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Abstract: Vibration energy harvesting technology is expected to solve the power supply and en-
durance problems of wireless sensor systems, realize the self-power supply of wireless sensor systems
in coal mines, and promote the intelligent development of coal mine equipment. A combined beam
tri-stable piezoelectric energy harvester (CTPEH) is designed by introducing magnetic force into
the combined beam structure. In order to explore the vibration characteristics of CTPEH, a nonlin-
ear magnetic model is obtained based on the magnetic dipole theory, and the dynamic equation
of the system is established using the Lagrange theorem and Rayleigh–Ritz theory. The influence
of the different magnet distances and excitation conditions on the static bifurcation characteristics
and dynamic response characteristics of the system are analyzed by numerical simulation, and the
simulation results are validated by the experiments. The research results show that the motion state
of the CTPEH system has four transition forms from mono-stable to tri-stable with the change in
magnet distance. The tri-stable system has three potential energy curves with different characteristic
shapes. The appropriate starting excitation position and excitation frequency can make it easier for
the system to realize a large-amplitude response state, thereby improving the output performance of
the system. This research provides new ideas and methods for optimizing the performance of the
combined beam piezoelectric energy harvester.

Keywords: tri-stable; combined beam; nonlinearity; static bifurcation; dynamic response

1. Introduction

In recent years, with the increasing maturity of wireless sensor network and micro-
electro-mechanical system (MEMS) technology, wireless sensor systems have been widely
applied in many fields such as industry [1], transportation [2], and military [3]. At present,
the power supply method of the wireless sensor system is mainly traditional batteries. Due
to volume and capacity constraints, the electric energy provided by traditional batteries
is very limited, as well as represents an environmental pollution risk. Therefore, as a key
technology to replace traditional batteries, vibration energy harvesting technology enables
the realization of self-powered wireless sensor systems.

The current vibration energy harvesting methods mainly include electromagnetic [4],
electrostatic [5], magnetoelectric [6], and piezoelectric methods [7]. The piezoelectric type
is more suitable for various applications than other energy harvesting methods due to
its easy integration and high efficiency [8]. Piezoelectric energy harvesters are mainly
cantilever beam structures, and researchers have extensively analyzed and researched this
structure [9,10]. However, the traditional cantilever beam energy harvester can only harvest
energy when the vibration frequency of the external environment is the same as its resonant
frequency, which leads to its low energy harvesting efficiency. Therefore, researchers have
proposed many methods to broaden the frequency band so that the energy harvester can
adapt to the broadband characteristics of the external environment [11]. Frequency exten-
sion methods are mainly divided into linear and nonlinear [12]. Linear extension methods
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mainly include array structure [13], multi-degree-of-freedom structure [14], special-shaped
structure [15], etc. Although these methods can realize frequency extension, they have
disadvantages such as complex systems and large structure space occupation. The meth-
ods of nonlinear frequency extension mainly include adding a stopper [16], introducing a
spring [17], magnetic coupling [18], etc. Related researchers have researched the application
of these methods. Halim [19] designed a piezoelectric energy harvester with a base stopper.
The research results showed that the working frequency band of the energy harvester
is greatly improved compared with that without a stopper. Aladwani [20] proposed a
cantilever beam energy harvester with the base connected to a spring. The results indicate
that the system realizes the broadening of the energy harvesting frequency band using the
amplification effect of the spring.

Compared with the two above nonlinear frequency extension methods, magnetic
coupling has the advantages of system stability and a simple structure, so researchers
have conducted in-depth discussions and research on the magnetic coupling piezoelectric
energy harvester [21,22]. Shah [23] designed a bi-stable piezoelectric energy harvester by
introducing two mutually repelling magnets. The simulation and experimental results show
that the output performance of the bi-stable structure is significantly improved compared
with the traditional linear structure. Li [24] proposed a magnetically coupled tri-stable
piezoelectric energy harvester and established a dynamics model of the system. It was
demonstrated through numerical simulations and experiments that the tri-stable structure
can produce higher output voltage and power under the same excitation conditions as
the bi-stable energy harvesting structure. Ma [25] constructed an asymmetric tri-stable
piezoelectric energy harvester by taking an asymmetric placement of two magnets on the
base. The analysis showed that the asymmetric tri-stable structure has complex response
characteristics, and it is easier to achieve large-amplitude movements than the symmetric
structure, thus enhancing the output efficiency of the system. Zhou [26] improved the
tri-stable piezoelectric energy harvester by designing the fixed magnet to be rotatable and
showed that the fixed magnet, when rotated to a suitable angle, can significantly enhance
the operating band and harvesting efficiency of the harvester. Ju [27] added a magnet based
on the tri-stable structure to form a quad-stable piezoelectric energy harvester. According
to simulation and experimental studies, the quad-stable piezoelectric energy harvester
has a shallower potential well, for which it is easier to realize interwell motion, and the
system’s frequency bandwidth and output performance are further improved. Zhou [28]
designed a tri-stable piezoelectric cantilever energy harvester and studied the system
response characteristics at different initial positions through frequency sweep experiments.
The study found that the initial position has a great influence on the effective frequency
range of the system. Wang [29] proposed a bi-stable piezoelectric energy harvester with an
asymmetric potential well and analyzed the effect of initial displacement on the system’s
performance. The results indicate that the system is more likely to exhibit a high-energy
output state when the initial displacement is at a shallower potential well.

