跳转到内容

氢经济:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Watchspecies留言 | 贡献
InternetArchiveBot留言 | 贡献
补救65个来源,并将0个来源标记为失效。) #IABot (v2.0.9.5
 
(未显示5个用户的9个中间版本)
第1行: 第1行:
[[File:IRENA maturity of hydrogen solutions 2022.svg|thumb|[[國際可再生能源機構|國際再生能源總署]]表示,氫能在化學生產、煉油、國際航運和鋼鐵製造等領域具有最高的減碳潛力。<ref>{{Cite web |last=International Renewable Energy Agency |date=2022-03-29 |title=World Energy Transitions Outlook 1-5C Pathway 2022 edition |url=https://www.irena.org/publications/2022/mar/world-energy-transitions-outlook-2022 |access-date=2023-10-06 |website=IRENA |page=227 |language=en}}</ref>]]
[[File:Hydrogen.economy.sys integration circle.jpg|thumb|300px|氫經濟概念圖]]


'''氫經濟'''({{lang-en|hydrogen economy}})是一總稱,用來描述使用[[氫]]氣與[[低碳電力]],共同發揮作用以減少[[溫室氣體排放]]的作為。目的是在暫且尚無法有更便宜、更節能的清潔解決方案情況下減少排放。<ref name=":0" />在此背景下,氫經濟包括氫的生產及使用,以有助於[[化石燃料淘汰|逐步淘汰化石燃料]]和進行[[氣候變化緩解]]。
'''氢经济'''({{lang-en|Hydrogen Economy}})是指設想以[[氫氣]]([[氫燃料]])為主要[[能源]]的社會狀態,最早於1970年由{{link-en|約翰·博克里斯|John Bockris}}在[[美国]][[通用汽车]]公司技术中心的演讲所创<ref name="timeline">{{cite web|url=https://hydrogenassociation.org/general/factSheet_history.pdf|title=The History of Hydrogen|last=National Hydrogen Association|coauthors=United States Department of Energy|work=hydrogenassociation.org|publisher=National Hydrogen Association|page=1|accessdate=2010-12-17|deadurl=yes|archiveurl=https://web.archive.org/web/20100714141058/http://www.hydrogenassociation.org/general/factSheet_history.pdf|archivedate=2010年7月14日}}</ref>。当时发生[[第一次石油危机]]时,主要为描绘未来氢气取代石油成为支撑全球经济的主要能源后,整个氢能源生产、配送、贮存及使用的市场运作体系。


生產氫氣的方式有幾種。目前全球生產的絕大多數氫氣都是"灰氫(grey hydrogen)"- 將[[天然氣]]中的[[甲烷]]經過高溫[[蒸汽重整]] (SMR) 製成。蒸氣重整過程所排放的溫室氣體佔2021年全球總量的1.8%。<ref name="auto1">Greenhouse gas emissions totalled 49.3 Gigatonnes CO<sub>2</sub>e in 2021.{{Cite web |title=Global Greenhouse Gas Emissions: 1990–2020 and Preliminary 2021 Estimates |url=https://rhg.com/research/global-greenhouse-gas-emissions-2021/ |access-date=2023-09-21 |website=Rhodium Group |date=19 December 2022 |language=en-US |archive-date=2024-06-21 |archive-url=https://web.archive.org/web/20240621120920/https://rhg.com/research/global-greenhouse-gas-emissions-2021/ |dead-url=no }}</ref>而低碳氫氣中的"藍氫(blue hydrogen)"是使用蒸氣重整法製成,但附設有[[碳捕集與封存]](CCS)設施以消除排放,或是"綠氫(green hydrogen)" - 使用再生能源產生的電力將水[[電解]]而得,兩者目前所生產的氫氣在總產量中只有不到1%的佔比。<ref name=":23">{{Cite web |date=2023-07-10 |title=Hydrogen |url=https://www.iea.org/energy-system/low-emission-fuels/hydrogen |access-date=2023-09-21 |website=IEA |at="Energy" section |language=en-GB |archive-date=2024-09-19 |archive-url=https://web.archive.org/web/20240919010443/https://www.iea.org/energy-system/low-emission-fuels/hydrogen |dead-url=no }}</ref>每年全球生產的1億噸<ref>{{Cite web |title=Hydrogen |url=https://www.iea.org/energy-system/low-emission-fuels/hydrogen |access-date=2024-03-24 |website=IEA |language=en-GB}}</ref>氫氣幾乎全部用於煉油(於2021年的佔比為43%)和工業(57%),後者主要用於製造氨(再製成化肥)和[[甲醇]]。<ref name=":02">{{Cite book |last=IEA |url=https://www.iea.org/reports/global-hydrogen-review-2022 |title=Global Hydrogen Review 2022 |publisher=International Energy Agency |year=2022 |page= |language=en-GB |access-date=2023-08-25 |archive-date=2023-01-10 |archive-url=https://web.archive.org/web/20230110225147/https://www.iea.org/reports/global-hydrogen-review-2022 |dead-url=no }}</ref>{{Rp|pages=18, 22, 29}}
氫電池即是利用氫氣經過[[化學反應]]後產生[[能量]],是[[燃料電池]]的一種,它不但不會產生[[廢氣]]污染環境,而且也可以儲存能量,每公斤高達1.4億焦耳<ref>{{Cite web |url=https://stockfeel.com.tw/%E6%B0%AB%E7%87%83%E6%96%99%E9%9B%BB%E6%B1%A0%EF%BC%9A%E6%98%AF%E7%B5%82%E6%A5%B5%E8%83%BD%E6%BA%90%E6%96%B9%E6%A1%88%E9%82%84%E6%98%AF%E6%84%9A%E8%A0%A2%E6%8A%95%E8%B3%87%EF%BC%9F/ |title=存档副本 |access-date=2021-08-16 |archive-date=2021-08-16 |archive-url=https://web.archive.org/web/20210816074330/https://www.stockfeel.com.tw/%E6%B0%AB%E7%87%83%E6%96%99%E9%9B%BB%E6%B1%A0%EF%BC%9A%E6%98%AF%E7%B5%82%E6%A5%B5%E8%83%BD%E6%BA%90%E6%96%B9%E6%A1%88%E9%82%84%E6%98%AF%E6%84%9A%E8%A0%A2%E6%8A%95%E8%B3%87%EF%BC%9F/ |dead-url=no }}</ref>,所以是目前正在研究大量生產的方法。


人們普遍設想要緩解氣候變化,在未來的氫經濟中必須以低碳氫氣取代灰氫。<ref>{{Cite web |title=Hydrogen could be used for nearly everything. It probably shouldn’t be. |url=https://www.technologyreview.com/2024/04/25/1091757/hydrogen-uses-ranked/ |access-date=2024-05-13 |website=MIT Technology Review |language=en}}</ref>而截至2024年,尚不清楚何時可生產足夠的低碳氫氣來逐步淘汰所有灰氫。氫氣於未來的最終用途可能是在重工業(例如與高溫工藝一起運作的電力、生產綠氨和有機化學品原料及在煉鋼方面取代[[焦炭]])、長途運輸(例如航運、航空和較小規模的重型卡車)和長期儲能方面。<ref name=":12">{{Cite book |author=IPCC |author-link=IPCC |url=https://ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf |title=Climate Change 2022: Mitigation of Climate Change |publisher=Cambridge University Press (In Press) |year=2022 |isbn=9781009157926 |editor1-last=Shukla |editor1-first=P.R. |series=Contribution of Working Group III to the [[IPCC Sixth Assessment Report|Sixth Assessment Report]] of the Intergovernmental Panel on Climate Change |place=Cambridge, UK and New York, NY, US |pages=91–92 |doi=10.1017/9781009157926 |ref={{harvid|IPCC AR6 WG3|2022}} |editor2-last=Skea |editor2-first=J. |editor3-last=Slade |editor3-first=R. |editor4-last=Al Khourdajie |editor4-first=A. |editor5-last=van Diemen |editor5-first=R. |editor6-last=McCollum |editor6-first=D. |editor7-last=Pathak |editor7-first=M. |editor8-last=Some |editor8-first=S. |editor9-last=Vyas |editor9-first=P. |display-editors=4 |editor10-first=R. |editor10-last=Fradera |editor11-first=M. |editor11-last=Belkacemi |editor12-first=A. |editor12-last=Hasija |editor13-first=G. |editor13-last=Lisboa |editor14-first=S. |editor14-last=Luz |editor15-first=J. |editor15-last=Malley |access-date=2024-08-13 |archive-date=2023-09-20 |archive-url=https://web.archive.org/web/20230920152208/https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf |dead-url=no }}</ref><ref name="IRENA 2021 95">{{Cite web |last=IRENA |date=2021 |title=World Energy Transitions Outlook: 1.5&nbsp;°C Pathway |url=https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook |access-date=2023-09-21 |website=International Renewable Energy Agency |pages=95 |language=en |publication-place=Abu Dhabi |archive-date=2024-08-27 |archive-url=https://web.archive.org/web/20240827121908/https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook |dead-url=no }}</ref>氫氣在未來不大會應用在輕型車輛和建築物供暖等應用,主要是出於經濟和環境的考量。<ref>{{Cite journal |last=Plötz |first=Patrick |date=2022-01-31 |title=Hydrogen technology is unlikely to play a major role in sustainable road transport |url=https://www.nature.com/articles/s41928-021-00706-6 |journal=Nature Electronics |language=en |volume=5 |issue=1 |pages=8–10 |doi=10.1038/s41928-021-00706-6 |s2cid=246465284 |issn=2520-1131}}</ref><ref name=":62">{{Cite journal |last=Rosenow |first=Jan |date=September 2022 |title=Is heating homes with hydrogen all but a pipe dream? An evidence review |journal=Joule |language=en |volume=6 |issue=10 |pages=2225–2228 |doi=10.1016/j.joule.2022.08.015|s2cid=252584593 |doi-access=free }}</ref>但氫氣在儲存、管道運輸和使用方面都具挑戰性 - 因為它具有甚易發生爆炸,有安全上的顧慮,且使用效率遠較直接使用電力為低。由於目前可用的低碳氫氣相對較少,可將其運用在較難脫碳的應用中,來最大限度提高氣候效益。<ref name=":62" />
氫經濟的目標是取代現有的[[石油]]經濟體系,並達到[[環保]]目標。氫氣可以利用風能和太陽能等可再生資源進行[[水分解]],其燃燒只向大氣中釋放[[水蒸氣]]<ref>{{Cite web|url=https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf|title=Hydrogen Insights: A perspective on hydrogen investment, market development and cost competitiveness|publisher=Hydrogen Council|date=February 2021|access-date=21 February 2021|archive-date=17 February 2021|archive-url=https://web.archive.org/web/20210217161121/https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf|url-status=live}}</ref><ref>{{Cite web|url=https://weforum.org/agenda/2019/06/the-clean-energy-of-the-future-is-already-here/|title=Hydrogen isn't the fuel of the future. It's already here|website=World Economic Forum|access-date=2019-11-29|archive-date=2019-11-02|archive-url=https://web.archive.org/web/20191102080751/https://www.weforum.org/agenda/2019/06/the-clean-energy-of-the-future-is-already-here/|url-status=live}}</ref>。但是諸多技術瓶頸導致「先有雞、先有蛋」的循環難題,很多氫設備要大量使用才有成本效益,但是不先裝設這些天價設備,則根本無法吸引人使用,更不會有相關產業,如何過渡到氫時代是氫經濟的研究課題。


截至2023年,用到氫氣的幾種化學製程(例如製造化肥所需的氨氣)還沒真正的替代品。<ref>{{Cite web |last=Barnard |first=Michael |date=2023-10-22 |title=What's New On The Rungs Of Liebreich's Hydrogen Ladder? |url=https://cleantechnica.com/2023/10/22/whats-new-on-the-rungs-of-liebreichs-hydrogen-ladder/ |access-date=2024-02-17 |website=CleanTechnica |language=en-US |archive-date=2024-09-15 |archive-url=https://web.archive.org/web/20240915190819/https://cleantechnica.com/2023/10/22/whats-new-on-the-rungs-of-liebreichs-hydrogen-ladder/ |dead-url=no }}</ref>低碳和零碳氫氣的成本可能會影響其在化學原料、長途航空和航運以及長期能源儲存的使用程度。低碳和零碳氫氣的生產成本正在演化中。未來成本可能受到[[碳稅]]、能源地理和[[地緣政治]]因素、能源價格、技術及其原材料需求的影響。隨著時間,生產綠氫的成本可能會發生最大程度的降幅。<ref name="Goldman Sachs Research 4–6">{{Cite web |last=Goldman Sachs Research |title=Carbonomics: The Clean Hydrogen Revolution |url=https://www.goldmansachs.com/intelligence/pages/carbonomics-the-clean-hydrogen-revolution.html |access-date=2023-09-25 |website=Goldman Sachs |pages=4–6 |language=en-US |archive-date=2024-06-04 |archive-url=https://web.archive.org/web/20240604222441/https://www.goldmansachs.com/intelligence/pages/carbonomics-the-clean-hydrogen-revolution.html |dead-url=yes }}</ref>
== 原理 ==
'''氢经济'''是為了取代諸多困擾的石油經濟體系而生的解決方案。包含運輸,和其他會導致溫室氣體的應用;一次給予解決計畫。


