to
hypothesize that these predictors would fully account for
the association between the word learning factors. The
model is depicted in Figures 1 and 2. Figures 1a–1c depict
the measurement models for working memory, phonolo-
gical word learning, and semantic word learning, respec-
tively. Figure 2a depicts the structural model for the latent
predictors of word learning, and Figure 2b depicts the
structural model relating working memory, as well as EVT-2,
and KABC-II scores to word learning.

We conducted several analyses to pursue the
hypothesis that working memory would account for a sig-
nificant amount of variance in phonological and semantic
word learning over and above the variance accounted for
by expressive vocabulary and nonverbal IQ. In addition
to the just-described model, a second model was fit. The
second model differed from the first by constraining the
effects of the working memory factors on the word
learning factors to be 0. The difference in the amount of
variance in word learning factors that are explained by
these models is interpreted as the variance that can be
attributed to the working memory factors above the EVT-2
and KABC-II nonverbal scores. We also conducted several
other analyses but defer their description until presentation
of the results from the models described so far.

The models were fit using the lavaan package
(Rosseel, 2012) in R. We employed full information maxi-
mum likelihood to accommodate the missing data and
obtained robust standard errors and fit statistics to better
accommodate departures from normality (Satorra & Bentler,
1994). As evidenced by the diagonal in Supplemental Mate-
rial S1, there were only a few missing cases for most vari-
ables. These were due to technology failures and, as such,
are treated as missing completely at random.

Following convention, each model was evaluated by
considering the model χ2 statistic, which tests the null
hypothesis of correct model specification. As this hypothe-
sis is known to be false a priori, the model was also evalu-
ated using fit indices, including the comparative fit index
(CFI; Bentler, 1990), the standardized root-mean-square
residual (SRMR; Bentler, 2006), and the root-mean-
square error of approximation (RMSEA; Steiger & Lind,
1980; see the work of Steiger, 2016), the last of which also
supports a hypothesis test of close fit (RMSEA ≤ 0.05)
Gray et al.: Working Memory Predicts Word Learning 1057



Figure 1. Path diagram with standardized estimates for the measurement portions of the structural equation model listed as Model 1 in
Table 4, including the (a) measurement model for the working memory factors, (b) measurement model for the word learning phonological
factor (Phonological), and (c) measurement model for the word learning semantic factor (Semantic). ns indicates the path was not significant
at the .05 level. Variances for the errors for the observed indicators and the disturbances for the endogenous latent variables are represented
with one-headed arrows without a source; the associated estimated error or disturbance variance is printed by the arrow.
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Figure 2. Path diagram with standardized estimates for the structural equation model listed as Model 1 in Table 4, including the (a) covariance
structure among the latent predictors and (b) structural model for the latent predictors predicting the word learning factors (Phonological = phonol-
ogical word learning factor, Semantic = semantic word learning factor). Note that the (co)variances among the latent predictors are not shown in
(b); they are shown in (a). The measurement component is not shown. For the working memory factors, the structure of the measurement model
was depicted in Figures 1a–c. For the Expressive Vocabulary Test (EVT) and Kaufman Assessment Battery for Children (KABC) factors, single indi-
cators were used in the form of Expressive Vocabulary Test–Second Edition and Kaufman Assessment Battery for Children, Second Edition stan-
dard scores. ns indicates the path was not significant at the .05 level. Variances for the disturbances for the endogenous latent variables are repre-
sented with one-headed arrows without a source; the associated estimated error or disturbance variance is printed by the arrow.
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and a confidence interval. The difference in fit between the
two models was evaluated via a likelihood ratio (χ2 differ-
ence) statistic.

In addition, we leveraged the latent variable model-
ing framework to characterize reliability. Evaluating the
reliabilities for the observed scores from the working
memory and word learning tasks separately (i.e., one task
at a time) is sensible if each such task would be used in
isolation. In the present work, we model the tasks as indi-
cators of constructs represented by latent factors. We
therefore seek to understand the reliability for sets of
tasks. More specifically, we evaluate the maximal reliabil-
ity for the set of tasks with respect to a factor (Bentler,
2007; Hancock & Mueller, 2001; Raykov, 2004) via Coef-
ficient H, which is a function of the standardized loadings
for the indicators of a factor (Hancock & Mueller, 2001).
This conforms to the use of factors to represent constructs
as opposed to, say, unit-weighted composites (McNeish,
2018). In this work, we report Coefficient H for each fac-
tor based on its indicators, using the Excel spreadsheet
provided by McNeish (2018).
Results