The vibration in the external environment is often in multiple directions, while the
energy harvesting direction of the straight beam structure is single, which cannot effectively
harvest the multidirectional vibration energy in the environment. Therefore, researchers
have gradually studied the curved beam energy harvesting structure [30,31]. Chen [32]
designed an arched beam-type energy harvesting structure. Compared with the straight
beam structure, the arched beam has a larger average strain, which can improve the
output performance of the energy harvester. Jung [33] proposed a curved piezoelectric
energy harvesting structure. The experimental study showed that the curved structure not
only expands the vibration frequency range of the system, but also improves the power
generation of the system. Zhao [34] designed an arc-shaped elastic energy harvesting
structure. Through finite element analysis and experimental tests, it was shown that the arc-
shaped structure can effectively harvest energy in multiple directions in the environment.

Regarding the wide frequency band and multi-direction vibration characteristics of
electrical and mechanical mine equipment, this research group proposed a combined beam
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energy harvesting structure in the early stage. Based on the combined beam structure and
magnetic coupling, a combined beam tri-stable piezoelectric energy harvester (CTPEH)
was designed in this paper. The work of this paper is organized as follows. In Section 2,
the overall structure of CTPEH is first introduced, and then the nonlinear magnetic model
and restoring force model of the system are provided; finally, the motion model of the
system is established based on the Lagrange principle. In Section 3, the influence of the
magnet distance on the static bifurcation and potential energy characteristics of the system
is analyzed, and then the influence of the starting position and excitation frequency on the
dynamic response of the system is numerically simulated. In Section 4, the experimental
platform and prototype of the system are first introduced, and then experiments are
conducted to verify the simulation results. The main conclusions of this paper are given in
the last section.

2. Structure and Theoretical Model of CTPEH
2.1. Structure of CTPEH

Figure 1 shows the schematic diagram of the structure of CTPEH, which mainly
consists of a base, a combined beam, piezoelectric material, and magnets. The combined
beam is composed of a linear straight beam and an arched curved beam, one end of which
is fixed on the inner wall on the left side of the base, whilst the other end is free. The
piezoelectric material is a polyvinylidene fluoride (PVDF) piezoelectric film, which is
attached to the upper surface of the combined beam. Its positive and negative electrodes
are connected to both ends of the load resistor R. Magnet A is fixedly connected to the free
end of the combined beam, whilst the magnets B and C are symmetrically fixed to the inner
wall of the right side of the base about the x axis, and the magnetic forces between magnet
A and magnets B and C repel each other. As shown in the figure, the transverse length
of the combined beam is L, the surface distance between magnet A and magnets B and C
along the x axis is dx, and the center distance between magnet B and magnet C along the
y axis is dy. When the base is excited along the y axis direction, the combined beam will
bend, and the piezoelectric film on the surface will also deform to generate electricity.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 22 
 

 

power generation of the system. Zhao [34] designed an arc-shaped elastic energy harvest-
ing structure. Through finite element analysis and experimental tests, it was shown that 
the arc-shaped structure can effectively harvest energy in multiple directions in the envi-
ronment. 

Regarding the wide frequency band and multi-direction vibration characteristics of 
electrical and mechanical mine equipment, this research group proposed a combined 
beam energy harvesting structure in the early stage. Based on the combined beam struc-
ture and magnetic coupling, a combined beam tri-stable piezoelectric energy harvester 
(CTPEH) was designed in this paper. The work of this paper is organized as follows. In 
Section 2, the overall structure of CTPEH is first introduced, and then the nonlinear mag-
netic model and restoring force model of the system are provided; finally, the motion 
model of the system is established based on the Lagrange principle. In Section 3, the in-
fluence of the magnet distance on the static bifurcation and potential energy characteris-
tics of the system is analyzed, and then the influence of the starting position and excitation 
frequency on the dynamic response of the system is numerically simulated. In Section 4, 
the experimental platform and prototype of the system are first introduced, and then ex-
periments are conducted to verify the simulation results. The main conclusions of this 
paper are given in the last section. 