==史上與當代理念==
在目前的石油經濟中,人員運輸和商品運輸都靠[[石油]],例如[[石油]]提煉的[[汽油]]和[[柴油]],少數是[[天然氣]]。不論如何都會產生[[溫室氣體]]和其他污染物質。而且石油藏量已經到達極限,但是使用需求卻一直飆高,例如[[中華人民共和國|中國]][[印度]]和[[巴西]]等[[新興國家]]越來越多人生活水準提升也需要用油。
===起源===
[[英國]]出生的[[遺傳學家]]和[[進化生物學家]][[約翰·伯頓·桑德森·霍爾丹]]於1923年提出使用氫氣作為主要儲能方式的概念。他預測英國用於發電的煤碳儲備即將枯竭,而提出建立[[風力發電機]]網絡的構想,所生產的電力用來電解水,產生氫氣和[[氧]]氣,實現長期儲存能量,以解决風能發電固有的[[間歇性再生能源|間歇性]]問題。<ref>{{Cite web |title=''Daedalus or Science and the Future'', A paper read to the Heretics, Cambridge, on February 4th, 1923 – Transcript 1993 |url=http://bactra.org/Daedalus.html |url-status=live |archive-url=https://web.archive.org/web/20171115013540/http://bactra.org/Daedalus.html |archive-date=2017-11-15 |access-date=2016-01-16}}</ref>而"氫經濟"這個名詞是由化學教授{{le|約翰·博克里斯|John Bockris}}於1970年在[[通用汽車]] (GM) 技術中心發表演講時提出。<ref name="timeline">{{cite web|url=http://www.hydrogenassociation.org/general/factSheet_history.pdf|title=The History of Hydrogen|author1=National Hydrogen Association|author2=United States Department of Energy|work=hydrogenassociation.org|publisher=National Hydrogen Association|page=1|access-date=2010-12-17|url-status=dead|archive-url=https://web.archive.org/web/20100714141058/http://www.hydrogenassociation.org/general/factSheet_history.pdf|archive-date=2010-07-14}}</ref>博克里斯認為在氫經濟中,以[[核子動力|核能]]和[[太陽能]]發電產生的氫能作為{{le|能源載體|Energy carrier}},用在不適於電氣化的應用,有助於處理人們對[[化石燃料]]枯竭和環境污染日益增長的擔憂。<ref name=":0">{{Cite journal |last1=Yap |first1=Jiazhen |last2=McLellan |first2=Benjamin |date=2023-01-06 |title=A Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020 |journal=Environments |language=en |volume=10 |issue=1 |pages=11 |doi=10.3390/environments10010011 |issn=2076-3298 |doi-access=free |hdl=2433/284015 |hdl-access=free }}</ref><ref>{{Cite journal |last=Bockris |first=J. O'M. |date=1972-06-23 |title=A Hydrogen Economy |url=https://www.science.org/doi/10.1126/science.176.4041.1323 |journal=Science |language=en |volume=176 |issue=4041 |pages=1323–1323 |doi=10.1126/science.176.4041.1323 |issn=0036-8075 |access-date=2024-08-13 |archive-date=2024-05-05 |archive-url=https://web.archive.org/web/20240505231617/https://www.science.org/doi/10.1126/science.176.4041.1323 |dead-url=no }}</ref>


[[密西根大學]]建議採用氫經濟以處理使用[[烴 |碳氫化合物]]燃料的一些負面影響 - 碳(如[[二氧化碳]]、[[一氧化碳]]、未完全燃燒的碳氫化合物等)被釋放進入大氣。現代對氫經濟的興趣通常可追溯到密西根大學的{{le|勞倫斯·W·瓊斯|Lawrence W. Jones}}教授於1970年發表的技術報告,<ref>{{cite conference|last1=Jones|first1=Lawrence W|date=1970-03-13|title=Toward a liquid hydrogen fuel economy|conference=University of Michigan Environmental Action for Survival Teach In|location=Ann Arbor, Michigan|publisher=[[University of Michigan]]|hdl=2027.42/5800}}</ref>他呼應博克里斯解決能源安全和環境挑戰的雙重理念。但瓊斯只關注使用核電作為電解用能源,且主要關注氫氣在運輸中的應用,首要是用於航空和重型貨物運輸,與霍爾丹和博克里斯兩人的著重點並不相同。<ref>{{Cite book |last=Jones |first=Lawrence W. |url=https://deepblue.lib.umich.edu/bitstream/handle/2027.42/5800/bac5758.0001.001.pdf |title=Toward a Liquid Hydrogen Fuel Economy |date=1970-03-13 |pages=2–3 |access-date=2024-08-13 |archive-date=2024-03-03 |archive-url=https://web.archive.org/web/20240303122715/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/5800/bac5758.0001.001.pdf |dead-url=no }}</ref>
[[氫氣]]是一種極高[[能量密度]]與[[質量]]比值的能源。[[燃料電池]]的效益高過諸多內燃機。[[內燃機]]效率頂多有20–30%,而最差的燃料電池也有35–45%效率(通常都更高很多),再加上相關電動馬達和控制器的耗損,最後純輸出能量最差也有24%,但是,內燃機的則是更低得多。<ref>{{cite web | url= http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/63/34172/01629013.pdf?arnumber=1629013 | title= "Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling" | last= Williamson | first= S. | coauthors= Lukic, M.; Emadi, A. | date= Volume 21, Issue 3, May 2006 | format= | work= Xplore | publisher= [[IEEE]] | pages= pp.&nbsp;730–740 | language= | doi= 10.1109/TPEL.2006.872388 | accessdate= 2008-05-09 | archive-date= 2008-06-09 | archive-url= https://web.archive.org/web/20080609034207/http://ieeexplore.ieee.org/Xplore/login.jsp?url=%2Fiel5%2F63%2F34172%2F01629013.pdf%3Farnumber%3D1629013 | dead-url= no }}</ref>


===之後演進===
[[File:Battery EV vs. Hydrogen EV.png|753px]]
[[File:IRENA hydrogen leadership opportunities.png|thumb|國際再生能源總署於2022年提出的綠氫價值鏈技術領導力機會。<ref>IRENA (2022), [https://www.irena.org/Publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen Geopolitics of the Energy Transformation: The Hydrogen Factor], International Renewable Energy Agency, Abu Dhabi. {{ISBN|978-92-9260-370-0}}.</ref>{{rp|55}}]]


於2000年代,由於對氫經濟概念的關注驟增,而被一些對能源替代技術批評者和支持者多次描述為炒作(參見書籍《{{le|對氫氣的炒作|The Hype About Hydrogen}}》),<ref>{{cite journal |last1=Bakker |first1=Sjoerd |title=The car industry and the blow-out of the hydrogen hype |journal=Energy Policy |volume=38 |issue=11 |pages=6540–6544 |doi=10.1016/j.enpol.2010.07.019 |year=2010 |bibcode=2010EnPol..38.6540B |url=http://www.geo.uu.nl/isu/pdf/isu0914.pdf |access-date=2019-12-11 |archive-date=2018-11-03 |archive-url=https://web.archive.org/web/20181103054549/http://www.geo.uu.nl/isu/pdf/isu0914.pdf |url-status=live }}</ref><ref>{{cite journal|last1=Harrison|first1=James|title=Reactions: Hydrogen hype|journal=Chemical Engineer|volume=58|pages=774–775|url=https://www.scopus.com/inward/record.url?eid=2-s2.0-31644446919&partnerID=40&md5=774f9bad3596ab20fa4e09dd311650f9|access-date=2017-08-31|archive-date=2021-02-08|archive-url=https://web.archive.org/web/20210208150534/https://www.scopus.com/record/display.uri?eid=2-s2.0-31644446919&origin=inward&txGid=991e7333984829c38848e466307c1bde|url-status=live}}</ref><ref>{{cite journal|last1=Rizzi, Francesco Annunziata, Eleonora Liberati, Guglielmo Frey, Marco|title=Technological trajectories in the automotive industry: are hydrogen technologies still a possibility?|journal=Journal of Cleaner Production|date=2014 |volume=66|pages=328–336 |doi=10.1016/j.jclepro.2013.11.069}}</ref>於此的投資者在[[經濟泡沫]]中曾蒙受損失。<ref name=":1">{{Cite news |title=Can a viable industry emerge from the hydrogen shakeout? |newspaper=The Economist |url=https://www.economist.com/business/2023/07/03/can-a-viable-industry-emerge-from-the-hydrogen-shakeout |access-date=2023-09-26 |issn=0013-0613}}</ref>人們對這種能源載體的興趣在2010年代重新興起,特別是當[[氫能委員會]](由92家領先的[[能源]]、[[運輸]]、[[工業]]和投資公司執行全球CEO領導的計劃)於2017年創立。幾家車廠已開始販售氫[[燃料電池]]汽車,其中[[豐田汽車]]、[[現代汽車]]等公司以及中國業界都計劃在未來十年將此類汽車的銷售數量大幅增加。<ref>{{cite news|last1=Murai|first1=Shusuke|title=Japan's top auto and energy firms tie up to promote development of hydrogen stations|url=https://www.japantimes.co.jp/news/2018/03/05/business/japans-top-auto-energy-firms-tie-promote-development-hydrogen-stations/|newspaper=The Japan Times Online|publisher=Japan Times|access-date=2018-04-16|date=2018-03-05|archive-date=2018-04-17|archive-url=https://web.archive.org/web/20180417194850/https://www.japantimes.co.jp/news/2018/03/05/business/japans-top-auto-energy-firms-tie-promote-development-hydrogen-stations/|url-status=live}}</ref><ref>{{cite web|last1=Mishra|first1=Ankit|title=Prospects of fuel-cell electric vehicles boosted with Chinese backing|url=http://energypost.eu/fuel-cell-vehicles-help-drive-china-to-a-low-carbon-future/|publisher=Energy Post|access-date=2018-04-16|date=2018-03-29|archive-date=2018-04-17|archive-url=https://web.archive.org/web/20180417192045/http://energypost.eu/fuel-cell-vehicles-help-drive-china-to-a-low-carbon-future/|url-status=live}}</ref>
==生产, 存储, 基础设施==
{{Main|:en:Hydrogen technologies}}
{{Further|en:Timeline of hydrogen technologies}}
今天主要(> 90%)以化石来源生产氢<ref name="BHR">{{cite web |url=http://www.interstatetraveler.us/Reference-Bibliography/Bellona-HydrogenReport.html |title=Bellona-HydrogenReport |publisher=Interstatetraveler.us |date= |accessdate=2010-07-05 |archive-date=2016-06-03 |archive-url=https://web.archive.org/web/20160603020122/http://www.interstatetraveler.us/Reference-Bibliography/Bellona-HydrogenReport.html |dead-url=no }}</ref>。连接其集中生产到轻型[[燃料电池]]车的车队将需要大量投资建设一个分布基础设施。


氫氣在全球汽車中的角色較先前的預期有縮小趨勢。<ref name="role2">{{Cite journal |last=Plötz |first=Patrick |date=January 2022 |title=Hydrogen technology is unlikely to play a major role in sustainable road transport |url=https://www.nature.com/articles/s41928-021-00706-6 |journal=Nature Electronics |volume=5 |issue=1 |pages=8–10 |doi=10.1038/s41928-021-00706-6 |s2cid=246465284 |issn=2520-1131 |access-date=2024-08-13 |archive-date=2024-02-08 |archive-url=https://web.archive.org/web/20240208062101/https://www.nature.com/articles/s41928-021-00706-6 |dead-url=no }}</ref><ref name="Collins l_collins2">{{Cite news |last=Collins (l_collins) |first=Leigh |date=2022-02-02 |title='Hydrogen unlikely to play major role in road transport, even for heavy trucks': Fraunhofer |url=https://www.rechargenews.com/energy-transition/-hydrogen-unlikely-to-play-major-role-in-road-transport-even-for-heavy-trucks-fraunhofer/2-1-1162055 |access-date=2023-09-08 |newspaper=Recharge &#124; Latest Renewable Energy News |archive-date=2024-09-10 |archive-url=https://web.archive.org/web/20240910105750/https://www.rechargenews.com/energy-transition/-hydrogen-unlikely-to-play-major-role-in-road-transport-even-for-heavy-trucks-fraunhofer/2-1-1162055 |dead-url=no }}</ref>截至2022年底,全球僅售出70,200輛氫動力汽車,<ref name="auto2">{{Cite book |last1=Chu |first1=Yidan |url=https://theicct.org/wp-content/uploads/2023/06/Global-EV-sales-2022_FINAL.pdf |title=Annual update on the global transition to electric vehicles: 2022 |last2=Cui |first2=Hongyang |publisher=International Council on Clean Transportation |pages=2–3 |access-date=2023-08-25}}</ref>而[[充電式電動車輛]]的銷量為2,600萬輛。<ref name="Outlook2023">{{Cite book |url=https://www.iea.org/reports/global-ev-outlook-2023 |title=Global EV Outlook 2023 |date=2023-04-26 |publisher=IEA |pages=14–24 |access-date=2023-08-25 |archive-date=2024-09-18 |archive-url=https://web.archive.org/web/20240918234431/https://www.iea.org/reports/global-ev-outlook-2023 |dead-url=no }}</ref>


2020年代初期的氫經濟強調電力和氫氣的互補性,以及使用電解作為主要製氫工藝,與早期觀點雷同。<ref name=":12"/>擁護者將重點放在將全球升溫限制在1.5°C的必要性,並優先考慮將綠氫的生產、運輸和使用放在重工業(如與電力共同用於高溫製程、<ref name="Kjellberg-Motton">{{Cite web |last=Kjellberg-Motton |first=Brendan |date=2022-02-07 |title=Steel decarbonisation gathers speed {{!}} Argus Media |url=https://www.argusmedia.com/en//news/2299399-steel-decarbonisation-gathers-speed |access-date=2023-09-07 |website=www.argusmedia.com |language=en |archive-date=2024-02-08 |archive-url=https://web.archive.org/web/20240208062220/https://www.argusmedia.com/en/news/2299399-steel-decarbonisation-gathers-speed |dead-url=no }}</ref>作為綠氨和有機化學的原料<ref name=":12"/>及替代煉鋼時所用的焦炭),<ref name="auto">{{Cite web |last1=Blank |first1=Thomas |last2=Molly |first2=Patrick |date=January 2020 |title=Hydrogen's Decarbonization Impact for Industry |url=https://rmi.org/wp-content/uploads/2020/01/hydrogen_insight_brief.pdf |url-status=live |archive-url=https://web.archive.org/web/20200922115313/https://rmi.org/wp-content/uploads/2020/01/hydrogen_insight_brief.pdf |archive-date=2020-09-22|access-date= |publisher=[[Rocky Mountain Institute]] |pages=2, 7, 8}}</ref>長途運輸(例如航運、航空和較小程度上的重型卡車)以及長期儲存能源的用途。<ref name=":12" /><ref name="IRENA 2021 95"/>
=== 顏色分類 ===


