Search a number
compositorials
The compositorial of a number  $n$  is equal to the product of composite numbers less than or equal to  $n$.

The compositorial of  $n$  is thus equal to  $n!/n\sharp$, where  $n\sharp$  denotes the primorial of  $n$.

The first distinct compositorials are 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000.

Compositorials can also be... (you may click on names or numbers)

ABA 24 192 aban 24 192 abundant 24 192 1728 17280 207360 2903040 43545600 Achilles 5267275776000 admirable 24 amenable 24 192 1728 17280 207360 2903040 43545600 696729600 apocalyptic 192 17280 congruent 24 17280 constructible 24 192 cube 1728 Cunningham 24 d-powerful 24 dig.balanced 2903040 droll 17280 economical 192 1728 17280 207360 2903040 equidigital 192 1728 17280 2903040 eRAP 24 evil 24 192 1728 17280 2903040 43545600 696729600 factorial 24 frugal 207360 696729600 gapful 192 1728 17280 207360 2903040 43545600 696729600 12541132800 happy 192 Harshad 24 192 1728 17280 207360 2903040 43545600 696729600 highly composite 24 iban 24 idoneal 24 interprime 192 1728 43545600 Jordan-Polya 24 192 1728 17280 207360 2903040 43545600 696729600 12541132800 250822656000 5267275776000 115880067072000 Lynch-Bell 24 metadrome 24 nonagonal 24 nude 24 odious 207360 panconsummate 24 pernicious 24 192 207360 plaindrome 24 power 1728 powerful 1728 5267275776000 practical 24 192 1728 17280 207360 2903040 pseudoperfect 24 192 1728 17280 207360 Ruth-Aaron 24 Saint-Exupery 12541132800 self 1728 super Niven 24 superabundant 24 tau 24 17280 696729600 tribonacci 24 trimorphic 24 unprimeable 17280 untouchable 1728 207360 wasteful 24 Zuckerman 24 Zumkeller 24 192 1728 17280