2. Structure and Theoretical Model of CTPEH 
2.1. Structure of CTPEH 

Figure 1 shows the schematic diagram of the structure of CTPEH, which mainly con-
sists of a base, a combined beam, piezoelectric material, and magnets. The combined beam 
is composed of a linear straight beam and an arched curved beam, one end of which is 
fixed on the inner wall on the left side of the base, whilst the other end is free. The piezo-
electric material is a polyvinylidene fluoride (PVDF) piezoelectric film, which is attached 
to the upper surface of the combined beam. Its positive and negative electrodes are con-
nected to both ends of the load resistor R. Magnet A is fixedly connected to the free end 
of the combined beam, whilst the magnets B and C are symmetrically fixed to the inner 
wall of the right side of the base about the x axis, and the magnetic forces between magnet 
A and magnets B and C repel each other. As shown in the figure, the transverse length of 
the combined beam is 𝐿𝐿, the surface distance between magnet A and magnets B and C 
along the x axis is 𝑑𝑑𝑥𝑥, and the center distance between magnet B and magnet C along the 
y axis is 𝑑𝑑𝑦𝑦. When the base is excited along the y axis direction, the combined beam will 
bend, and the piezoelectric film on the surface will also deform to generate electricity. 

 
Figure 1. Schematic diagram of the structure of CTPEH. 

  

Figure 1. Schematic diagram of the structure of CTPEH.



Micromachines 2022, 13, 1465 4 of 22

2.2. Theoretical Model of CTPEH
2.2.1. Nonlinear Magnetic Force Model

To analyze the dynamic response characteristics of CTPEH, the nonlinear magnetic
force between magnet A and magnets B and C needs to be calculated accurately. In this
paper, the magnetic force model of the system is built based on the magnetic dipole theory,
and the position relationship between magnets A, B, and C is schematically shown in
Figure 2.
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The magnetization strength of magnets A, B, and C are MA, MB, and MC, respectively.
SA, SB, and SC are the surface areas of the three magnets, respectively. The length of the
magnet along the x axis is e. According to the magnetic dipole method, the magnetic
repulsion force of magnet A on magnet B is [35]

FAB =
KAB
4π
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where KAB = µ0MASA MBSB, λ1 = u(L, t) − dy/2, λ2 = u(L, t) + θe − dy/2. µ0 is the
vacuum magnetic permeability; u(L, t) is the vibration displacement of magnet A along
the y axis direction; and θ is the deflection angle of magnet A relative to the x axis.

Similarly, the magnetic repulsion force of magnet A by magnet C can be expressed as

FAC =
KAC
4π
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where KAC = µ0MASA MCSC, λ3 = u(L, t) + dy/2, λ4 = u(L, t) + θe + dy/2.
Then, the total magnetic repulsion force of magnet A on magnets B and C is

FM = FAB + FAC (3)

Therefore, the total potential energy generated between the magnets can be derived as:

UM =
∫

FMdu (4)
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2.2.2. Nonlinear Restoring Force Model

The restoring force of the combined beam in this paper is relatively complicated due
to the existence of curved beam parts. The traditional straight beam is generally considered
a linear restoring force, while the restoring force of the combined beam is nonlinear. This
paper used a dynamometer (YLK-10, ELECALL, Yueqing, China) to survey the restoring
force of the combined beam several times, and then took the mean value of the measured
data, and finally used MATLAB (version 9.1, accessed on 15 June 2022) to perform a
nonlinear curve fitting. The polynomial expression of the restoring force–displacement is
obtained as follows:

FR = c1u3(L, t) + c2u(L, t) (5)

where c1 and c2 are the coefficients of the cubic term and the primary term of the expression,
respectively.

The measured data and curve fitting results of the nonlinear restoring force of the
combined beam are shown in Figure 3, which obtains the coefficient c1 = 55, 314.7 N/m3,
c2 = 20.45 N/m. It can be seen from Figure 3 that the nonlinear curve fitting is relatively good.
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2.2.3. Dynamic Model of CTPEH

In this paper, the dynamic model of CTPEH is established according to the Euler–
Bernoulli theory and Lagrange theorem. This paper mainly studies the vibration character-
istics of the combined beam in the y direction. In this direction, the tensile deformation of
the curved beam part cannot be considered, and the deformation of the combined beam is
similar to that of the straight beam. Therefore, the combined beam is regarded as a straight
beam in the dynamic model of this paper. The Lagrange equation of the system can be
expressed as

