八階正方形鑲嵌
在幾何學中, 八階正方形鑲嵌是由正方形組成的雙曲面正鑲嵌圖,每八個正方形共用一個頂點。在施萊夫利符號用{4,8}表示。八階正方形鑲嵌即每個頂點皆為八個正方形的公共頂點,頂點周圍包含了八個不重疊的正方形,一個正方形內角90度,八個正方形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。
類別 | 雙曲正鑲嵌 | |
---|---|---|
對偶多面體 | 四階八邊形鑲嵌 | |
識別 | ||
鮑爾斯縮寫 | osquat | |
數學表示法 | ||
考克斯特符號 | ||
施萊夫利符號 | {4,8} | |
威佐夫符號 | 8 | 4 2 | |
組成與佈局 | ||
頂點圖 | 48 | |
對稱性 | ||
對稱群 | [8,4], (*842) | |
特性 | ||
點可遞、 邊可遞、 面可遞 | ||
圖像 | ||
| ||
對稱性
编辑這個鑲嵌代表一個由四條鏡射線相交於正方形的邊的雙曲萬花筒,且每個頂點周圍有八個正方形。 這由四個四階交叉反射性在軌型符號被稱為(*4444)。 在考斯特表示法可表示為[1+,8,8,1+](*4444 軌型), 從三個鏡射線當中移除兩條穿過正方形中心的鏡射線。 *4444對稱性可透過加入平分基本域的鏡射線增倍成884對稱性。
這個交錯塗色的正方形鑲嵌顯示了奇數/偶數的反射對稱群。 這個雙色鑲嵌的wythoff構建為(4,4,4),{4[3]}, :
相關多面體與鑲嵌
编辑該鑲嵌在拓樸學上和頂點圖是(4n)的一系列的鑲嵌的一部份。
多面体 | 欧式镶嵌 | 双曲镶嵌 | ||||||
---|---|---|---|---|---|---|---|---|
{4,2} |
{4,3} |
{4,4} |
{4,5} |
{4,6} |
{4,7} |
{4,8} |
... | {4,∞} |
球面 | 雙曲鑲嵌 | |||||||
---|---|---|---|---|---|---|---|---|
{2,8} |
{3,8} |
{4,8} |
{5,8} |
{6,8} |
{7,8} |
{8,8} |
... | {∞,8} |
參見
编辑
參考資料
编辑- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Chapter 10: Regular honeycombs in hyperbolic space. The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
外部連結
编辑- 埃里克·韦斯坦因. Hyperbolic tiling. MathWorld.
- 埃里克·韦斯坦因. Poincaré hyperbolic disk. MathWorld.
- Hyperbolic and Spherical Tiling Gallery(页面存档备份,存于互联网档案馆)
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings (页面存档备份,存于互联网档案馆)
- Hyperbolic Planar Tessellations, Don Hatch(页面存档备份,存于互联网档案馆)