==目前氫氣市場==
有人使用顏色來區分氫的來源<ref name="national-grid-group-undated">{{cite web
於2022年,全球氫氣產量價值超過1,550億美元,預計將以每年高於9%的成長率持續到到2030年。<ref>{{Cite web |title=Hydrogen Generation Market Size, Share & Trends Analysis Report, 2023 – 2030 |url=https://www.grandviewresearch.com/industry-analysis/hydrogen-generation-market |access-date=2023-08-30 |website=www.grandviewresearch.com |language=en |archive-date=2023-07-05 |archive-url=https://web.archive.org/web/20230705212340/https://www.grandviewresearch.com/industry-analysis/hydrogen-generation-market |dead-url=no }}</ref>
| author = national grid
| title = The hydrogen colour spectrum
| work = National Grid Group
| location = London, United Kingdom
| url = https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum
| access-date = 2022-09-29
| archive-date = 2023-08-24
| archive-url = https://web.archive.org/web/20230824154609/https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum
| dead-url = no
}}</ref> ,儘管這樣的區分氫並無標準,但也不是隨興分類。下表是各種氫的顏色分類,有些氫的來源多重,表列為主要生產來源{{citation needed|date=January 2021}}
{| class="wikitable"
|+ 用顏色區分氫的生產方式
|-
! 顏色 !! {{space|1|em}} !! 生產來源 !! 備註 !! 參考資料
|-
| 綠氫 || {{coltit|90EE90}} || 再生能源提供的電力 || 電解水產生 || {{r|bmwi-2020|pages=28}}
|-
| 藍綠氫 || {{coltit|turquoise}} || 不穩定儲存的氫; [[熱裂解]][[甲烷]] || 甲烷熱裂解產生 || {{r|bmwi-2020|pages=28}} {{r|van-de-graaf-etal-2020|pages=2}}
|-
| 藍氫 || {{coltit|1AB2FF}} || 儲存的氫,參見 [[表面科學]];碳氫化合物搭配[[碳捕集與封存]] || 要搭配碳捕集與封存系統 || {{r|bmwi-2020|pages=28}}
|-
| 灰氫 || {{coltit|C0C0C0}} || 化石碳氫化合物,以蒸氣重組天然氣為主 || || {{r|bmwi-2020|pages=28}} {{r|sansom-etal-2020|pages=10}} {{r|van-de-graaf-etal-2020|pages=2}}
|-
| 褐氫或黑氫 || {{coltit|CC9900}} || 氫量最少,[[煤]] || || {{r|bruce-etal-2018|pages=91}}
|-
| 紫氫 || {{coltit|BA55D3}} || 氫儲能;核能 || 電解水或蒸氣重組天然氣 || {{r|van-de-graaf-etal-2020|pages=2}}
|-
|黃氫
| {{coltit|yellow}}
| 低階氫;太陽能
|利用太陽光電
| <ref name="national-grid-group-undated"/>
|-
|金氫或白氫 || {{coltit|gold}} || 在地殼深層中含有的天然氫 || 採礦 || <ref name="department-of-earth-sciences-2022">{{cite web
| author = Department of Earth Sciences
| title = Gold hydrogen
| date = 12 September 2022
| work = Department of Earth Sciences, Oxford University
| location = Oxford, United Kingdom
| url = https://www.earth.ox.ac.uk/2021/09/gold-hydrogen-oxford-earth-sciences-in-the-times/
| access-date = 2022-09-29
| archive-date = 2023-06-10
| archive-url = https://web.archive.org/web/20230610161948/https://www.earth.ox.ac.uk/2021/09/gold-hydrogen-oxford-earth-sciences-in-the-times/
| dead-url = no
}}</ref>
|-


於2021年,全球分子氫 (H2)的產量有9,400萬公噸。<ref>{{Cite web |title=Executive summary – Global Hydrogen Review 2022 – Analysis |url=https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary |access-date=2023-09-21 |website=IEA |language=en-GB |archive-date=2024-08-23 |archive-url=https://web.archive.org/web/20240823194631/https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary |dead-url=no }}</ref>其中大約六分之一是石化產業生產流程中的副產品。<ref name=":23"/>大多數的氫氣由專用設施生產,其中99%以上從化石燃料中產出,主要透過天然氣蒸氣重整(70%)和[[煤氣化]](30%,且幾乎全在[[中國]]生產)。<ref name=":23"/>只有低於1%的專用氫氣生產是低碳的:於化石燃料蒸氣重整中附設有CCS設施、透過電解生產綠氫以及透過[[生物質]]生產。<ref name=":23"/>全球於2021年生產氫氣過程所產生的二氧化碳排放量為9.15億噸,<ref>{{Cite web |title=Hydrogen |url=https://www.iea.org/energy-system/low-emission-fuels/hydrogen |access-date=2023-09-21 |website=IEA |language=en-GB |archive-date=2024-09-19 |archive-url=https://web.archive.org/web/20240919010443/https://www.iea.org/energy-system/low-emission-fuels/hydrogen |dead-url=no }}</ref>佔能源相關二氧化碳排放量的2.5%,<ref>Energy-related emissions totalled 36.3 Gigatonnes CO<sub>2</sub> in 2021.{{Cite web |title=Global CO2 emissions rebounded to their highest level in history in 2021 – News |url=https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 |access-date=2023-09-21 |website=IEA |language=en-GB |archive-date=2022-08-15 |archive-url=https://web.archive.org/web/20220815175132/https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 |dead-url=no }}</ref>佔全球溫室氣體排放量的1.8%。<ref name="auto1"/>
===生产方法===
{{Main|:en:Hydrogen production}}
氢分子在地球上不是以天然的气体存在。大部分氢结合氧存在水中。


目前市面上生產的氫氣幾乎全部用於煉油(2021年為4千萬噸)和工業用途(5.4千萬噸)。<ref name=":02"/>{{Rp|pages=18, 22}}在煉油過程中,氫氣被用於一種稱為"加氫裂化反應"的程序,將重質石油原料轉化成更輕的餾分,以便用作燃料。工業用途主要用於製造合成肥料所用的氨(2021年為3.4千萬噸)、[[甲醇]](1.5千萬噸)和[[直接還原鐵]](又稱海綿鐵,5百萬噸)。<ref name=":02" />{{Rp|pages=|page=29}}
===现有的生产方法===
{{Main|克瓦納過程}}


==== 物生产方法 ====
==生==
{{Main|:en:Biological hydrogen production (Algae)}}
本節摘自{{le|氫氣生產|Hydrogen production}}


生產氫氣有幾種工業法可用。目前世界上幾乎所有的氫氣供應均由化石燃料產出。<ref>{{cite news |last1=Reed |first1=Stanley |last2=Ewing |first2=Jack |title=Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part |url=https://www.nytimes.com/2021/07/13/business/hydrogen-climate-change.html |work=The New York Times |date=2021-07-13 |accessdate=2024-08-13 |archive-date=2021-07-14 |archive-url=https://web.archive.org/web/20210714190628/https://www.nytimes.com/2021/07/13/business/hydrogen-climate-change.html |dead-url=no }}</ref><ref name="rosenow-2022">{{cite journal |last1=Rosenow |first1=Jan |date=2022-09-27 |title=Is heating homes with hydrogen all but a pipe dream? An evidence review |journal=Joule |volume=6 |issue=10 |pages=2225–2228 |doi=10.1016/j.joule.2022.08.015 |s2cid=252584593 |doi-access=free|bibcode=2022Joule...6.2225R }} Article in press.</ref>{{rp|1}}在此過程中,高溫蒸氣和天然氣的主要成分 - 甲烷 - 之間發生化學反應而產生氫氣。利用此過程生產一噸氫氣會排放6.6–9.3噸二氧化碳。<ref name=":7x">{{Cite web |last1=Bonheure |first1=Mike |last2=Vandewalle |first2=Laurien A. |last3=Marin |first3=Guy B. |last4=Van Geem |first4=Kevin M. |date=March 2021 |title=Dream or Reality? Electrification of the Chemical Process Industries |url=https://www.aiche-cep.com/cepmagazine/march_2021/MobilePagedArticle.action?articleId=1663852 |url-status=live |archive-url=https://web.archive.org/web/20210717132733/https://www.aiche-cep.com/cepmagazine/march_2021/MobilePagedArticle.action?articleId=1663852 |archive-date=2021-07-17 |access-date=2021-07-06 |website=CEP Magazine |publisher=[[American Institute of Chemical Engineers]]}}</ref>如果在過程中利用CCS技術,將大部分碳排放清除時,所得的氫氣即稱為藍氫。<ref name=":25">{{cite journal |last1=Griffiths |first1=Steve |last2=Sovacool |first2=Benjamin K. |last3=Kim |first3=Jinsoo |last4=Bazilian |first4=Morgan |last5=Uratani |first5=Joao M. |title=Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options |journal=Energy Research & Social Science |date=October 2021 |volume=80 |pages=102208 |doi=10.1016/j.erss.2021.102208 |bibcode=2021ERSS...8002208G |url=https://pure.au.dk/portal/da/publications/industrial-decarbonization-via-hydrogen(a0793820-c310-4750-8ee6-138e11a277fe).html |access-date=2024-08-13 |archive-date=2021-10-17 |archive-url=https://web.archive.org/web/20211017145451/https://pure.au.dk/portal/da/publications/industrial-decarbonization-via-hydrogen(a0793820-c310-4750-8ee6-138e11a277fe).html |dead-url=no }}</ref>
==== 生物催化电解方法 ====
除了常规电解方法, 利用微生物电解是另一种可能性。


經由再生電力將水電解,所生產的氫氣稱為綠氫。較<ref name=":3x">{{cite journal |last1=Squadrito |first1=Gaetano |last2=Maggio |first2=Gaetano |last3=Nicita |first3=Agatino |title=The green hydrogen revolution |journal=Renewable Energy |date=November 2023 |volume=216 |pages=119041 |doi=10.1016/j.renene.2023.119041 |doi-access=free |bibcode=2023REne..21619041S }}</ref><ref name=":2">{{Cite web |last=Deign |first=Jason |date=2020-06-29 |title=So, What Exactly Is Green Hydrogen? |url=https://www.greentechmedia.com/articles/read/green-hydrogen-explained |url-status=live |archive-url=https://web.archive.org/web/20220323195427/https://www.greentechmedia.com/articles/read/green-hydrogen-explained |archive-date=2022-03-23 |access-date=2022-02-11 |website=Greentechmedia}}</ref>少數的定義會將來自其他低排放來源(例如生物質)的氫氣也納入綠氫範疇。<ref name=":32">{{cite journal |last1=Squadrito |first1=Gaetano |last2=Maggio |first2=Gaetano |last3=Nicita |first3=Agatino |title=The green hydrogen revolution |journal=Renewable Energy |date=November 2023 |volume=216 |pages=119041 |doi=10.1016/j.renene.2023.119041 |doi-access=free|bibcode=2023REne..21619041S }}</ref>目前生產綠氫的成本比生產灰氫更高,前者的能量轉換效率本來就低。<ref name=":18">{{Cite web |last1=Evans |first1=Simon |last2=Gabbatiss |first2=Josh |date= 2020-11-30 |title=In-depth Q&A: Does the world need hydrogen to solve climate change? |url=https://www.carbonbrief.org/in-depth-qa-does-the-world-need-hydrogen-to-solve-climate-change |url-status=live |archive-url=https://web.archive.org/web/20201201155033/https://www.carbonbrief.org/in-depth-qa-does-the-world-need-hydrogen-to-solve-climate-change |archive-date= 2020-12-01 |access-date=2020-12-01 |website=[[Carbon Brief]]}}</ref>其他氫氣生產方法包括生物質氣化、甲烷[[熱裂解]]和開採埋藏於地下的{{le|天然氫氣|Natural hydrogen}}。<ref>{{Cite web |title=Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet |url=https://e360.yale.edu/features/natural-geologic-hydrogen-climate-change |access-date=2024-03-23 |website=Yale E360 |language=en-US |archive-date=2024-08-23 |archive-url=https://web.archive.org/web/20240823014944/https://e360.yale.edu/features/natural-geologic-hydrogen-climate-change |dead-url=no }}</ref><ref name=foraging>{{Cite journal |doi=10.1039/D3CS00723E|title=Hydrogen energy futures – foraging or farming?|year=2024 |last1=Hassanpouryouzband |first1=Aliakbar |last2=Wilkinson |first2=Mark |last3=Haszeldine |first3=R Stuart |journal=Chemical Society Reviews|volume=53|issue=5 |pages=2258–2263|doi-access=free |pmid=38323342|hdl=20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d |hdl-access=free }}</ref>
==== 水电解 ====
[[Image:Hydrogen-challenger hg.jpg|thumb|300px|水电解船 {{tsl|en|Hydrogen Challenger|Hydrogen Challenger}}]]


截至2023年,不到1%的專用氫氣生產是來自低碳工藝,即藍氫、綠氫和生物質所產的氫。<ref name=":23"/>
==== 高压电解 ====
所謂的高壓電解 通常指的是電解產生的氫氣及氧氣可以直接到達高壓狀態,一般來說所謂的高壓指的是到達6bar以上的壓力,具體的做法若是採用質子膜電解型的核心則須採用質子膜相對較強壯的版本,但通常較厚或結構較強的質子膜其質子傳導率會較低,也就是單位面積及單位電壓下的電流量會較低,也就是說產生的氫氧的量也會較低。


==用途==
而電壓(V)較高的電解,我們通常名稱會更佳精確的定義為"高電壓電解",而高電壓電解通常對效率是不利的,因此所有的電解核心本身都是追求低電壓電解,以期得到高效率的電能轉氫能的效果,通常較可以接受的電壓為每個核心電壓在1.8V 以內為佳,越趨近1.21V的理論100%電壓表示轉換效率越高,此部分詳見"水電解"相關條目
[[File:The_Hydrogen_Ladder,_Version_5.0.jpg|thumb|一些預期氫氣的中期用途,但分析師之間意見不一。<ref>{{Cite web |last=Barnard |first=Michael |date=2023-10-22 |title=What's New On The Rungs Of Liebreich's Hydrogen Ladder? |url=https://cleantechnica.com/2023/10/22/whats-new-on-the-rungs-of-liebreichs-hydrogen-ladder/ |access-date=2024-03-10 |website=CleanTechnica |language=en-US}}</ref>]]
[[Image:Photo praxair plant.hydrogen.infrastructure.jpg|thumb|200px|right|使用氫燃料,需要開發專門的加工、運輸和儲存[[基礎設施]]。]]


氫氣可透過兩種不同的方式用作燃料:用於[[燃料電池]]中產生電力,以及透過燃燒產生熱量。<ref name=":04">{{Cite journal |last=Lewis |first=Alastair C. |date=10 June 2021 |title=Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NO x emissions |journal=Environmental Science: Atmospheres |language=en |volume=1 |issue=5 |pages=201–207 |doi=10.1039/D1EA00037C|s2cid=236732702 |doi-access=free }}{{Creative Commons text attribution notice|cc=by3|url=|authors=|vrt=|from this source=yes}}</ref>當燃料電池消耗氫氣時,唯一的排放物是水氣。<ref name=":04" />燃燒氫氣時會排放有害的[[氮氧化物]]。<ref name=":04" />
==== 高温电解 ====
{{Main|en:High-temperature electrolysis}}
[[高温气冷堆|高温气冷堆核]]电站在2022年已经于石岛湾核电站建成投产。<ref>{{cite web |author1=界面新闻 |title=全球首座四代高温气冷堆核电站实现双堆初始满功率 |url=https://baijiahao.baidu.com/s?id=1751740246708078570&wfr=spider&for=pc |website=百家号 |accessdate=2023-04-19 |language=zh-cn |format=html |date=2022-12-09}}</ref>