L(x, t) = TL + TM + WP −UM −UR (6)

where TL is the kinetic energy of the piezoelectric material layer and the substrate layer;
TM is the kinetic energy of free-end magnet A; WP is the electrical energy generated by the
piezoelectric material; UM is the magnetic potential energy generated between the magnets;
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UR is the strain potential energy of the piezoelectric material layer and the substrate layer.
Their specific expressions are as follows:

TL =
1
2
(ρP AP + ρS AS)

∫ L

0

[
∂u(x, t)

∂x
+

.
z(t)

]2
dx (7)

TM =
1
2

Mt

{[
∂u(x, t)

∂t

]
x=L

+
.
z(t)

}2
+

1
2

It

[
∂2u(x, t)

∂t∂x

]2

x=L
(8)

WP =
1
4

e31b(hS + hP)v(t)
[

∂u(x, t)
∂x

]
x=L

+
1
2

CPv2(t) (9)

UR =
∫

FRdu (10)

where ρP and AP are the density and cross-sectional area of the piezoelectric layer, respec-
tively; ρS and AS are the density and cross-sectional area of the substrate layer;

.
z(t) is the

excitation speed of the base; Mt and It are the mass and rotational inertia of magnet A,
respectively; e31 is the electromechanical coupling constant of the piezoelectric material; CP
is the equivalent capacitance of the piezoelectric material.

In this paper, we mainly focus on the energy harvesting problem in a low-frequency
excitation environment, so only the first-order vibration mode of the combined beam is
considered. The Rayleigh–Ritz theory can be used to express the vibration displacement
u(x, t) as

u(x, t) = φ(x)η(t) (11)

where φ(x) is the first-order mode shape of the beam, η(t) is the first generalized modal
coordinate. The combined beam structure in this paper is a cantilever beam, so the allowable
function of the cantilever beam is used to approximate the modal mode shape of the
combined beam as follows [36]:

φ(x) = 1− cos(
πx
2L

) (12)

According to Lagrange’s theorem and Kirchhoff’s current law, combined with the
nonlinear magnetic model and restoring force model of the system, the dynamic equation
of the system can be obtained as

M
..
η(t) + C

.
η(t) + FM + FR − ϑv(t) = −ψ

..
z(t) (13)

ϑ
.
η(t) + CP

.
v(t) + v(t)/R = 0 (14)

where M is the modal mass of the system, ϑ is the electromechanical coupling coefficient
term, ψ is the excitation coefficient term, and

..
z(t) is the acceleration of the external excitation.

Their specific expressions are given below:

M = (ρP AP + ρS AS)
∫ L

0
φ2(x)dx + Mtφ

2(L) + It
(
φ′(L)

)2 (15)

ϑ =
1
2

e31b(hP + hS)φ
′(L) (16)

ψ = (ρP AP + ρS AS)
∫ L

0
φ(x)dx + Mtφ(L) (17)

..
z(t) = Asin(2πFt) (18)

In Equation (18), A is the external excitation amplitude and F is the external excitation
frequency.
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3. Numerical Simulation of CTPEH
3.1. Analysis of Static Bifurcation Characteristics

The structure and material parameters of the substrate layer, piezoelectric layer, and
magnet in the CTPEH system are shown in Table 1.

Table 1. Structure and material parameters of CTPEH.

Parameter Value

Length 40 mm
Width 8 mm

Substrate layer Height 0.2 mm
Material density 8500 kg/m3

Elastic modulus 128 × 109 Pa
Length 40 mm
Width 8 mm

Piezoelectric layer Height 0.11 mm
Material density 1750 kg/m3

Elastic modulus 3 × 109 Pa
Length 5 mm
Width 10 mm

Magnet Height 10 mm
Material density 7500 kg/m3

Magnetization 5.5 × 105 A/m

Let the parameters of the time term in Equation (13) be zero, that is,
..
η(t) =

.
η(t) =

.
v(t) = v(t) =

..
z(t) = 0, and the expression for the static solution of the system can be

obtained as
FM + FR = 0 (19)

According to Equation (19), the static solution of the system in the space of (dx, dy,
u) is schematically shown in Figure 4. It can be seen that the system exhibits complex
bifurcation characteristics. With the change of the magnet distance dx and dy, the system
has three situations of one, three, and five equilibrium positions.
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Figure 4. Schematic diagram of the static solution of the system.