A summary of the fit of Model 1 (linking working
memory factors, word learning factors, and standardized
tests) is given in the first row of Table 4. Though the
model χ2 statistic was statistically significant, χ2(868) =
1,073.349, p < .001, the results for the CFI (.911), SRMR
Table 4. Summary of fit of structural equation models predicting the word

Model number and
predictors Model χ2

χ2

difference
testa CF

1. Vocabulary, nonverbal
IQ, & working memory
factors

χ2(868) = 1,073.349,
p < .001

— .91

2. Vocabulary, nonverbal
IQ, & working memory,
effects of working
memory factors
removed

χ2(874) = 1,122.227,
p < .001

χ2(6) = 48.878,
p < .001

.89

Incremental SEM approach
3. Block 1: vocabulary

& nonverbal IQ
Block 2: working
memory

χ2(874) = 1,092.064,
p < .001

— .90

4. Block 1: working
memory

Block 2: vocabulary
& nonverbal IQ

χ2(875) = 1,096.856,
p < .001

— .90

Note. CFI = comparative fit index; SRMR = standardized root-mean-sq
CI = confidence interval; AIC = Akaike information criterion; BIC = Bayesi
aComparing the model in this row to the more general model listed in the
into account that the model χ2 was based on maximum likelihood robus
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(.065), and RMSEA (0.037, 90% CI [0.029, 0.044]) are
indicative of close model–data fit (Bentler, 1990; Browne
& Cudeck, 1993; Hu & Bentler, 1999). Figure 1 depicts
the measurement portion of the model, essentially describ-
ing the components of working memory and word learn-
ing, with standardized estimates for the model parameters.
Figure 2 depicts the structural portion of the model,
describing the relation between working memory factors,
standardized test scores, and word learning factors, with
standardized estimates for the model parameters. Com-
plete unstandardized and standardized results for all
parameters are given in Supplemental Material S2–S8.

Beginning with the measurement model components,
the results for the measurement structure of the working
memory factors mimicked those reported by Gray et al.
(2017). Likewise, the results for the measurement structure
of the word learning factors mimicked those reported by
Gray et al. (2019).

Model 1 (see Figure 2b) explained 48% of the vari-
ance in phonological word learning and 31% of the vari-
ance in semantic word learning. A model restricting the
effects of the working memory factors on word learning
factors to 0 (see Table 4, Model 2) exhibited worse fit,
where it can be seen that the χ2 difference (based on six
degrees of freedom) is equal to 48.878, p < .001. The
Akaike information criterion, Bayesian information criterion
(BIC), and sample-size adjusted BIC also point to worse fit
of this model, as do the individual model fit statistics. In this
model (not shown in a figure), because the effects of working
memory factors were restricted to 0, the only explanatory
learning factors.

I SRMR
RMSEA
[90% CI] AIC BIC

n-adjusted
BIC

1 .065 0.037
[0.029, 0.044]

6501.458 7019.045 6493.464

2 .088 0.041
[0.034, 0.048]

6537.216 7036.095 6529.511

5 .067 0.039
[0.031, 0.046]

6507.456 7006.335 6499.751

4 .067 0.039
[0.031, 0.046]

6509.904 7005.665 6502.248

uare residual; RMSEA = root-mean-square error of approximation;
an information criterion; SEM = structural equation modeling.

top row of this section of the table; the test was conducted taking
t estimation (Satorra & Bentler, 2001).
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work was done by the factors for the EVT-2 and KABC-II;
these explained 17% of the variance in phonological word
learning and 23% of the variance in semantic word learning.

By subtracting the variance explained in Model 2
for each word learning factor from that explained by
Model 1 where working memory factors were not set to 0,
we found that the working memory factors explained an
additional 31% (48%−17%) of the variance in phonolo-
gical word learning and an additional 8% (31%−23%) of
the variance in semantic word learning. It can be difficult
to evaluate whether this additional amount of variance
explained should be considered to be statistically signifi-
cant. The difference in fit between the models was statisti-
cally significant (see Table 4), which is suggestive that
including the paths from the working memory factors is
beneficial. However, such a test is about the overall fit of
the model and is not targeted to the variance explained.