===工業===
2022年10月27日,中国核电发布公告,拟2.55亿元与东华能源共设合资公司,运营高温气冷堆与石化产业耦合新发展理念样板工程项目。双方将共同探索氢能高温电解制作的工艺。<ref>{{cite web |author1=界面新闻 |title=中国核电:拟2.55亿元与东华能源共设合资公司,运营高温气冷堆与石化产业耦合新发展理念样板工程项目 |url=https://baijiahao.baidu.com/s?id=1747838413042857976&wfr=spider&for=pc |website=百家号 |accessdate=2023-04-19 |language=zh-cn |date=2022-10-27}}</ref>
在限制全球暖化的背景下,低碳氫氣(特別是綠氫)很有可能在脫碳產業中發揮重要作用。<ref name=":122">{{Cite book |author=IPCC |url=https://ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf |title=Climate Change 2022: Mitigation of Climate Change |publisher=Cambridge University Press (In Press) |year=2022 |editor1-last=Shukla |editor1-first=P.R. |series=Contribution of Working Group III to the [[IPCC Sixth Assessment Report|Sixth Assessment Report]] of the Intergovernmental Panel on Climate Change |place=Cambridge, UK and New York, NY, US |pages=1184 |doi=10.1017/9781009157926 |isbn=9781009157926 |ref={{harvid|IPCC AR6 WG3|2022}} |author-link=IPCC |editor2-last=Skea |editor2-first=J. |editor3-last=Slade |editor3-first=R. |editor4-last=Al Khourdajie |editor4-first=A. |editor5-last=van Diemen |editor5-first=R. |editor6-last=McCollum |editor6-first=D. |editor7-last=Pathak |editor7-first=M. |editor8-last=Some |editor8-first=S. |editor9-last=Vyas |editor9-first=P. |display-editors=4 |editor10-first=R. |editor10-last=Fradera |editor11-first=M. |editor11-last=Belkacemi |editor12-first=A. |editor12-last=Hasija |editor13-first=G. |editor13-last=Lisboa |editor14-first=S. |editor14-last=Luz |editor15-first=J. |editor15-last=Malley |access-date=2024-08-13 |archive-date=2023-09-20 |archive-url=https://web.archive.org/web/20230920152208/https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf |dead-url=no }}</ref>氫燃料可產生鋼鐵、[[水泥]]、[[玻璃]]和化學品工業過程所需的高熱,與其他技術(例如煉鋼[[電弧爐]])共同促進工業脫碳。<ref name="Kjellberg-Motton"/>但氫氣可在氨和有機化學品的清潔生產方面發揮更大的作用。<ref name=":122" />


使用低碳氫氣來減少溫室氣體排放的必要性有可能重塑工業活動的地理格局,因為具有適當氫氣生產潛力的地點將以新的方式與物流基礎設施、原材料可用性、人力和技術資本相互作用。<ref name=":122" />
==== 光电化学水分解 ====


==== 海水电解 ====
===交通運輸===
{{main|氫能載具}}


對氫經濟概念的大部分興趣都集中在氫能載具,特別是飛機上。<ref>{{Cite news |title=Is the time now ripe for planes to run on hydrogen? |url=https://www.economist.com/science-and-technology/2020/12/08/is-the-time-now-ripe-for-planes-to-run-on-hydrogen |access-date=2024-02-17 |newspaper=The Economist |issn=0013-0613}}</ref><ref>{{Cite journal |last1=Yusaf |first1=Talal |last2=Faisal Mahamude |first2=Abu Shadate |last3=Kadirgama |first3=Kumaran |last4=Ramasamy |first4=Devarajan |last5=Farhana |first5=Kaniz |last6=A. Dhahad |first6=Hayder |last7=Abu Talib |first7=ABD Rahim |date=2024-01-02 |title=Sustainable hydrogen energy in aviation – A narrative review |journal=International Journal of Hydrogen Energy |volume=52 |pages=1026–1045 |doi=10.1016/j.ijhydene.2023.02.086 |issn=0360-3199|doi-access=free }}</ref>氫能載具產生的區域性空氣污染明顯少於傳統車輛。<ref>{{cite web |date=2018-02-16 |title=This company may have solved one of the hardest problems in clean energy |url=https://www.vox.com/energy-and-environment/2018/2/16/16926950/hydrogen-fuel-technology-economy-hytech-storage |url-status=live |archive-url=https://web.archive.org/web/20191112094756/https://www.vox.com/energy-and-environment/2018/2/16/16926950/hydrogen-fuel-technology-economy-hytech-storage |archive-date=2019-11-12 |access-date=2019-02-09 |publisher=Vox}}</ref>到2050年,交通運輸的能源需求可能有20%至30%由氫氣和合成燃料提供。<ref>{{Cite web |last=IRENA |title=The Hydrogen Factor |url=https://irena.org/DigitalArticles/2022/Jan/Hydrogen_Factor |access-date=2022-10-19 |website=irena.org |language=en |archive-date=2022-10-19 |archive-url=https://web.archive.org/web/20221019161220/https://irena.org/DigitalArticles/2022/Jan/Hydrogen_Factor |dead-url=no }}</ref><ref>{{Cite web |title=Sustainable fuels and their role in decarbonizing energy {{!}} McKinsey |url=https://www.mckinsey.com/industries/oil-and-gas/our-insights/charting-the-global-energy-landscape-to-2050-sustainable-fuels |access-date=2022-10-19 |website=www.mckinsey.com |archive-date=2024-07-09 |archive-url=https://web.archive.org/web/20240709224424/https://www.mckinsey.com/industries/oil-and-gas/our-insights/charting-the-global-energy-landscape-to-2050-sustainable-fuels |dead-url=no }}</ref><ref>{{Cite journal |last1=Spiryagin |first1=Maksym |last2=Dixon |first2=Roger |last3=Oldknow |first3=Kevin |last4=Cole |first4=Colin |date=2021-09-01 |title=Preface to special issue on hybrid and hydrogen technologies for railway operations |journal=Railway Engineering Science |language=en |volume=29 |issue=3 |pages=211 |doi=10.1007/s40534-021-00254-x |issn=2662-4753 |s2cid=240522190 |doi-access=free}}</ref>
==== Concentrating solar thermal ====


使用氨和甲醇等氫衍生合成燃料(如綠氨及綠甲醇)以及燃料電池技術於交通運輸,可能會在航運、航空以及較小程度的重型卡車中發揮最大的應用。<ref name=":12"/>氫已在燃料電池公車中使用多年。它也用作[[太空飛行器推進]]的燃料。
==== Photoelectrocatalytic production ====


在[[國際能源署]](IEA)提出的2022年淨零排放情境 (NZE) 中,預計到2050年,氫氣將佔鐵路能源需求的2%,而屆時90%的鐵路旅行預計均將電氣化(目前為45%)。氫在鐵路運輸中的作用可能會集中在電氣化困難,或成本高昂的線路上。 <ref>{{Cite book |url=https://www.iea.org/reports/world-energy-outlook-2022 |title=World energy outlook 2022 |publisher=International Energy Agency |pages=150 |access-date=2024-08-13 |archive-date=2022-10-27 |archive-url=https://web.archive.org/web/20221027232322/https://www.iea.org/reports/world-energy-outlook-2022 |dead-url=no }}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref>NZE預計到2050年,氫氣能滿足重型卡車能源需求的約30%,主要用於長途重型貨運(電池動力約佔60%)。<ref>{{Cite book |last1=Cozzi |first1=Laura |url=https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf |title=World Energy Outlook 2022 |last2=Gould |first2=Tim |publisher=International Energy Agency |pages=148 |access-date=2024-08-13 |archive-date=2024-09-07 |archive-url=https://web.archive.org/web/20240907161934/https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf |dead-url=no }}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref>
==== Thermochemical production ====


氫氣可作為經改裝後[[內燃機]]的燃料,但燃料電池經由[[電化學]]產生電力,比熱力機具更有效率優勢。而燃料電池的生產成本比一般內燃機更高,也比內燃機需要更高純度的氫燃料。<ref>{{Cite journal |last=Stępień |first=Zbigniew |date=January 2021 |title=A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges |journal=Energies |language=en |volume=14 |issue=20 |pages=6504 |doi=10.3390/en14206504 |issn=1996-1073 |doi-access=free }}</ref>
===存储===
{{Main|:en:Hydrogen storage}}
虽然氢分子在质量的基础上具有非常高能量密度的,部分是因为其低分子量,气体在环境条件下从体积上它具有非常低的能量密度。如果它是被用来作为存储在车上的燃料,纯氢气必须是加压或液化,以提供足够的驱动范围。提高气体压力,提高了在体积上的能量密度,使用较小的,但不轻的容器罐(压力容器)。实现更高的压力,需要更多地使用外部能源动力压缩。或者,也可以使用较高的体积能量密度的液体氢或氢浆(slush hydrogen)。


截至2022年底,全球在輕型道路車輛領域(包括乘用車在內)已售出70,200輛燃料電池電動車,<ref name="auto2" />而充電式電動車輛為2,600萬輛。<ref name="Outlook2023" />隨著電動車以及相關電池技術和基礎設施迅速崛起,氫氣在汽車中的作用相對上已很微小。<ref name="role2" /><ref name="Collins l_collins2" />
2016年9月扬子江汽车集团實驗生产线<ref>{{Cite web |url=http://www.chinanews.com/gn/2016/09-17/8006008.shtml |title=中新网-武漢氫能車下線改寫時代規則 |accessdate=2016-09-20 |archive-date=2016-09-19 |archive-url=https://web.archive.org/web/20160919035122/http://www.chinanews.com/gn/2016/09-17/8006008.shtml |dead-url=no }}</ref>首次下線一台常溫常壓氫能儲存公車泰歌号,該實驗車幾乎已經達成商業運行能力,其科技突破在於採用一種化學吸收劑將液態氫吸收混和其中,之後再用催化劑還原釋放,解決了氫能危險或高成本的儲存運送問題,傳統氫氣困境在於必須低溫或高壓二選一儲存方式,低溫需耗費大量電能完全沒有經濟性,高壓鋼瓶雖便宜但也是高價品,且普及到市井民用有重大安全隱患,裝載於車輛上萬一發生車禍則安全堪慮。此次突破技術在於[[千人计划]]的专家程寒松教授全球领先原创颠覆性的“常温常压储氢技术”,<ref>{{Cite web |url=http://www.ithome.com/html/auto/258283.htm |title=中國氫能創舉 |access-date=2016-09-20 |archive-url=https://web.archive.org/web/20180312083043/https://www.ithome.com/html/auto/258283.htm |archive-date=2018-03-12 |dead-url=yes }}</ref>可以利用现有加油站和石油輸送體系等基础设施,大幅減低了氫經濟難題。<ref>{{Cite web |url=http://tw.iqiyi.com/v_19rr9jrah4.html |title=湖北衛視-泰歌號 |access-date=2016-09-20 |archive-url=https://web.archive.org/web/20180311201536/http://tw.iqiyi.com/v_19rr9jrah4.html |archive-date=2018-03-11 |dead-url=yes }}</ref>


===平衡能源系統與儲能===
2023年4月13日,第一代吨级镁基固态储运氢车发布会在上海汽车会展中心举行。根据展会信息展示 ,40寸长标准集装箱尺寸的的镁基固态储运氢车可以存储氢气一吨。<ref>{{cite web |author1=伊金霍洛发布 |title=世界领先、全国首台!吨级镁基固态储运氢车在上海发布 |url=https://www.163.com/dy/article/I29SEGCT0534ADHZ.html |website=网易新闻 |accessdate=2023-04-19 |language=zh-cn |format=html |date=2023-04-14}}</ref>
來自水電解的綠氫有可能解決[[間歇性再生能源|再生能源所具間歇性]]的問題。生產綠氫既可充分利用超額生產再生電力的問題,又可以能源載體的形式長期儲存,以在再生電力低產量期間用於發電。<ref name="Schrotenboer">{{Cite journal |last1=Schrotenboer |first1=Albert H. |last2=Veenstra |first2=Arjen A.T. |last3=uit het Broek |first3=Michiel A.J. |last4=Ursavas |first4=Evrim |date=October 2022 |title=A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy |url=https://pure.rug.nl/ws/portalfiles/portal/230184233/1_s2.0_S1364032122006323_main.pdf |journal=Renewable and Sustainable Energy Reviews |language=en |volume=168 |pages=112744 |doi=10.1016/j.rser.2022.112744 |s2cid=250941369 |access-date=2024-08-13 |archive-date=2024-05-28 |archive-url=https://web.archive.org/web/20240528044619/https://pure.rug.nl/ws/portalfiles/portal/230184233/1_s2.0_S1364032122006323_main.pdf |dead-url=no }}</ref><ref name="Lipták">{{Cite news |last=Lipták |first=Béla |date=2022-01-24 |title=Hydrogen is key to sustainable green energy |work=Control |url=https://www.controlglobal.com/home/article/11288951/hydrogen-is-key-to-sustainable-green-energy |access-date=2023-02-12 |archive-date=2024-02-28 |archive-url=https://web.archive.org/web/20240228025244/https://www.controlglobal.com/home/article/11288951/hydrogen-is-key-to-sustainable-green-energy |dead-url=no }}</ref>


===Pipeline 存储===
======
{{main|{{le|氨氣生產|Ammonia production}}}}
天然气网络是适合存储氢气。在切换到天然气(natural gas) 之前, 德国天然气网络运行于towngas, 其大部分由氢气构成。
{{see also|鹼性燃料電池}}