Projecting Figure 4 on the (dx, dy) plane obtains the bifurcation set of the system’s
equilibrium position, as shown in Figure 5. Divide Figure 5 into three regions: A, B, and
C. When dx and dy are in region A, the system has only one equilibrium position and
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exhibits a mono-stable state. In region B, the system has three equilibrium positions, which
is a bi-stable system at this time. When located in region C, there are five equilibrium
positions for the system, and the system exhibits tri-stable characteristics. The curve ab is
the dividing line between region A and region B. When dx and dy are on the curve ab, the
system is in the critical state between being mono-stable and bi-stable. Similarly, the curve
ac is the dividing line between region A and region C. When dx and dy are on the curve
ac, the system is in the critical state between mono-stable and tri-stable. The curve ad is
the dividing line between region B and region C. When dx and dy are on the curve ad, the
system is in the critical state between being bi-stable and tri-stable.
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The magnet distance has a significant effect on the stable motion of the system, which
is caused by the phenomenon of static bifurcation. In the following, the static bifurcation
characteristics of the system are analyzed in detail by numerical simulation.

The effect on the static bifurcation characteristics of the system in the (dx, u) plane
is first analyzed. Figure 6 shows the static bifurcation diagram of the system when
dy = 0, 10, 12, 16 mm. The red solid line in the figure indicates the stable equilibrium
position, and the blue dashed line indicates the unstable equilibrium position. As shown
in Figure 6a, when dy = 0 mm, the bifurcation phenomenon of the system at this time is
similar to the bi-stable structure, and there is only one bifurcation point P1 in the system.
When the value of dx is taken on the right side of the bifurcation point P1, there is only one
stable equilibrium position in the system, and the system behaves as a mono-stable. When
the value is taken on the left side of point P1, the system has three equilibrium positions,
two of which are stable and one which is unstable. At this time, the system is a bi-stable
system. As dy increases to 10 mm, it can be seen from Figure 6b that the bifurcation point
P1 moves to the left, and a new bifurcation point P2 appears on the left side of P1. The
bifurcation points P1 and P2 divide dx into three intervals. When dx > dxP1, the system has
only one stable equilibrium position, and the system presents mono-stable characteristics.
When dxP1 > dx > dxP2, the system has two stable and one unstable equilibrium position
and is in a bi-stable state. When dx < dxP2, the system has three stable and two unstable
equilibrium positions and exhibits tri-stable characteristics.
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As shown in Figure 6c, as dy increases to 12 mm, the bifurcation point P1 continues to
move to the left, and the bifurcation point P2 begins to move to the right. In addition, two
saddle points S appear above and below P1, which divides dx into four intervals. Compared
with Figure 6b, Figure 6c divides the dx > dxP1 interval into two dxS > dx > dxP1 and
dx > dxS intervals. When dx > dxS, the system has only one stable equilibrium position
and behaves as mono-stable. When dxS > dx > dxP1, the system has five equilibrium
positions, three of which are stable and two of which are unstable, and the system behaves
as a tri-stable state. Figure 6d shows the static bifurcation diagram of the system when
dy = 16 mm. The bifurcation points P1 and P2 disappear, and the two saddle points S move
to the left and separate. When dx is on the right side of saddle point S, the system only has
one stable equilibrium position, which is a mono-stable system. When dx is on the left side
of point S, the system has three stable and two unstable equilibrium positions, and the state
of the system is tri-stable.

In addition, it can be seen in Figure 6 that, given the magnet distance dy, when the
magnet distance dx < 0.003 m, the bifurcation diagram only has stable solutions and no
unstable solutions. This phenomenon illustrates that the system has only stable equilibrium
positions and no unstable equilibrium positions when the distance between the end magnet
of the combined beam and the external magnet is less than 0.003 m.
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Then, the effect of dx on the static bifurcation characteristics of the system is analyzed
in the (dy, u) plane. When dx = 10 mm, the bifurcation point P1 and the saddle point S are
divided dy into three segments, as shown in Figure 7a. When dy is taken to the right of the
saddle point S, the system has only one stable equilibrium point and is in a mono-stable
state. When the value of dy is on the left side of the bifurcation point P1, the system has
two stable points and one unstable equilibrium point, presenting a bi-stable state. When dy
is between the points P1 and S, the system has three stable and two unstable equilibrium
points, at which time the system exhibits tri-stable characteristics. Figure 7b,c show the
static bifurcation for dx = 12 mm and 15 mm. As can be seen from the figure, with the
gradual increase in dx, the position of bifurcation point P1 is basically unchanged, while
the two saddle points S gradually move to the left, resulting in a larger range of being in
a mono-stable state and a smaller range of being in a tri-stable state of the system. When
dx = 20 mm, it can be seen from Figure 7d that the two saddle points S of the system
disappear, and the bifurcation point P1 gradually moves to the left. When dy is taken on
the right side of P1, the system is a mono-stable system, and when dy is taken on the left
side of P1, the system presents bi-stable characteristics.
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Based on the above analysis, it can be concluded that the steady state of the system
shifts between mono-stable, bi-stable, and tri-stable states as the magnet distances dx and
dy vary in a given parameter plane. In the plane (dx, u), with the gradual increase in dy, the
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bi-stable region of the system becomes smaller until it disappears. In the plane (dy, u), with
the increase in dx, the tri-stable region of the system gradually decreases until it disappears.