Another approach might examine the structural coef-
ficients from the working memory factors to the word
learning factors. Though these express the unique contribu-
tions of each working memory factor as a predictor, tests
of them do not directly address the contribution of the set
of predictors in terms of the variance explained. In regres-
sion, statistical tests of individual predictors can yield dif-
ferent conclusions than tests of the variance explained by a
set of predictors. For example, it is possible for all the tests
of the individual predictors to be nonsignificant, but a test
of the variance explained by the set of predictors to be sig-
nificant (Cohen et al., 2003, p. 90). It stands to reason that
the same phenomenon could occur at the latent level. To
illustrate in the present case, the analyses so far indicate
that the working memory factors explain an additional 7%
of the variance in semantic word learning above and
beyond that explained by the EVT-2 and KABC-II nonver-
bal scores, but none of the coefficients for the working
memory factors predicting semantic word learning were sta-
tistically significant (see Figure 2). It would be useful to
have a procedure to more directly test the statistical signifi-
cance of the additional variance explained by this set of
latent predictors, akin to what occurs with tests of addi-
tional variance explained in hierarchical regression (see,
e.g., Cohen et al., 2003, Section 5.5).

Incremental SEM Approach

Recently, Feng and Hancock (2021) developed an
incremental approach that enacts such a test of the signifi-
cance of additional variance accounted for within struc-
tural equation models. In their approach, analogous to
what occurs in hierarchical regression, measured or latent
variable predictors are grouped into blocks, such that the
model yields the proportion of variance explained by each
block of predictors, above and beyond all previously
entered blocks. To pursue our hypothesis, we employed
the approach of Feng and Hancock (2021), analyzing a
model in which the factors for the EVT-2 (vocabulary)
and KABC-II (nonverbal IQ) scores formed the first block
and the working memory factors formed the second block.
The structural portion of this model is displayed in Figure 3.
The measurement models for these factors are the same as
those in the previous model (single-indicator models for
EVT-2 and KABC-II; see Figures 1a–1c for the remaining
factors and those that are not depicted here).

The diagram in Figure 3 portrays the structural portion
of the model, along with the necessary constraints to enact a
desired partitioning of variance. Toward the bottom por-
tion of the figure, estimates of key paths (explained in more
detail below) are reported. Before discussing the results, we
briefly provide a conceptual presentation of the model.
Technical details on the constraints and statistical theory
can be found in the work of Feng and Hancock (2021).

Beginning on the left-hand side of the figure, the
model essentially combines the variables in the first block
(EVT and KABC) into a composite, ω1. The use of the
latent variables ξ1 and ξ2 and the depicted constraints on
the parameters are done so that the resulting composite
(ω1) explains as much variance as possible in the outcomes
(PHON and SEM).

Turning to the right-hand side of the figure, a simi-
lar structure appears for the working memory factors in
the second block (central executive factor [CE], focus of
attention/visuospatial sketchpad factor [FOA/VSP], and
phonological storage and rehearsal/phonological loop fac-
tor [PSR/PL]). The latent variables ξ3, ξ4, and ξ5 and the
depicted constraints on the parameters are included to
produce the resulting composite, ω2. Importantly, note
that the working memory factors in the second block (CE,
FOA/VSP, and PSR/LP) are regressed on the composite
from the first block (ω1). In essence, this construction par-
titions the variance of the factors in the second block into
(a) a portion that is shared with those from the first that
can explain variance in the outcomes and (b) a portion
that is not shared with those from the first block. The
result is that the composite formed in the second block
(ω2) is that which explains as much variance as possible in
the outcomes (PHON and SEM) above and beyond that
which can be explained by the first block.

In summary, this modeling approach aims to parti-
tion the variance explained by the predictors into distinct
portions organized incrementally by blocks (Feng &
Hancock, 2021). The goal is to characterize and provide a
test of the variance explained by a later block of predic-
tors above and beyond an earlier block. The relationships
specified in the reparameterization are not intended to be
a theoretical model, and the resulting parameter estimates
are not of inferential interest (e.g., negative γ values
shown in Figures 3 and 4 are not like negative correla-
tions), with the exception of those described next.
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Figure 3. Path diagram, with notation from Feng and Hancock (2021), of the structural portion of a model for characterizing the incremental
validity of the working memory factors above and beyond expressive vocabulary and nonverbal IQ. Constraints on parameters necessary to
implement the model are depicted. The model is not intended as a theoretical model; it serves to partition the variance explained in the out-
comes (phonological word learning factor [PHON] and semantic word learning factor [SEM]) via factors in the first block (Expressive Vocabu-
lary Test, factor for expressive vocabulary [EVT] and Kaufman Assessment Battery for Children, factor for nonverbal IQ [KABC]) and factors
in the second block (central executive factor [CE], focus of attention/visuospatial sketchpad factor [FOA/VSP], and phonological storage and
rehearsal/phonological loop factor [PSR/LP]). Parameter estimates are given for the γs that are paths from composites from each block to
the outcomes. Standard errors are given in parentheses, along with p values. The square of each of these values represents the proportion
of variance explained in the outcome by the block in question, above and beyond any previous block.
The squared values of the paths from ω1 (the com-
posite of the first block of predictors) and ω2 (the compos-
ite of the second block of predictors) to the outcomes give
the proportion of variance that is explained by each block,
in the latter case above and beyond that which is
explained in the first block. That is,