能替代氣態氫作為能源載體的是氨(將氫與空氣中的氮結合而成)。氨容易液化、運輸和(直接或間接)作為清潔燃料。<ref>{{cite web |last=Agosta |first=Vito |date=July 10, 2003 |title=The Ammonia Economy |url=http://www.memagazine.org/contents/current/webonly/webex710.html |url-status=dead |archive-url=https://web.archive.org/web/20080513030624/http://www.memagazine.org/contents/current/webonly/webex710.html |archive-date=2008-05-13 |access-date=2008-05-09}}</ref><ref>{{cite web |title=Renewable Energy |url=http://www.energy.iastate.edu/Renewable/ammonia/index.htm |url-status=dead |archive-url=https://web.archive.org/web/20080513191842/http://www.energy.iastate.edu/renewable/ammonia/index.htm |archive-date=2008-05-13 |access-date=2008-05-09 |publisher=Iowa Energy Center}}</ref>但氨的缺點有毒性高、將氮氣(N2)和氫氣(H2)合成為氨氣(NH3)的能源效率低下,以及將NH3轉化為N2時,並未分解的微量NH3會導致[[質子交換膜燃料電池]]中毒(導致電池性能下降及電池壽命縮短)。
德国天然气网络的存储容量超过200,000 GWh,就足够了几个月的能源需求。相比之下,德国所有的抽水蓄能电站容量只有约40 GWh。通过气体网络的传输能量的损耗(<0.1%)比在电力网络(8%)的要少得多。


===建築物===
为氢使用现有的天然气系统的研究是由NaturalHy做的。 <ref>[http://www.naturalhy.net/docs/Naturalhy_Brochure.pdf Using the existing natural gas system for hydrogen] {{webarchive|url=https://web.archive.org/web/20120118102741/http://www.naturalhy.net/docs/Naturalhy_Brochure.pdf |date=2012-01-18 }}</ref>
天然氣供應鏈中的許多行業團體(天然氣網路、燃氣鍋爐製造商)正推廣用於空間和水加熱的燃氫鍋爐,以及用於烹飪的爐具,以減少住宅和商業建築中的二氧化碳排放。<ref name=":5">{{Cite web |last=Collins |first=Leigh |date=2021-12-10 |title=Even the European gas lobby can't make a case for hydrogen boilers — so why does it say gases are needed to decarbonise heating? |url=https://www.rechargenews.com/energy-transition/even-the-european-gas-lobby-can-t-make-a-case-for-hydrogen-boilers-so-why-does-it-say-gases-are-needed-to-decarbonise-heating-/2-1-1120847 |access-date=2023-09-25 |website=Recharge {{!}} Latest renewable energy news |language=en |archive-date=2024-04-24 |archive-url=https://web.archive.org/web/20240424161230/https://www.rechargenews.com/energy-transition/even-the-european-gas-lobby-can-t-make-a-case-for-hydrogen-boilers-so-why-does-it-say-gases-are-needed-to-decarbonise-heating-/2-1-1120847 |dead-url=no }}</ref><ref name=":7">{{Cite web |last=Roth |first=Sammy |date=2023-02-09 |title=California declared war on natural gas. Now the fight is going national |url=https://www.latimes.com/environment/newsletter/2023-02-09/california-declared-war-on-natural-gas-now-the-fight-is-going-national-boiling-point |access-date=2023-09-25 |website=Los Angeles Times |language=en-US |archive-date=2024-07-02 |archive-url=https://web.archive.org/web/20240702152702/https://www.latimes.com/environment/newsletter/2023-02-09/california-declared-war-on-natural-gas-now-the-fight-is-going-national-boiling-point |dead-url=no }}</ref><ref name=":62" />其主張是目前天然氣的最終用戶可等待現有天然氣管道轉換為適於輸送氫氣,消費者不需做任何事,僅更換加熱用具和爐具即可。<ref name=":5" /><ref name=":7" /><ref name=":62" />


對32項非關商業利益的氫氣用於建築物供暖的研究所進行的審查,結果發現與[[區域供暖]]網絡、電氣化供暖(主要是透過[[熱泵]])和烹飪、使用太陽能熱水器、廢熱以及安裝節能措施以降低供暖需求相比,氫氣在經濟性和氣候效益方面通常都遠不如這些方法。<ref name=":62" />由於生產氫氣效率低下,使用藍氫取代天然氣供暖可能需用到三倍的甲烷,而使用綠氫則需用到兩到三倍熱泵所需的電力。<ref name=":62" />將熱泵與氫氣鍋爐結合,可在住宅供暖領域發揮作用,不然升級[[輸電網路]]以滿足高峰電力需求的成本將會很高。<ref name=":62" />
===基础设施===
{{Main|:en:Hydrogen infrastructure}}
[[Image:Photo praxair plant.hydrogen.infrastructure.jpg|Praxair氢气厂|thumb|300px|right]]
氢基础设施主要由工业氢气管道运输和装备加氢站的氢高速公路。不靠近氢管道的加氢站将通过氢气罐,压缩氢气长管拖车,液体氢拖车,液态氢油罐车或专门的现场生产供应。


雖然氫氣的[[利基]]作用在特定環境和地區可能適合,<ref name=":62" />但廣泛使用氫為建築物供暖將帶來更高的能源成本、更高的供暖成本和更高的環境影響。如果在建築物中部署及使用氫氣,會把工業和交通運輸中本來已取得不易,可供脫碳應用的氫氣成本提高。<ref name=":62" />
2023年4月16日,[[中国石油天然气股份|中石油]]宣布,用现有天然气管道长距离输送氢气的技术获得了突破。<ref>{{cite web |author1=环球网 |title=我国长距离输氢技术获突破 一文解读氢能远距离运输意义 |url=https://baijiahao.baidu.com/s?id=1763296580920817163&wfr=spider&for=pc |website=百家号 |accessdate=2023-04-19 |language=zh-cn |date=2023-04-16}}</ref>


===生物合成天然氣===
====一个关键的折中: 中央化 vs. 分布式生产====
截至2019年,雖然在技術上可透過[[薩巴捷反應]]從生物能源中的氫氣和二氧化碳生產合成天然氣(bio-SNG),並配屬碳補集與封存設備(兩者聯合簡稱BECCS),但會受可用的永續生物能源數量的限制,<ref>{{Harvnb|UKCCC H2|2018|p=79}}: The potential for bio-gasification with CCS to be deployed at scale is limited by the amount of sustainable bioenergy available. .... "</ref>任何生物合成天然氣的產量大約僅足以供生產{{le|航空生物燃料|Aviation biofuel}}之用。<ref>{{Harvnb|UKCCC H2|2018|p=33}}: production of biofuels, even with CCS, is only one of the best uses of the finite sustainable bio-resource if the fossil fuels it displaces cannot otherwise feasibly be displaced (e.g. use of biomass to produce aviation biofuels with CCS)."</ref>
==== 分布式电解 ====


==安全性==
{{main|{{le|氫安全|Hydrogen safety}}}}
[[File:Hydrogen Flame Broom Test NASA.jpg|thumb|一名[[美國國家航空暨太空總署|NASA]]工程師用玉米穗掃帚掃過一區域的方式以找出氫氣火焰所在。氫氣燃燒產生的火焰幾乎難以目視察覺。]]


氫氣對人類具有許多安全上的風險 - 與空氣混合時可能會發生爆炸和火災、吸入純氫會導致窒息、<ref name="NASAH2">{{cite web |author=Brown, W. J. |display-authors=etal |date=1997 |title=Safety Standard for Hydrogen and Hydrogen Systems |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970033338.pdf |url-status=live |archive-url=https://web.archive.org/web/20170501105215/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970033338.pdf |archive-date=2017-05-01 |access-date=2017-07-12 |website=[[NASA]] |id=NSS 1740.16}}</ref>液態氫是一種低溫液體,具有與極度寒冷的液體相關的危險(例如凍傷),<ref>{{cite web |date=September 2004 |title=Liquid Hydrogen MSDS |url=http://www.hydrogenandfuelcellsafety.info/resources/mdss/Praxair-LH2.pdf |archive-url=https://web.archive.org/web/20080527233910/http://www.hydrogenandfuelcellsafety.info/resources/mdss/Praxair-LH2.pdf |archive-date= 2008-05-27 |access-date=2008-04-16 |publisher=Praxair, Inc. |df=dmy-all}}</ref>及氫氣會渗入許多金属中,除可能發生洩漏之外,還會造成[[氫脆]]等問題,<ref>{{cite journal |date=1985-07-20 |title='Bugs' and hydrogen embrittlement |journal=Science News |volume=128 |issue=3 |pages=41 |doi=10.2307/3970088 |jstor=3970088}}</ref>導致裂縫發生與爆炸。<ref>{{cite web |last=Hayes |first=B. |title=Union Oil Amine Absorber Tower |url=http://www.twi.co.uk/content/oilgas_casedown29.html |archive-url=https://web.archive.org/web/20081120215355/http://www.twi.co.uk/content/oilgas_casedown29.html |archive-date=2008-11-20 |access-date= 2010-01-29 |publisher=TWI}}</ref>
==References==


氫氣即使與普通空氣少量混合也極易燃燒。氫氣和空氣的體積比在低至4%的混合就可能發生點燃。<ref>{{cite web |title=Hydrogen Safety |url=https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/h2_safety_fsheet.pdf |publisher=Office of Energy Efficiency and Renewable Energy |access-date=2024-08-13 |archive-date=2024-07-28 |archive-url=https://web.archive.org/web/20240728122619/https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/h2_safety_fsheet.pdf |dead-url=no }}</ref>此外,氫氣燃燒的火焰雖然温度極高,但幾乎難以肉眼察覺,因此容易造成意外燒傷。<ref name="Cunn88">{{cite encyclopedia |title=Lactic acid to magnesium supply-demand relationships |encyclopedia=Encyclopedia of Chemical Processing and Design |publisher=Dekker |location=New York |url={{Google books|8erDL_DnsgAC|page=PA186|keywords=|text=|plainurl=yes}} |access-date=2015-05-20 |date=1988 |editor1=John J. McKetta |volume=28 |page=186 |isbn=978-0-8247-2478-8 |last2=Waltrip |first2=John S. |last3=Zanker |first3=Adam |last1=Walker |first1=James L. |editor2=William Aaron Cunningham}}</ref>
{{reflist|2|refs=


==氫氣基礎設施==
<ref name="bmwi-2020">{{cite book
本節摘自[[氫氣基礎設施]]。
| author = BMWi
| title = The national hydrogen strategy
| date = June 2020
| publisher = Federal Ministry for Economic Affairs and Energy (BMWi)
| location = Berlin, Germany
| url = https://www.bmbf.de/files/bmwi_Nationale%20Wasserstoffstrategie_Eng_s01.pdf
| access-date = 2020-11-27
| archive-date = 2020-12-13
| archive-url = https://web.archive.org/web/20201213170320/https://www.bmbf.de/files/bmwi_Nationale%20Wasserstoffstrategie_Eng_s01.pdf
| url-status = live
}}</ref>


氫氣基礎設施包含有氫氣輸送管道、{{le|氫氣生產|Hydrogen production}}場址和用於分配以及銷售氫燃料的加氫站,<ref>{{cite web |url=http://www.fuelcelltoday.com/news-events/news-archive/2013/may/hydrogen-infrastructure-project-launches-in-usa |title=Hydrogen infrastructure project launches in USA |date=2013-05-14 |access-date=2024-08-13 |archive-date=2013-12-02 |archive-url=https://web.archive.org/web/20131202223034/http://www.fuelcelltoday.com/news-events/news-archive/2013/may/hydrogen-infrastructure-project-launches-in-usa |dead-url=no }}</ref>這些是能成功導入氫經濟的先決條件。<ref name=h2infra>{{cite web|title=Fuel cell electric vehicles and hydrogen infrastructure: status 2012|url=https://www.researchgate.net/publication/233987484|last1=Eberle|first1=Ulrich|first2=Bernd|last2=Mueller|first3=Rittmar|last3=von Helmolt|publisher=[[Energy and Environmental Science|Energy & Environmental Science]]|accessdate=2014-12-23|archive-date=2014-02-09|archive-url=https://web.archive.org/web/20140209172012/http://www.researchgate.net/publication/233987484_Fuel_cell_electric_vehicles_and_hydrogen_infrastructure_status_2012?ev=prf_pub|dead-url=no}}</ref>
<ref name="van-de-graaf-etal-2020">{{cite journal |last1=Van de Graaf |first1=Thijs |last2=Overland |first2=Indra |last3=Scholten |first3=Daniel |last4=Westphal |first4=Kirsten |title=The new oil? The geopolitics and international governance of hydrogen |journal=Energy Research & Social Science |date=December 2020 |volume=70 |pages=101667 |doi=10.1016/j.erss.2020.101667 |pmid=32835007 |pmc=7326412 }}</ref>
[[Image:Hydrogen pipelines.jpg|thumb|輸送氫氣的管線]]
[[File:Soteska_Ljubljana_Slovenia_-_factory.JPG|right|thumb|300x300px|一間位於[[斯洛維尼亞]],以蒸氣重整法由天然氣中萃取氫氣,名為Belinka Perkemija的工廠(2015年)。]]


氫氣基礎設施主要由工業氫氣輸送管道和加氫站組成。未連結氫氣輸送管的加氫站將透過氫氣罐、{{le|壓縮氫氣管式拖車|Compressed-hydrogen tube trailer}}、{{le|液氫拖車|liguid hydrogen trailer}}、液氫罐車或現場專用生產設備取得供應。
<ref name="sansom-etal-2020">{{cite book
| last1 = Sansom
| first1 = Robert
| last2 = Baxter
| first2 = Jenifer
| last3 = Brown
| first3 = Andy
| last4 = Hawksworth
| first4 = Stuart
| last5 = McCluskey
| first5 = Ian
| title = Transitioning to hydrogen: assessing the engineering risks and uncertainties
| date = 2020
| publisher = The Institution of Engineering and Technology (IET)
| location = London, United Kingdom
| url = https://www.theiet.org/media/4095/transitioning-to-hydrogen.pdf
| access-date = 2020-03-22
| archive-date = 2020-05-08
| archive-url = https://web.archive.org/web/20200508054016/https://www.theiet.org/media/4095/transitioning-to-hydrogen.pdf
| url-status = live
}}</ref>


管道是長距離運輸氫氣最便宜的方式。在大型煉油廠中必然有氫氣管道存在,氫氣被用於裂解原油,成為燃料。 IEA建議利用現有工業港口進行氫氣生產,利用現有天然氣管道進行輸送,以及進行國際合作和運輸。<ref>{{Harvnb|IEA H2|2019|p=15}}</ref>
<ref name="bruce-etal-2018">{{cite book
| last1 = Bruce
| first1 = S
| last2 = Temminghoff
| first2 = M
| last3 = Hayward
| first3 = J
| last4 = Schmidt
| first4 = E
| last5 = Munnings
| first5 = C
| last6 = Palfreyman
| first6 = D
| last7 = Hartley
| first7 = P
| title = National hydrogen roadmap: pathways to an economically sustainable hydrogen industry in Australia
| date = 2018
| publisher = CSIRO
| location = Australia
| url = http://ipswichgetup.grandkidzfuture.com/ewExternalFiles/Hydrogen%20CSIRO%202018.pdf
| access-date = 2020-11-28
| archive-date = 2020-12-08
| archive-url = https://web.archive.org/web/20201208212256/http://ipswichgetup.grandkidzfuture.com/ewExternalFiles/Hydrogen%20CSIRO%202018.pdf
| url-status = live
}}</ref>