3.2. Analysis of System Potential Energy

The total potential energy of the system is the sum of magnetic potential energy and
the strain potential energy of the system, which can be expressed as

U = UM + UR (20)

The magnet distances dx and dy play a decisive role in the magnetic potential energy,
thus having a significant effect on the total potential energy of the system. From the above
analysis of Figure 5, it is clear that the system presents a tri-stable state when dx and dy
are in region C. Taking dx = 13 mm, dy = 14, 15.5, and 17 mm in region C, the potential
energy curves of three different shapes of the tri-stable system are plotted as shown in
Figure 8. The potential energy curves of the system all have three potential wells and are
symmetrically distributed around u = 0. The depths of the left and right potential wells are
the same. The left and right potential wells are collectively called the side potential wells,
and the middle potential well is called the central potential well. ∆U1 and ∆U2 denote the
depths of the central and side potential wells, respectively. From Figure 8, it can be seen
that, when dy = 14 mm, ∆U1 < ∆U2; when dy = 15.5 mm, ∆U1 = ∆U2; when dy = 17 mm,
∆U1 > ∆U2.
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3.3. Analysis of System Dynamics Response
3.3.1. Influence of Starting Position on System Dynamic Response

According to the above analysis of potential energy, when the system exhibits the tri-
stable state, its potential energy curve has three potential wells. According to the principle
of minimum potential energy, when the system’s potential energy is a minimum value, the
system is in a stable equilibrium state. Therefore, the lowest point of the potential well
is the stable equilibrium position of the system. This paper mainly studies the system’s
response characteristics when the initial velocity is zero, so the stable equilibrium position
of the system is selected as the starting position. The effect of the starting vibration from
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different stable equilibrium positions on the dynamic response of the system is analyzed
below. Taking the excitation acceleration A = 14 m/s2, the excitation frequency F = 9 Hz,
the magnet distance dx = 13 mm, and the starting positions are the stable equilibrium
position of the center and the right side, respectively. The Runge–Kutta method is used to
numerically solve the dynamic equation of the system. In this paper, we mainly study the
dynamic response characteristics of the system at a steady state, so the response time range
is chosen as a period of 15–20 s after the system is stable.

When dy = 17 mm, ∆U1 > ∆U2, and Figure 9 shows the phase portrait and time–
voltage diagram of the system at different starting positions. When starting from the
central equilibrium position, as shown in Figure 9a, the system cannot overcome the
hindrance of the central potential barrier due to the large depth ∆U1 of the central potential
well. Therefore, the system can only make small-amplitude movements within the central
potential well, which results in a small response displacement and voltage. When starting
from the right-side equilibrium position, as shown in Figure 9b, due to the small depth
∆U2 of the side potential well, the system can overcome the hindrance of the side potential
barrier and enter the central potential well. Since the system has obtained greater kinetic
energy at this time, the system can also overcome the large central potential barrier to
achieve a large-amplitude movement between the wells, and the response displacement
and voltage of the system are greatly improved.
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When dy = 14 mm, ∆U1 < ∆U2, Figure 10 shows the phase portrait and time–voltage
diagram of the system when starting from different equilibrium positions. When the
starting position is the central equilibrium position, as shown in Figure 10a, the system
is located in the shallow central potential well, and the system can easily overcome the
constraint of the central potential barrier and enter the side potential well. At this time, the
system has obtained enough kinetic energy to pass over the larger side potential barrier.
Thus, the system can perform a large-amplitude reciprocating motion between the three
potential wells, and the response displacement and voltage of the system are relatively large.
When the starting position is the right-side equilibrium position, as shown in Figure 10b,
the system is located in the deep right-side potential well, and the system cannot escape
the constraint of the right-side potential barrier. Therefore, the system can only perform
small-amplitude movements in the right-side potential well, and the response displacement
and voltage of the system are relatively small.
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When dy = 15.5 mm, ∆U1 = ∆U2, and Figure 11 shows the phase portrait and time–
voltage diagram of the system. Since the central and side potential wells of the system have the
same depth and are relatively small, the system can escape from the constraints of the potential
barriers and make large-amplitude motions between the three potential wells, regardless of
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whether they start from the central or the right-side equilibrium position. At this moment, the
displacement and voltage of the system both show larger response amplitudes.
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From the above analysis, it can be concluded that the starting position of the system
has a great influence on the system response characteristics. The suitable starting position
can make it easier for the system to escape the constraints of the potential well, thus
showing a high-energy output state and improving the energy harvesting efficiency of
the system.