• (γ11)
2 is the proportion of variance in the PHON

that is explained by the factors for EVT-2 and
KABC-II;

• (γ21)
2 is the proportion of variance in the SEM that

is explained by the factors for EVT-2 and KABC-II;
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• (γ12)
2 is the additional proportion of variance in the

PHON that is explained by the working memory fac-
tors above and beyond that which is explained by
the factors for EVT-2 and KABC-II; and

• (γ22)
2 is the additional proportion of variance in the

SEM that is explained by the working memory fac-
tors above and beyond that which is explained by
the factors for EVT-2 and KABC-II.

The model was fit in Mplus (Version 8.3; (Muthén &
Muthén, 1998), adapting code provided by Feng and
Hancock (2021). The fit of the model (Model 3) is
1044–1069 • March 2022



summarized in Table 4. The model fit is close to that of
the conventional model (Model 1 in Table 4). The esti-
mates for the relevant parameters are given in Figure 3, in
the lower portion of the figure. According to this analysis,
the first block of EVT-2 and KABC-II explained about
16% of the variance in phonological word learning, as
(γ11)

2 = .3972 = .157, which was statistically significant,
p < .001. The first block of EVT-2 and KABC-II explained
about 20% of the variance in semantic word learning, as
(γ21)

2 = .4482 = .200, which was statistically significant,
p < .001. The working memory factors explained an addi-
tional 33% of the variance in phonological word learning,
as (γ12)

2 = −.5712 = .326, which was statistically significant,
p < .001. They explained an additional 5% of the variance
in semantic word learning, as (γ22)

2 = −.2242 = .050, which
was statistically significant, p = .016. These values echo
what was evaluated by the difference in variance explained
from fitting separate models.3

To more fully understand the contributions of work-
ing memory as a whole as possibly distinct from expres-
sive vocabulary and nonverbal IQ, we also examined a
model (Model 4) in which the order of the blocks was
reversed, with the working memory factors forming the
first block and the EVT-2 and KABC-II scores forming
the second block. The structural portion of this model is
displayed in Figure 4, and the model fit is summarized in
Table 4. The model fit is close to that of the conventional
model (Model 1) including all the predictors and the pre-
vious model (Model 3) employing the incremental
approach. The differences in fit arise due to the different
parameters estimated under the alternate parameteriza-
tion of the latent structure.

By themselves, the working memory factors were
estimated as explaining about 45% of the variance in pho-
nological word learning, as (γ11)

2 = .6732 = .453, which
was statistically significant, p < .001. The working mem-
ory factors explained about 17% of the variance in seman-
tic word learning, as (γ21)

2 = .4082 = .166, which was sta-
tistically significant, p < .001. Entered after these working
memory factors, EVT-2 and KABC-II, as a block,
explained only .1% additional variance in phonological
word learning, as (γ12)

2 = −.0332 = .001, which was not
3We note that the total variance explained in semantic word learning
according to this analysis was about 25%, which is a bit lower than
based on the conventional model, which, as noted above, was about
31%. It is not clear if this difference is due to differences in rounding
or numerical imprecision under the Feng and Hancock (2021)
approach, the difference in software, or some other reason. To inves-
tigate the possibility of differences due to software, all the models
previously described as being fit in lavaan were also fit in Mplus, rep-
licating the results almost exactly. As such, our conjecture is that the
issue is not due to the shift in software to Mplus. Note that in the
case of phonological word learning, the total explained variance was
the same across modeling approaches and software (48%).
statistically significant, p = .692, and 9% additional vari-
ance in semantic word learning, as (γ22)

2 = −.2962 = .087,
which was statistically significant, p = .001.