截至2019年,缺乏國際性電網連結的[[韓國]]和[[日本]]<ref>{{cite web |title=Japan's Hydrogen Strategy and Its Economic and Geopolitical Implications |url=https://www.ifri.org/en/publications/etudes-de-lifri/japans-hydrogen-strategy-and-its-economic-and-geopolitical-implications |url-status=live |archive-url=https://web.archive.org/web/20190210050005/https://www.ifri.org/en/publications/etudes-de-lifri/japans-hydrogen-strategy-and-its-economic-and-geopolitical-implications |archive-date=2019-02-10 |access-date=2019-02-09 |website=Etudes de l'Ifri}}</ref>正進行氫經濟投資。<ref>{{cite magazine |title=South Korea's Hydrogen Economy Ambitions |url=https://thediplomat.com/2019/01/south-koreas-hydrogen-economy-ambitions/ |url-status=live |archive-url=https://web.archive.org/web/20190209232214/https://thediplomat.com/2019/01/south-koreas-hydrogen-economy-ambitions/ |archive-date=2019-02-09 |access-date=2019-02-09 |magazine=The Diplomat}}</ref>日本{{le|福島氫能研究廠|Fukushima Hydrogen Energy Research Field}}於2020年3月啟用,號稱是全球最大的氫氣生產設施。<ref name="ToshibaNamie2">{{cite web |date=2020-03-07 |title=The world's largest-class hydrogen production, Fukushima Hydrogen Energy Research Field (FH2R) now is completed at Namie town in Fukushima. |url=https://www.toshiba-energy.com/en/info/info2020_0307.htm |url-status=live |archive-url=https://web.archive.org/web/20200422195459/https://www.toshiba-energy.com/en/info/info2020_0307.htm |archive-date=2020-04-22 |access-date= 2020-04-01 |website=Toshiba Energy Press Releases |publisher=Toshiba Energy Systems and Solutions Corporations}}</ref>整個廠地大部分佈滿[[光伏陣列|太陽能光電面板陣列]],所生產的電力,加上來自電網的電力,用於電解水來生產氫燃料。<ref>{{Cite web |last=Patel |first=Sonal |date=2022-07-01 |title=Fukushima Hydrogen Energy Research Field Demonstrates Hydrogen Integration |url=https://www.powermag.com/fukushima-hydrogen-energy-research-field-demonstrates-hydrogen-integration/ |access-date=2023-10-05 |website=POWER Magazine |language=en-US |archive-date=2024-05-25 |archive-url=https://web.archive.org/web/20240525055812/https://www.powermag.com/fukushima-hydrogen-energy-research-field-demonstrates-hydrogen-integration/ |dead-url=no }}</ref>
}} <!-- reflist -->


===儲存===
==替代内燃机的燃料電池 ==
[[File:Liquid Hydrogen Tank at NASA's Kennedy Space Center.png|thumb|一座NASA[[甘迺迪太空中心]]的液態氫氣儲存槽。]]
{{Main|燃料電池}}
{{Main|氫氣車}}
氫經濟提供的主要好处其中之一是燃料可以取代[[化石燃料]],在[[內燃機]]和[[渦輪機]]的燃燒作為主要的方式轉換成化學能轉化為[[動能]]或電能;藉此消除發動機的[[溫室氣體]]排放和污染。


本節摘錄自[[儲氫]]。
== 成本問題 ==
[[File:Realizing.the.Hydrogen.Economy.chart.gif|thumb|300px|時間表]]
評估成本時,[[石油]]和[[瓦斯]](所有化石燃料) 雖然名義上看來便宜,但是真實成本是很少被面對的。這些不可再生的能量來源是數百萬年才產生在地球內部,通常用"免費" 來計算生產成本;只計算開採成本。雖然可以以石化工業副產品提供一部份的氫氣需求,但超出此部分後任意瓦數的氫能還是都比其他[[可再生能源]](例如太陽能)要貴。


儲存氫氣的方法有幾種 - 包括機械式,例如使用高壓和低溫,或製成依需要再釋放氫氣的化合物。雖然有不同行業生產大量氫氣,但大部分均供現場使用,特別是用於氨的合成。氫氣多年來一直以壓縮氣體或低溫液體的形式儲存,並利用鋼瓶、管道和低溫儲罐運輸,用於工業,或作為太空火箭的推進劑。由於氫氣的沸點非常低(約為−252.882°C或−423.188°F)。要達到如此的低溫需要使用大量能量。
在此前提下,氫氣不見得是長期來看最便宜的能源,因為目前電解製氫和燃料電池科技沒有解決諸多問題。


分子氫(H2)在質量上具有非常高的能量密度(部分原因是其[[莫耳質量]]低),但成為環境條件下的氣體時,其體積能量密度變得非常低。如果要將純氫作車輛燃料使用,則必須以能量密集的形式儲存,才能行使足夠的里程。由於氫是最小的分子,因此很容易從容器中逸出。將氫氣的洩漏、運輸和生產成本列入考慮,其[[全球暖化潛勢]] (簡稱GWP) 為11.6。而甲烷的GWP為34。<ref>{{Cite journal |last1=Sand |first1=Maria |last2=Skeie |first2=Ragnhild Bieltvedt |last3=Sandstad |first3=Marit |last4=Krishnan |first4=Srinath |last5=Myhre |first5=Gunnar |last6=Bryant |first6=Hannah |last7=Derwent |first7=Richard |last8=Hauglustaine |first8=Didier |last9=Paulot |first9=Fabien |last10=Prather |first10=Michael |last11=Stevenson |first11=David |title=A multi-model assessment of the Global Warming Potential of hydrogen |journal=Communications Earth & Environment |volume=4 |pages=203 |year=2023 |doi=10.1038/s43247-023-00857-8 |url=https://www.nature.com/articles/s43247-023-00857-8 |access-date=2024-04-11 |doi-access=free |archive-date=2024-08-05 |archive-url=https://web.archive.org/web/20240805193723/https://www.nature.com/articles/s43247-023-00857-8 |dead-url=no }}</ref>
氫氣運送管線成本很高昂<ref>{{cite web | url= http://www.ef.org/documents/NDakotaWindPower.pdf | title= Transmitting 4,000 MW of New Windpower from North Dakota to Chicago: New HVDC Electric Lines or Hydrogen Pipeline | last= Keith | first= Geoffrey | coauthors= William Leighty | date= 2002-09-28 | format= PDF | work= | publisher= | accessdate= 2008-05-09 | deadurl= yes | archiveurl= https://web.archive.org/web/20080527234233/http://www.ef.org/documents/NDakotaWindPower.pdf | archivedate= 2008-05-27 }} </ref> 高過任何電線管路、也比天然氣管線貴將近三倍,因為氫會加速一般鋼管的碎裂(氫脆化),增加維護成本、外洩風險、和材料成本。有人提出一種新科技:如果用高壓運送只要多一點管線成本,但是高壓力管需要更多材料打造。


==成本==
所以要進入氫經濟時代需要大量的管線[[基礎建設]]投資才能儲存和分配氫氣到末端的[[氫氣車]]用戶。
要更廣泛使用氫氣,需要在其生產、儲存、分配和使用方面進行投資。氫成本的估算因而變得很複雜,需要對能源投入成本(通常是天然氣和電力)、生產工廠和方法(例如綠氫或藍氫)、所使用的技術(例如{{le|鹼性水電解|Alkaline water electrolysis}}或{{le|質子交換膜電解|Proton exchange membrane electrolysis}}) 、儲存和分配方法以及不同的成本要素如何隨時間變化進行假設。<ref name=":4">{{Cite book |url=https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/ |title=Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy |date=April 2021 |publisher=Energy Transitions Commission |page= |language=en-GB |access-date=2023-08-25 |archive-date=2024-05-16 |archive-url=https://web.archive.org/web/20240516195502/https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/ |dead-url=no }}</ref>{{Rp|page=|pages=49–65}}下表顯示灰氫、藍氫和綠氫平均化成本的的估計值,以每公斤氫氣美元表示(其中數據以其他貨幣或單位提供時,則使用給定年份的美元平均匯率),假設1公斤氫氣的熱值為33.3千瓦時(kWh))。


{|class="wikitable sortable"
相比之下[[電動車]]的分配管線可以用現成的電線,只要稍微擴充升級就可以達到儲存和分配電力,晚上多數電動車充電時段,其實剛好還有許多發電廠的多餘電力。2006十二月能源部轄下「太平洋西北國家實驗室」做的實驗發現如果全美國都換成電動車,光閒置電力就可以供應它們84%需求。但是電動車一大缺點就是預先充電時間漫長,[[氫氣車]]和汽油車則有類似特徵,隨時沒燃料只要灌入燃料就能行駛,便利性比較高,跑長途旅程也比較安全不會有半路停下等充電的窘境。<ref>{{cite web
|'''生產方式'''
|url = http://newswire.ascribe.org/cgi-bin/behold.pl?ascribeid=20061211.105149&time=11%2005%20PST&year=2006&public=0
|'''註記'''
|title = Mileage From Megawatts: Study Finds Enough Electric Capacity to 'Fill Up' Plug-In Vehicles Across Much of the Nation
|'''目前成本 (2020年–2022年)'''
|date = 2006-12-11
|'''預計2030年成本'''
|work =
|'''預計2050年成本'''
|publisher =
|-
|accessdate = 2008-05-09
| colspan="5" |'''灰氫 (未包含[[碳稅]])'''
|archive-date = 2008-12-06
|-
|archive-url = https://web.archive.org/web/20081206002758/http://newswire.ascribe.org/cgi-bin/behold.pl?ascribeid=20061211.105149&time=11%2005%20PST&year=2006&public=0
| rowspan="2" |國際能源署提供<ref name=":03">{{Cite book |url=https://www.iea.org/reports/global-hydrogen-review-2022 |title=Global Hydrogen Review 2022 |publisher=IEA |page=93 |language=en-GB |access-date=2023-08-25 |archive-date=2023-01-10 |archive-url=https://web.archive.org/web/20230110225147/https://www.iea.org/reports/global-hydrogen-review-2022 |dead-url=no }}</ref>
|dead-url = yes
| rowspan="2" |2022年6月估計的成本([[俄羅斯入侵烏克蘭]]導致天然氣價格飆升)
}}</ref>
|2021: 1.0–2.5
| rowspan="2" | –
| rowspan="2" | –
|-
|2022: 4.8–7.8
|-
|[[普華永道]]提供<ref name=":15">{{Cite web |last=PricewaterhouseCoopers |title=Green hydrogen economy – predicted development of tomorrow |url=https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html |access-date=2023-08-25 |website=PwC |language=en-gx |archive-date=2021-05-29 |archive-url=https://web.archive.org/web/20210529141930/https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html |dead-url=no }}</ref>
|
|2021: 1.2–2.4
|
|
|-
| colspan="5" |'''藍氫'''
|-
| rowspan="2" |國際能源署提供<ref name=":03" />
| rowspan="2" |2022年6月(俄羅斯入侵烏克蘭導致天然氣價格飆升)估計的成本
|2021: 1.5–3.0
| rowspan="2" | –
| rowspan="2" | –
|-
|2022: 5.3–8.6
|-
|[[英國]][[能源安全及淨零部 ]]提供<ref name=":22">{{Cite web |title=Hydrogen Production Costs 2021 annex: Key assumptions and outputs for production technologies |url=https://www.gov.uk/government/publications/hydrogen-production-costs-2021 |access-date=2023-08-25 |website=GOV.UK |language=en}}</ref>
|幅度受天然氣價格影響
|2020: 1.6–2.7
|1.6–2.7
|1.6–2.8
|-
|美國顧問公司GEP Worldwide提供<ref name=":3">{{Cite web |last=Saini |first=Anshuman |date=January 12, 2023 |title=Green & Blue Hydrogen: Current Levelized Cost of Production & Outlook {{!}} GEP Blogs |url=https://www.gep.com/blog/strategy/Green-and-blue-hydrogen-current-levelized-cost-of-production-and-outlook |access-date=2023-08-25 |website=www.gep.com |language=en |archive-date=2024-04-18 |archive-url=https://web.archive.org/web/20240418073425/https://www.gep.com/blog/strategy/Green-and-blue-hydrogen-current-levelized-cost-of-production-and-outlook |dead-url=no }}</ref>
|
|2022: 2.8–3.5
|<nowiki>-</nowiki>
|<nowiki>-</nowiki>
|-
|國際智囊團{{le|能源轉型委員會|Energy Transitions Commission}}提供<ref name=":4" />{{Rp|page=28}}
|
|2020: 1.5–2.4
|1.3–2.3
|1.4–2.2
|-
| colspan="5" |'''綠氫'''
|-
| rowspan="2" |國際能源署提供<ref name=":03" />
| rowspan="2" |對2030年及2050年的估計,把在條件良好地區建設太陽能發電廠的假設列入
|2021: 4.0–9.0
| rowspan="2" |<1.5
| rowspan="2" |<1.0
|-
|2022: 3.0-4.3
|-
| rowspan="2" |英國政府提供<ref name=":22" />
|使用電網電力(適用於英國),幅度取決於電價、電解技術和成本。
|2020: 4.9–7.9
|4.4–6.6
|4.0–6.3
|-
|利用閒置可再生電力(適用於英國),幅度取決於電解技術和成本。
|2020: 2.4–7.9
|1.7–5.6
|1.5–4.6
|-
|[[國際可再生能源機構|國際再生能源總署]](IRENA)提供<ref>IRENA (2020), [https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5&nbsp;°C Climate Goal] {{Wayback|url=https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf |date=20240624135344 }}, International Renewable Energy Agency, Abu Dhabi, p. 91.</ref>
|
|2020: 2.2–5.2
|1.4–4.1
|1.1–3.4
|-
|GEP Worldwide<ref name=":3" />
|資料來源指出從2010年起,綠氫生產成本已下降60%
|2022: 3.0–6.0
|
|
|-
|投資銀行[[Lazard]]提供<ref>{{Cite book |url=https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/ |title=2023 Levelized Cost Of Energy+ |date=2023-04-12 |publisher=Lazard |page=27 |language=en |access-date=2023-08-25 |archive-date=2023-08-27 |archive-url=https://web.archive.org/web/20230827132200/https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/ |dead-url=no }}</ref>
|
|2022: 2.8–5.3
|
|
|-
|普華永道提供<ref name=":15" />
|
|2021: 3.5–9.5
|1.8–4.8
|1.2–2.4
|-
|能源轉型委員會提供<ref name=":4" />{{Rp|page=28}}
|
|2020: 2.6–3.6
|1.0–1.7
|0.7–1.2
|}