3.3.2. Influence of Excitation Frequency on System Dynamic Response

The combined beam piezoelectric energy harvester designed in this paper is mainly
applied to coal mine equipment. When coal mine equipment is running, it will generate
vibration energy, and this vibration frequency is mainly concentrated in the low-frequency
range. Therefore, it is necessary to analyze the influence of the excitation frequency on the
system dynamic response.

Given that the starting position is the central stable equilibrium position, the magnet
distance dx = 13 mm, dy = 15.5 mm, and the excitation acceleration A = 14 m/s2,
Figure 12 shows the excitation frequency–displacement bifurcation diagram of the system.
According to the transition of the motion state of the system, the excitation frequency
F can be divided into four intervals, which are 0–6.5 Hz, 6.5–11.5 Hz, 11.5–13.5 Hz, and
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13.5–20 Hz. When F is below 6.5 Hz, the system is constrained to make a small-amplitude
motion in the well, resulting in a small response displacement. When F is in the range of
6.5–11.5 Hz, the system achieves inter-well motion and is continuously in a large-amplitude
response state, and the large-amplitude response bandwidth of the system is 5 Hz. When F
is between 11.5 and 13.5 Hz, the system exhibits a state of chaotic motion, and the response
displacement of the system is very unstable. When F is above 13.5 Hz, the system can only
move in the well and is in a state of small-amplitude response. In addition, it can be found
that the effective energy harvesting bandwidth of the system is significantly improved by
introducing a nonlinear magnetic force.
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It can also be found from Figure 12 that the response displacement of the system has
an obvious jump when the excitation frequency F is 6.5 Hz, 11.5 Hz, and 13.5 Hz. With
the increased excitation frequency F, the system’s attractor is transformed, resulting in
this jump. When F = 6 Hz, the attractor transforms from the intrawell periodic to the
interwell periodic attractor. The system’s motion changes from the intrawell to the interwell
motion, so the response displacement is greatly improved. When F = 11.5 Hz, the interwell
periodic attractor transforms into the chaotic attractor. The system changes from interwell
to chaotic motion, so the response displacement is sometimes large and small. When
F = 13.5 Hz, the attractor transforms from the chaotic attractor to the intrawell periodic
attractor. The system changes from chaotic to intrawell motion, significantly reducing the
response displacement.

Figure 13 shows the phase portrait and time–voltage diagram of the system under
different excitation frequencies. Figure 13a shows that, when F = 3 Hz, the excitation
frequency does not match the large-amplitude response frequency of the system, so the
system can only perform a small-amplitude movement in the central potential well, and the
output voltage of the system is only 5.8 V. As F increases to 9 Hz, as shown in Figure 13b,
the excitation frequency at this time is within the large-amplitude response frequency range
of the system, so the system realizes large inter-well motion, and the output voltage reaches
46 V. As F continues to increase to 12 Hz, as shown in Figure 13c, the excitation frequency
is close to the large-amplitude response frequency of the system, so the system exhibits a
state of chaotic motion, and the output voltage is sometimes large and small. As shown
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in Figure 13d, when F = 18 Hz, the excitation frequency completely deviates from the
large-amplitude response frequency of the system, so the system can only perform the
small-amplitude intrawell motion, and the output voltage of the system is reduced to 8.6 V.
It can be seen that the excitation frequency has a significant effect on the dynamic response
of the system. The suitable excitation frequency makes it easier for the system to pass over
the potential barriers and achieve large-amplitude periodic motions, thus improving the
output performance of the system.
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4. Experimental Verification

To validate the correctness of the simulation results, a test platform of the CTPEH
system was built, and an experimental prototype was made in this paper. Figure 14 shows
the experimental test platform. It is mainly composed of a computer, shaker (LT-50ST,
ECON, Hangzhou, China), shaker controller (VT-9008, ECON, Hangzhou, China), power
amplifier (VSA-L1000A, ECON, Hangzhou, China), laser vibrometer (LV-S01, SDPTOP,
Shanghai, China), vibrometer controller (LV-S01, SDPTOP, Shanghai, China), vibration data
collector (CoCo-80X, CRYSTAL, Silicon Valley, CA, USA), and oscilloscope (DSOX3024T,
KEYSIGHT, Santa Rosa, CA, USA). Figure 15 shows the experimental prototype of CTPEH,
which mainly consists of a base, fixture, PVDF piezoelectric film, combined beam, and
magnet. One end of the combined beam is clamped and fixed to the base, while a magnet is
attached to the other end. Two magnets are symmetrically fixed to the base, and the PVDF
piezoelectric film is uniformly glued to the surface of the combined beam.
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Figure 15. Experimental prototype of CTPEH.