Taking these models together, we can interpret the
results and the implications for understanding the unique
predictive capacity of the working memory factors as fol-
lows. Figure 5 depicts the situation via an Euler diagram
in which the shapes represent the proportions of variance
in the word learning factors that are explainable by the
two blocks (working memory factors; vocabulary and
nonverbal IQ factors). In the plots, the area of the objects
corresponds to the proportion of variance, which is also
labeled numerically, and the overlap between objects rep-
resents variance shared between them.

Three key aspects are readily seen in the plots. First,
the predictor variables explain more variance in the
PHON than in the SEM.

Second, for predicting the PHON, if the researcher
only had access to vocabulary (EVT-2) and nonverbal IQ
(KABC-II) scores (see Table 4, Model 3), the model
would explain only 15% of the variance. Adding the
working memory factors later would explain an additional
33% of the variance. However, as shown by Model 4 (see
Table 4), the working memory factors can explain that
same 48% of the variance by themselves, with vocabulary
and nonverbal IQ explaining no additional variance.
Essentially, the predictive capabilities of the working
memory factors include the predictive capabilities of EVT-2
and KABC-II, and then some.

Third, the pattern for predicting the SEM is differ-
ent than that for the PHON. While there is some common
variance that either the working memory factors or vocab-
ulary and nonverbal IQ scores could explain, each set of
predictors can explain some variance that the other set
cannot. In terms of how much variance, vocabulary and
nonverbal IQ can explain about 20% of the variance by
themselves. Adding working memory later would explain
an additional 5% of the variance (see Table 4, Model 3).
Likewise, the working memory factors can explain 16% of
the variance by themselves; adding the vocabulary and
nonverbal IQ factors can explain an additional 9% of the
variance (see Table 4, Model 4).
Discussion

In this study, we used an established model of work-
ing memory in children to predict an established model of
dynamic word learning to determine whether working
memory processes as a whole explained word learning var-
iance over and above the contributions of expressive
vocabulary and nonverbal IQ. Strengths of this study
include the comprehensive nature of the working memory
and word learning tasks and the use of structural equation
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Figure 4. Path diagram, with notation from Feng and Hancock (2021), of the structural portion of a model for characterizing the incremental
validity of expressive vocabulary and nonverbal IQ above and beyond the working memory factors. Constraints on parameters necessary to
implement the model are depicted. The model is not intended as a theoretical model; it serves to partition the variance explained in the out-
comes (phonological word learning factor [PHON] and semantic word learning factor [SEM]) via factors in the first block (Expressive Vocabu-
lary Test, factor for expressive vocabulary [EVT] and Kaufman Assessment Battery for Children, factor for nonverbal IQ [KABC]) and factors
in the second block (central executive factor [CE], focus of attention/visuospatial sketchpad factor [FOA/VSP], and phonological storage and
rehearsal/phonological loop factor [PSR/LP]). Parameter estimates are given for the γs that are paths from composites from each block to
the outcomes. Standard errors are given in parentheses, along with p values. The square of each of these values represents the proportion
of variance explained in the outcome by the block in question, above and beyond any previous block.
modeling to model measurement error and assess the rela-
tions among latent working memory and word learning
variables. By establishing these factor-analytic models in
young children with TD, we can later test for measure-
ment invariance of the models in other groups of children
with developmental disorders who often have difficulty
with word learning to determine if comparing the groups
on these constructs is valid.

Results of this study support the hypothesis that
working memory as a whole is a significant predictor of
not only what has already been learned (academic
achievement) but also what is actively being learned
(dynamic learning). This is important because a logical
next step would be to test the hypothesis that learning
could be improved if working memory processes were
optimized. This does not necessarily mean increasing
working memory capacity through training, the efficacy of
1064 Journal of Speech, Language, and Hearing Research • Vol. 65 •
which has been called into question (e.g., Apter, 2012;
Cunningham & Sood, 2018; Melby-Lervåg & Hulme,
2013; Randall & Tyldesley, 2016; Redick et al., 2013;
Shipstead et al., 2012), although some studies show transfer
effects (e.g., Holmes & Gathercole, 2014; Loosli et al.,
2012; Söderqvist & Nutley, 2015). Rather, it suggests test-
ing tailored teaching strategies to support children with par-
ticular working memory profiles (Cowan, 2014; Gray et al.,
2019). This type of intervention study has yet to appear in
the research literature; however, clinical focus articles such
as those by Singer and Bashir (2018) provide a framework
to guide development of such interventions. In addition to
Singer and Bashir, there are studies showing that different
manipulations of encoding practices, such as repeated and
spaced retrieval (Leonard & Deevy, 2020) and effortful
retrieval (Fazio & Marsh, 2019), may benefit recall and
retention in children. This type of tailored teaching,
1044–1069 • March 2022