商業上可行的氫氣生產,估算的成本幅度廣闊,截至2022年,在不徵收碳稅的情況下,生產灰氫最為便宜,其次是藍氫,接下來是綠氫。預計到2050年,藍氫的生產成本不會大幅下降,<ref name=":22" /><ref name=":4" />{{Rp|page=28}}而會隨天然氣價格波動,並可能因使用CCS仍無法完全消除產生的碳而被徵收碳稅。<ref name=":4" />{{Rp|page=79}}從2010年到2022年期間電解設備的成本下降60%,<ref name=":3" />之後由於資本成本增加而略有上升。<ref name=":1" />預計成本到2030年和2050年還會大幅下降,<ref name=":52">{{Cite book |last1=Patonia |first1=Aliaksei |url=https://www.oxfordenergy.org/publications/cost-competitive-green-hydrogen-how-to-lower-the-cost-of-electrolysers/ |title=Cost-competitive green hydrogen: how to lower the cost of electrolysers? |last2=Poudineh |first2=Rahmat |date=January 2022 |publisher=Oxford Institute for Energy Studies |page= |language=en |access-date=2023-08-25 |archive-date=2024-03-05 |archive-url=https://web.archive.org/web/20240305142512/https://www.oxfordenergy.org/publications/cost-competitive-green-hydrogen-how-to-lower-the-cost-of-electrolysers/ |dead-url=no }}</ref>{{Rp|page=26}}隨著再生能源發電成本下降,綠氫成本也跟著下降。<ref>{{Cite journal |last=Roser |first=Max |date=2023-09-01 |title=Why did renewables become so cheap so fast? |url=https://ourworldindata.org/cheap-renewables-growth |journal=Our World in Data |access-date=2024-08-13 |archive-date=2023-07-31 |archive-url=https://web.archive.org/web/20230731175530/https://ourworldindata.org/cheap-renewables-growth |dead-url=no }}</ref><ref name=":4" />{{Rp|page=28}}最便宜的是利用超額生產的再生電力(若不加以利用,可能必須{{le|限制發電|Curtailment (electricity)}}),此情況對於能配合低功率和間歇式電源的電解槽營運有利。<ref name=":52" />{{Rp|page=5}}
== 氢安全性 ==
除少數氣體,如[[乙炔]],[[甲硅烷]]和[[環氧乙烷]]之外,在所有的氣體中,氫氣是具有最寬的爆炸性/點火的氣體與空氣的混合範圍。這意味著当火焰或火花點燃氫洩漏的混合氣體时候,無論空氣和氫氣之間的混合比例如何,都將最有可能導致爆炸而不是一個單純的火焰。這使得氫燃料的使用,特別是在封閉的領域,如隧道或地下停車場的使用会尤其危險。<ref name=Utgitar>{{cite journal
| last1 = Utgikar
| first1 = Vivek P
| last2 = Thiesen
| first2 = Todd
| title = Safety of compressed hydrogen fuel tanks: Leakage from stationary vehicles
| url = https://archive.org/details/sim_technology-in-society_2005-08_27_3/page/315
| journal = Technology in Society
| year = 2005
| volume = 27
| issue = 3
| pages = 315–320
| doi = 10.1016/j.techsoc.2005.04.005
}}</ref>因为純的氫-氧燃燒火焰是在肉眼幾乎看不見的[[紫外線]]的色彩範圍,所以如果氫氣洩漏在燃燒,需要火焰探測器才能檢測到。氫是無味的,无法通過嗅覺被檢測到洩漏。


[[高盛]]集團公司於2022年發表的一項分析報告,預計全球到2030年生產綠氫將可達到與灰氫相同的成本,如果對灰氫徵收全球碳稅,前述生產綠氫降低成本的時間會更為提前。<ref name="Goldman Sachs Research 4–6"/>就單位能源成本而言,藍氫和灰氫的成本始終高於其使用的化石燃料,而綠氫的成本始終高於製造它的再生電力成本。
== 实例和试点方案 ==
<!-- This section is linked from [[Iceland]] -->
[[Image:Brno, Autotec, Mercedes Citaro na palivové články II.jpg|thumb|一辆[[梅赛德斯-奔驰Citaro]]汽车,由氢燃料电池供电, 在[[捷克共和国]][[布爾諾]]市.]]
美国欧盟和日本数家汽车制造商都致力于开发使用[[氢]]的汽车。目前以运输为目的的氢的分布正在在世界各地测试,尤其是在[[葡萄牙]],[[冰岛]],[[挪威]],[[丹麦]],[[德国]],[[美国]][[加州]],[[日本]]和[[加拿大]],但付出的代价是非常高的。


[[美國]]和[[歐盟]]對生產清潔氫氣的補貼遠高於[[印度]]的。<ref>{{Cite web |last=Martin |first=Polly |date=2023-06-29 |title=India to offer green hydrogen production subsidy of up to $0.60/kg — for three years only |url=https://www.hydrogeninsight.com/production/india-to-offer-green-hydrogen-production-subsidy-of-up-to-0-60-kg-for-three-years-only/2-1-1477425 |access-date=2023-09-26 |website=Hydrogen news and intelligence {{!}} Hydrogen Insight |language=en |archive-date=2023-10-02 |archive-url=https://web.archive.org/web/20231002201732/https://www.hydrogeninsight.com/production/india-to-offer-green-hydrogen-production-subsidy-of-up-to-0-60-kg-for-three-years-only/2-1-1477425 |dead-url=no }}</ref>
有些医院已经安装了结合电解槽存储的燃料电池单元的当地应急电源。因为和内燃机驱动发电机相比,其低维护要求和方便的位置,这些在紧急情况下使用是有利的。{{Citation needed|date=February 2010}}


==幾個選定國家的近期情況==
[[冰岛]]一直致力于在2050年成为世界上第一个氢经济<ref>{{cite web
[[File:Brno, Autotec, Mercedes Citaro na palivové články II.jpg|thumb|一輛於[[捷克]][[布爾諾]]運行的[[梅賽德斯-賓士Citaro]]巴士,巴士動力由氫燃料電池提供。]]
| url= http://www.mfa.is/speeches-and-articles/nr/3800
| title= Climate change as a global challenge
| last= Hannesson
| first= Hjálmar W.
| date= 2.8.2007
| work=
| publisher= [[Iceland]] [[Minister for Foreign Affairs of Iceland|Ministry for Foreign Affairs]]
| accessdate= 2008-05-09
| archive-date= 2013-07-01
| archive-url= https://www.webcitation.org/6Hn3oNzZR?url=http://www.mfa.is/news-and-publications/nr/3800
| dead-url= no
}}</ref>。[[冰岛]]是处于一个独特的位置。目前,它进口所有必要的石油产品来提供动力给汽车和捕鱼船队。[[冰岛]]有大量的地热资源,以至于当地的电力价格实际上是低于可用于产生电力的[[碳氢化合物]]价格。


世界各地正在測試用於運輸的氫氣,特別是在美國([[加利福尼亞州]]、[[馬薩諸塞州]])、[[加拿大]]、[[日本]]、歐盟([[葡萄牙]]、[[挪威]]、[[丹麥]]、[[德國]])和[[冰島]]。
[[冰岛]]已经将多余的电能转化为出口产品和烃替代品。在2002年,它通过电解产生氢气2000吨,主要用于生产对化肥的[[氨]](NH3)。氨在世界各地被生产,运输,和使用,氨90%的成本的是产生它的能量的成本。[[冰岛]]也正在开发铝冶炼行业。铝的成本主要是由运行冶炼厂的电力成本。这些行业可以有效地出口所有的冰岛地热发电的潜力。


衡量一個國家是否擁有大型天然氣基礎設施,並可供公民使用的一個指標是該國擁有以天然氣為燃料的汽車數量。擁有此類天然氣汽車數量最多的國家是(依數量順序排列):<ref>{{Cite web |title=Worldwide NGV statistics |url=http://www.ngvjournal.com/worldwide-ngv-statistics/ |url-status=live |archive-url=https://web.archive.org/web/20150206153839/http://www.ngvjournal.com/worldwide-ngv-statistics/ |archive-date=2015-02-06 |access-date=2019-09-29}}</ref>[[伊朗]]、[[中國]]、[[巴基斯坦]]、[[阿根廷]]、印度、[[巴西]]、[[義大利]]、[[哥倫比亞]]、[[泰國]]、[[烏茲別克]]、[[玻利維亞]]、[[亞美尼亞]]、[[孟加拉國]]、[[埃及]]、[[秘魯]],[[烏克蘭]],美國。以天然氣為燃料的汽車也可以改裝使用氫氣。
这以上的两个工业都不能直接取代碳氢化合物。在[[冰岛]]的[[雷克雅未克]]( Reykjavík)市,有一个小规模的试点使用压缩氢气的城市公交车车队,和该国的渔船上用氢的供电的研究正在进行中。为了更实际的目的,冰岛可能用氢处理进口石油来扩展它,而不是完全取代它。


此外,有少數私人住宅中會裝置[[微型熱電聯產]]設備,可使用氫氣、天然氣或是[[液化石油氣]]等來運作。<ref>{{Cite web |title=Fuel Cell micro CHP |url=http://www.pace-energy.eu/micro-cogeneration/ |url-status=live |archive-url=https://web.archive.org/web/20191106175546/http://www.pace-energy.eu/micro-cogeneration/ |archive-date=2019-11-06 |access-date=2019-10-23}}</ref><ref>{{Cite web |title=Fuel cell micro Cogeneration |url=https://www.cogeneurope.eu/events/past-events/cogen-event/fuel-cell-micro-cogeneration-generating-sustainable-heat-and-power-for-your-home |url-status=live |archive-url=https://web.archive.org/web/20191023131059/https://www.cogeneurope.eu/events/past-events/cogen-event/fuel-cell-micro-cogeneration-generating-sustainable-heat-and-power-for-your-home |archive-date=2019-10-23 |access-date=2019-10-23}}</ref>
雷克雅未克(Reykjavík)公交车是一个更大的的项目的一部分,HyFLEET:CUTE项目<ref>{{cite web | url= http://www.global-hydrogen-bus-platform.com/index.php | title= What is HyFLEET:CUTE? | accessdate= 2012-10-02 | deadurl= yes | archiveurl= https://web.archive.org/web/20080224165308/http://www.global-hydrogen-bus-platform.com/index.php | archivedate= 2008-02-24 }}</ref>,这项目是在三大洲的9个城市经营氢燃料公交车。HyFLEET:CUTE公交车也经营在中国北京<ref>{{cite web | url= http://www.chinafcb.org.cn/chinafcb/index.html | title= Demonstration for Fuel Cell Bus Commercialization in China,中国燃料电池公共汽车商业化示范项目 | accessdate= 2012-10-02 | deadurl= yes | archiveurl= https://web.archive.org/web/20160304142456/http://www.chinafcb.org.cn/chinafcb/index.html | archivedate= 2016-03-04 }}</ref>和澳大利亚珀斯(见下文)。展示'''氢经济'''的试点项目是在挪威的Utsira岛运作。项目安装有风力发电和氢能发电。当有剩余风能的期间内,多余的电力被用于通过电解产生氢气。氢被存储,并且可用于当有少风期间内的发电。{{Citation needed|date=February 2010}}


===澳大利亞===
在{{tsl|en|NREL|}}和{{tsl|en|Xcel|}}能源公司之间的合资企业以同样的方式在美国[[科罗拉多州]]的风力发电和氢能发电相结合<ref>{{cite web | url= http://www.physorg.com/news87494382.html | title= Experimental 'wind to hydrogen' system up and running | date= 2007-01-08 | work= | publisher= Physorg.com | accessdate= 2008-05-09 | archive-date= 2013-07-01 | archive-url= https://www.webcitation.org/6Hn3rZp29?url=http://phys.org/news87494382.html | dead-url= no }}</ref>。在加拿大纽芬兰和拉布拉多的电力公司使用目前的风力-柴油发电系统转换给遥远的Ramea岛成风氢混合动力系统设施<ref>{{cite web | url= http://www.hydrogenenginecenter.com/userdocs/NRCan_Press_Release_Final_05.16.06.pdf | title= Hydrogen Engine Center Receives Order for Hydrogen Power Generator 250kW Generator for Wind/Hydrogen Demonstration | date= 2006-05-16 | format= PDF | work= | publisher= Hydrogen Engine Center, Inc. | accessdate= 2008-05-09 | deadurl= yes | archiveurl= https://web.archive.org/web/20080527234233/http://www.hydrogenenginecenter.com/userdocs/NRCan_Press_Release_Final_05.16.06.pdf | archivedate= 2008年5月27日 }}</ref>。类似的试点项目在美国的[[斯图尔特岛]]的使用,不是风力发电,而用太阳能发电,产生电能。当电池充满后,多余的电力是通过电解产生氢气来储存,以后供给[[燃料电池]]生产的电力。<ref>{{cite web | url= http://www.siei.org | title= Stuart Island Energy Initiative | accessdate= 2008-05-09 | archive-url= https://www.webcitation.org/6Hn3sjEuq?url=http://www.siei.org/ | archive-date= 2013-07-01 | dead-url= yes }}</ref>
[[西澳大利亞州]]規劃和基礎設施部運作三輛[[梅賽德斯-賓士Citaro]]燃料電池公車,是珀斯永續運輸能源燃料電池公車試驗的一部分。<ref>{{cite web |date=13 April 2007 |title=Perth Fuel Cell Bus Trial |url=http://www.dpi.wa.gov.au/ecobus/1206.asp |url-status=dead |archive-url=https://web.archive.org/web/20080607172715/http://www.dpi.wa.gov.au/ecobus/1206.asp |archive-date=7 June 2008 |access-date=2008-05-09 |publisher=Department for Planning and Infrastructure, Government of [[Western Australia]]}}</ref>該試驗於2004年9月開始,並於2007年9月結束。氫氣是煉油廠工業製程的副產品。這些巴士在[[珀斯]]北部郊區名為馬拉加(Malaga)的一個車站加氣。