During the experiment, the experimental prototype is installed on the shaker, and the
shaker controller generates a vibration signal through the control software on the computer.
The power amplifier amplifies the signal and inputs it into the shaker, and the experimental
prototype vibrates under the action of the shaker. The laser vibrometer and the vibration
data collector are used to measure and collect the response velocity and displacement of
the combined beam, respectively. The oscilloscope is used to collect the output voltage of
the prototype.

Given the excitation frequency F = 9 Hz, excitation acceleration A = 14 m/s2, we
must take the magnet distance dx = 13 mm, dy = 17 mm. Figure 16 shows the experimental
phase portrait and time–voltage diagram under different starting positions. When the
starting position is the central equilibrium position, as shown in Figure 16a, the system can
only make small-amplitude periodic motions within the central potential well because it
cannot cross the higher central potential barrier. The response displacement of the system
is only 2.5 mm, and the output voltage is only 6.5 V. When starting from the right-side
equilibrium position, as shown in Figure 16b. The system can easily pass over the lower
right-side potential barrier and gain enough energy to cross the higher central potential
barrier, thus achieving large-amplitude periodic motion in the tri-stable state. At this time,
the response displacement of the system reaches 21 mm, and the output voltage is up to
52 V.
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Figure 16. Experimental phase portrait and time–voltage diagram at different starting positions:
(a) starting position is the central equilibrium position; and (b) starting position is the right-side
equilibrium position.

Given the excitation acceleration A = 14 m/s2, magnet distance dx = 13 mm, and
dy = 15.5 mm, the starting position is the central equilibrium position. Figure 17 shows
the experimental phase portrait and the time–voltage diagram at different excitation fre-
quencies. Figure 17a shows the system performing the tri-stable large-amplitude periodic
motion at F = 9 Hz, as the excitation frequency at this point matches the large-amplitude
response frequency of the system. The response displacement of the system is 22 mm, and
the output voltage is 55 V. Figure 17b shows that, at F = 18 Hz, the system can only make
the small-amplitude periodic motion in the well because the excitation frequency deviates
from the large-amplitude response frequency of the system. The response displacement of
the system is reduced to 4.5 mm, and the output voltage is lowered to 11.3 V.

It can be seen from the comparison that the results of the simulation analysis and
experimental verification are relatively consistent, but there are some deviations in the
numerical values. These deviations are mainly because of: (1) a deviation between the
actual and simulated size of the combined beam and magnet; (2) the gravitational effect of
the magnet which is not considered in the simulation, while it is real in the experiment; and
(3) the curved beam part of the combined beam which will produce tensile deformation
when moving, which leads to some deviations in the velocity and displacement results
measured with the laser.
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5. Conclusions

In this paper, the nonlinear magnetic and dynamical models of the CTPEH system are
established. The effects of different magnet distances and external excitation conditions
on the system’s static and dynamic response characteristics are analyzed by numerical
simulations and experiments. Some of the main conclusions are summarized as follows:

(1) The CTPEH system has the characteristic of a complex static solution bifurcation.
Given the magnet distance dy, there are four transitions in the steady state of the
system as the magnet distance dx decreases. The first transition is a direct jump from
mono-stable to bi-stable. The second is to jump from mono-stable to bi-stable and
then to tri-stable. The third is to start from a mono-stable, first to a tri-stable, then
jump to a bi-stable, and finally to a tri-stable. The fourth is a direct transition from
mono-stable to tri-stable.

(2) When the system exhibits a tri-stable state, the system has three potential energy wells.
In the range of tri-stable, when the magnet distance dx is certain, adjusting the magnet
distance dy can alter the depth of three potential wells of the system, thereby changing
the shape of the potential energy curve of the system.

(3) The different starting positions have a significant influence on the dynamic response
of the system. When the starting position is near a shallow potential well, the system
can easily overcome the potential barrier to achieve large-amplitude interwell motion,
resulting in a large response displacement and output voltage. When the starting
position is near a deep potential well, it is difficult for the system to overcome the
constraints of the potential barrier. At this time, the system can only perform small-
amplitude intrawell motion, which greatly reduces the response displacement and
output voltage of the system.

(4) The external excitation frequency has a great effect on the output characteristics of the
system. As the excitation frequency increases, the system behaves as small-amplitude
intrawell, large-amplitude interwell, chaotic, and small-amplitude intrawell motion
states in that order. When the excitation frequency is within the large-amplitude
response frequency range of the system, the system exhibits a high-energy output
state, which is beneficial to the effective harvesting of energy.
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