Figure 5. Euler diagrams using the working memory (WM) factors and vocabulary (VOCAB; Expressive Vocabulary Test–Second Edition
scores) and nonverbal IQ (NVIQ; Kaufman Assessment Battery for Children, Second Edition standard scores) factors to explain the variance
in the (a) phonological word learning factor and (b) semantic word learning factor. The areas are proportional to the percentage of the vari-
ance explained by each source, which are also labeled numerically.
combined with knowledge of a child’s working memory
strengths and weaknesses, has the potential to individual-
ize teaching and intervention approaches.

An earlier study (Gray et al., 2019) found that chil-
dren’s working memory profiles were not synonymous
with learning disability diagnoses. In that study, children
with dyslexia were represented in four different working
memory profiles ranging from low overall to high overall.
The same was true of children with developmental lan-
guage disorder, developmental language disorder and dys-
lexia, and TD. This suggests the potential for results from
a comprehensive working memory battery to yield impor-
tant information about potential ways to improve learning
in addition to information already available from a typical
psychoeducational evaluation that typically includes IQ
and vocabulary scores. Using word learning as a dynamic
learning measure, the working memory factors in this
study explained a significant amount of dynamic learning
variance. Quite remarkably, factors underlying the work-
ing memory battery alone accounted for nearly half of the
variance in phonological word learning and nearly one
fifth of the variance in semantic word learning. Adding
the nonverbal IQ and expressive vocabulary measures
explained no additional phonological word learning vari-
ance but an additional 9% of semantic word learning vari-
ance. Taken together, these results suggest that a compre-
hensive working memory assessment reflecting all compo-
nents of working memory could provide important diag-
nostic information regarding the source of dynamic word
learning difficulties.

It is important to note that structural equation
modeling offers several advantages previously discussed,
but such models cannot definitively pin down causation or
thoroughly represent the complex working memory and
word learning processes occurring in the real world. In
particular, we employed models to understand the predic-
tive utility of working memory for word learning in addi-
tion to expressive vocabulary and nonverbal IQ. A variety
of alternative model structures, which impose a different
directional or causal structure order on the variables, may
hold. Such statistical models should be grounded in the-
ory, and future work may serve to compare them. Ideally,
this would proceed with larger samples and/or longitudinal
samples. Larger samples may shed additional light on the
effects, as well as the differences between effects, investi-
gated here. Similarly, although constructs such as working
memory and receptive vocabulary are represented by fac-
tors in our models, this does not mean that the skills and
abilities represented by these constructs do not interact
dynamically during learning.

Finally, just as structural equation models represent
constructs imperfectly, tests and experimental tasks are
not pure measures of a construct. For example, our mea-
sure of expressive vocabulary cannot represent a child’s
entire lexicon, and our nonverbal IQ measures, even
though they are labeled nonverbal, do not prevent chil-
dren from using oral language to help complete nonverbal
tasks. Rather, they are designed to minimize reliance on
oral language.

Limitations

One important limitation of this study is that we did
not have the school names for each child enrolled in our
study. This means that we could not determine whether
our data were nested, which would permit us to test the
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statistical assumption of whether cases were truly indepen-
dent. Because we recruited 167 participants from more
than 25 different school districts and educational organiza-
tions in three different metropolitan areas, we think it is
unlikely that large clusters of students from the same
school participated, but we do not know.

This study was conducted with children enrolled in
second grade. It is possible that the relationship between
working memory processes and word learning processes
changes over the course of development; therefore, find-
ings may not generalize to younger or older students. The
word learning tasks in this study assessed the triggering
and configuration stages of word learning when children
first encountered new words but did not assess the engage-
ment stage of word learning when the representations of
words are solidified in memory with experience. The rela-
tionship between working memory processes as a whole
and the engagement stage of word learning likely differ
from earlier word learning stages.
Conclusions

Using established structural equation models of
working memory and word learning in young children, we
found that working memory was a significant predictor of
word learning over and above the contributions of expres-
sive vocabulary and nonverbal IQ. Results suggest that a
comprehensive working memory assessment could contrib-
ute important diagnostic information to inform sources of
word learning difficulties. Studies are needed to determine
whether tailoring instruction based on a child’s working
memory profile could increase learning.
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