[[昆士蘭州]]州長[[白樂琪]]和企業家{{le|安德魯·佛里斯特|Andrew Forrest}}於2021年宣佈昆士蘭州將建造一座世界上最大的氫氣工廠。<ref>{{Cite news |date=October 11, 2021 |title='Green industrial revolution': Queensland announces plans to mass produce green ammonia |newspaper=ABC News |url=https://www.abc.net.au/news/2021-10-11/queensland-hydrogen-twiggy-forrest-ammonia-feasiblity/100528732 |url-status=live |access-date=2021-10-12 |archive-url=https://web.archive.org/web/20211012192350/https://www.abc.net.au/news/2021-10-11/queensland-hydrogen-twiggy-forrest-ammonia-feasiblity/100528732 |archive-date=2021-10-12 |via=www.abc.net.au}}</ref>
[[英国]]在2004年1月开始了燃料电池的试点方案,该项目在[[伦敦]]25路线上运行的两辆燃料电池公共汽车,直到2005年12月,而切换路线RV1直到2007年1月。<ref>{{cite web|url=http://www.tfl.gov.uk/corporate/projectsandschemes/environment/2017.aspx#routes|title=Hydrogen buses|date=|year=|month=|work=|publisher=Transport for London|accessdate=2008-05-09|archiveurl=https://web.archive.org/web/20080323064054/http://www.tfl.gov.uk/corporate/projectsandschemes/environment/2017.aspx#routes|archivedate=2008年3月23日|deadurl=yes}}</ref> 目前氢远征计划正在创建一个氢燃料电池为动力的船舶,作为一种证明氢燃料电池能力,用它环绕地球航行。<ref>{{cite web | url= http://www.atti-info.org/HydrogenVeh/prospectus.pdf | title= The Hydrogen Expedition | format= PDF | work= | publisher= | accessdate= 2008-05-09 | date= January 2005 | deadurl= yes | archiveurl= https://web.archive.org/web/20080527234233/http://www.atti-info.org/HydrogenVeh/prospectus.pdf | archivedate= 2008-05-27 }}</ref>


{{le|澳洲再生能源署|Australian Renewable Energy Agency}} (ARENA) 已對28個氫項目投資5,500萬澳元,包含早期研發、早期試驗和部署計畫。該國能源和排放部長安格斯·泰勒(Angus Taylor) 在2021年低排放技術聲明中宣稱該機構的既定目標是以每公斤2美元的價格以電解方式生產氫氣。<ref>{{Cite web |date=30 November 2020 |title=Australia's pathway to $2 per kg hydrogen – ARENAWIRE |url=https://arena.gov.au/blog/australias-pathway-to-2-per-kg-hydrogen/ |url-status=live |archive-url=https://web.archive.org/web/20201215065859/https://arena.gov.au/blog/australias-pathway-to-2-per-kg-hydrogen/ |archive-date=2020-12-15 |access-date=2021-01-06 |website=Australian Renewable Energy Agency |language=en-AU}}</ref>
西澳大利亚州的规划和基础设施经营部戴姆勒 - 克莱斯勒公司的Citaro燃料电池公共汽车珀斯的燃料电池巴士试验计划在[[珀斯]]市的可持续交通能源的一部分。<ref>{{cite web | url= http://www.dpi.wa.gov.au/ecobus/1206.asp | title= Perth Fuel Cell Bus Trial | date= 2007-04-13 | work= | publisher= Department for Planning and Infrastructure, Government of [[Western Australia]] | accessdate= 2008-05-09 | deadurl= yes | archiveurl= https://web.archive.org/web/20080607172715/http://www.dpi.wa.gov.au/ecobus/1206.asp | archivedate= 2008年6月7日 }}</ref>巴士定期Transperth公交线路的路径交通经营。试验开始于2004年9月和结束于2007年9月。公交车的燃料电池用质子交换膜系统,并提供与原氢从BP炼油厂在珀斯以南的Kwinana。氢是炼油厂的工业生产过程的副产品。巴士在珀斯北部郊区的马拉加站加氢。联合国工业开发组织([[UNIDO]])和[[土耳其]]能源和自然资源部在2003年签署了4000万美元的信托基金协议建立在伊斯坦布尔的国际氢能技术中心(UNIDO-ICHET),开始操作于2004年。<ref>{{cite web | url= http://www.unido.org/fileadmin/user_media/About_UNIDO/Evaluation/TORs/TOR%20ICHET%20final.PDF | title= Independent Mid-Term Review of the UNIDO Project: Establishment and operation of the International Centre for Hydrogen Energy Technologies (ICHET), TF/INT/03/002 | date= 2009-08-31 | work= | publisher= [[UNIDO]] | accessdate= 2010-07-20 | deadurl= yes | archiveurl= https://web.archive.org/web/20100601075325/http://www.unido.org/fileadmin/user_media/About_UNIDO/Evaluation/TORs/TOR%20ICHET%20final.PDF | archivedate= 2010年6月1日 }}</ref> 采用可再生能源的氢叉车,氢气车和移动式房屋被展示在UNIDO-ICHET的上述事项。自2009年4月在伊斯坦布尔海上巴士公司([[İDO|Istanbul Sea Buses]])的总部一个不间断电源系统已经工作。


===中國===
燃料电池公交车项目: 此项目由[[中国]]政府、联合国开发计划署与世界环境基金于2003年3月启动,第一阶段为2006年6月到2007年10月,3辆戴姆勒克莱斯勒燃料电池公交在[[北京]]运行。运行期间共载客57000人,总行驶里程92000公里,可用性达90%。第二阶段在[[上海]],启动于2007年11月,结束于2010年世博会截止,主要是6辆上海汽车公司的燃料电池公交的示范运营,其中3个车辆的电池堆来自[[巴拉德動力公司]](Ballard Power Systems),3辆的来自于中国国内供应商。<ref>{{cite web | url= http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html | title= 2012中国燃料电池和氢能报告 | accessdate= 2012-10-02 | archive-url= https://web.archive.org/web/20121216081637/http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html | archive-date= 2012-12-16 | dead-url= yes }}</ref>
根據總部位於[[華盛頓哥倫比亞特區]]的[[智庫]] - [[戰略與國際研究中心]]於2022年2月發表的評論,其中重點:<ref>{{cite web | url =https://www.csis.org/analysis/chinas-hydrogen-industrial-strategy | title =China’s Hydrogen Industrial Strategy | publisher =CSIS | authors =Jane Nakano | date =2022-02-03 | accessdate =2024-08-13 | archive-date =2024-08-15 | archive-url =https://web.archive.org/web/20240815233647/https://www.csis.org/analysis/chinas-hydrogen-industrial-strategy | dead-url =no }}</ref>


*中國尚未制定國家氫能發展戰略,但各省政府和商業企業已啟動氫能項目,以支持燃料電池汽車(FCV)的部署和生產再生氫能。<ref >{{cite web | url =https://www.china-briefing.com/doing-business-guide/china/sector-insights/china-s-hydrogen-energy-industry-state-policy-investment-opportunities | title =China’s Hydrogen Energy Industry: State Policy, Investment Opportunities | publisher =China Briefing | authors = | date = | accessdate =2024-08-13 | archive-date =2024-08-13 | archive-url =https://web.archive.org/web/20240813013539/https://www.china-briefing.com/doing-business-guide/china/sector-insights/china-s-hydrogen-energy-industry-state-policy-investment-opportunities | dead-url =no }}</ref>
安亭加氢站: 中国主导的[[燃料电池]]技术是[[質子交換膜燃料電池]](PEMFC),使用的燃料通常为[[氢]]气。2007年,中国第一座加氢站建成于[[上海]][[安亭]],由上海舜华新能源系统有限公司研发并建设的,该加氢站已于2007年7月15日正式开业。<ref>{{cite web | url= http://www.china-hydrogen.org/hydrogen/station/2009-08-03/161.html | title= 中国上海安亭加氢站 | accessdate= 2012-10-02 | archive-url= https://web.archive.org/web/20130104204452/http://www.china-hydrogen.org/hydrogen/station/2009-08-03/161.html | archive-date= 2013-01-04 | dead-url= yes }}</ref>上海舜华新能源系统有限公司与[[同济大学]]合作,自2004年以来,为满足不同用途需要,已先后开发3代移动加氢站:2004年开发的第一代移动加氢站,采用了非电驱动的氢气增压方式,填补了国内外在该领域的空白。具有机动性好、取气率高、加注能力强等特点,特别适合少量燃料电池汽车野外路试的氢燃料加注。公司为世博会建立了一座[[加氢站]]和两辆移动加氢站,世博加氢站将被移至[[上海]][[嘉定区|嘉定]]汽车城,分成两座新站,可提供700bar和350bar的加氢需求。目前,中国有四座固定加氢站和五辆移动加氢车,使用的氢气主要来自工业副产氢。在[[上海]],副产氢气足够10000辆FCEV的使用需求量。而[[北京]]的氢气来源比较广泛:管道氢气、现场天然气湿重整和电解水制氢。
*中國已是全球最大的氫氣生產國(主要來自化石燃料)<ref name="PtX Hu">{{cite news | url =https://ptx-hub.org/factsheet-on-china-the-worlds-largest-hydrogen-producer-and-consumer/ | title =Factsheet on China, the world’s largest Hydrogen producer and consumer | publisher =International PtX Hub | authors = | date = | accessdate =2024-08-13 | archive-date =2024-08-13 | archive-url =https://web.archive.org/web/20240813011954/https://ptx-hub.org/factsheet-on-china-the-worlds-largest-hydrogen-producer-and-consumer/ | dead-url =no }}</ref>和第三大燃料電池汽車市場。
*中國巨大的再生能源發電能力可支持再生氫能的快速擴展。
*該國於再生氫能生產的巨大潛力和龐大的能源消費格局可能表示中國既不會成為氫氣出口國,也不會成為氫氣進口國。
*運輸部門,尤其是卡車和巴士,可能仍將是中國氫能應用的重點,但氫能在工業部門的應用似乎正在興起。


中國從2010年起的氫氣產量每年增長6.8%,到2020年已達到3,300萬噸。<ref name="PtX Hu"/>該國於[[2022年冬季奧林匹克運動會]]活動中部署多達1,000輛由國產氫燃料電池驅動的巴士,展現其已具有成熟的技術能力。<ref name="PtX Hu"/>
== 製氫電力來源 ==
''不同的氫氣生產方法有不同的固定投資額和邊際成本。'' 製氫的能源和燃料可以來自多種來源例如天然氣、核能、[[太陽能]]、風力、生物燃料、煤礦、其他化石燃油、地熱。(以下以全[[美國]]汽車都改為氫氣的假設為計算單位)
*[[天然氣]]:用氣電共生改良後,需要15.9百萬立方呎的瓦斯,如果每天生產500公斤,由改裝的加油站就地生產(例如高科技加氣站),相當於改裝777,000座加油站成本$1兆美金;可產每年1億5000萬噸氫氣。先假設不需額外氫氣分配系統的投資成本下;等於每GGE單位$3.00美元(Gallons of Gasoline Equivalent 相當一加侖汽油的能量簡稱GGE,方便和目前油價作比較)
*[[核能]]:用以提供電解水的氫氣電能來源。需要240,000噸鈾礦—提供2,000座600兆瓦發電廠,等於$8400億美金,等於每GGE單位$2.50美元。<ref>{{cite web | url= http://www.popularmechanics.com/technology/industry/4199381.html?page=3 | title= "The Truth About Hydrogen" | last= Wise | first= Jeff | date= November 2006 | publisher= ''[[Popular Mechanics]]'' | pages= p.&nbsp;3 | accessdate= 2008-05-09 | archive-date= 2013-07-01 | archive-url= https://www.webcitation.org/6Hn3m5sJJ?url=http://www.popularmechanics.com/science/energy/next-generation/4199381?page=3 | dead-url= no }}</ref>
*[[太陽能]]:用以提供電解水的氫氣電能來源。需要每平方公尺達2,500千瓦(每小時)效率的太陽能版科技,共1億1300萬座40千瓦的機組,成本推估約$22兆,等於每GGE單位$9.50美元。
*[[風力]]:用以提供電解水的氫氣電能來源。每秒7公尺的平均風速計算,需要1百萬座2百萬瓦風力機組,成本約$3兆美金等於每GGE單位$3.00美元。
*[[生物燃油]]:氣化廠用氣電共生改良後。需要15億噸乾燥生物材料,3,300座廠房需要113.4百萬英畝(460,000 km²)農場提供生物材料。約$5650億美元,等於每GGE單位$1.90美元(假設土地不匱乏且地價最便宜狀態)。
*煤礦:火力發電用氣電共生改良後提供電解水的氫氣電能來源。需要10億噸煤將近1,000座275兆瓦發電廠成本$5000億美金,等於每GGE單位1美元。


===歐盟===
以上看出由[[煤]]礦的製氫最便宜,但是除非二氧化碳封存技術普及化及實用化,否則產生的高污染會使氫氣科技的[[環保]]性蕩然無存。
歐盟國家中已擁有較大型天然氣管道系統的國家有[[比利時]]、德國、[[法國]]和[[荷蘭]],有可能用於氫氣輸送。<ref name="Hydrogen transport & distribution">{{Cite web |title=Hydrogen transport & distribution |url=https://hydrogeneurope.eu/hydrogen-transport-distribution |url-status=live |archive-url=https://web.archive.org/web/20190929110509/https://hydrogeneurope.eu/hydrogen-transport-distribution |archive-date=2019-09-29 |access-date=2019-09-29}}</ref>歐盟於2020年成立歐洲清潔氫聯盟(ECHA)。<ref>{{Cite web |last=Pollet |first=Mathieu |date=2020 |title=AExplainer: Why is the EU Commission betting on hydrogen for a greener future? |url=https://www.euronews.com/2020/07/10/explainer-why-is-the-eu-commission-betting-on-hydrogen-for-a-cleaner-future |url-status=live |archive-url=https://web.archive.org/web/20200807130615/https://www.euronews.com/2020/07/10/explainer-why-is-the-eu-commission-betting-on-hydrogen-for-a-cleaner-future |archive-date=2020-08-07 |access-date=2020-08-14 |website=euronews}}</ref><ref>{{Cite web |title=ECHA |url=https://ec.europa.eu/growth/industry/policy/european-clean-hydrogen-alliance_en |url-status=live |archive-url=https://web.archive.org/web/20200812182627/https://ec.europa.eu/growth/industry/policy/european-clean-hydrogen-alliance_en |archive-date=2020-08-12 |access-date=2020-08-14}}</ref>
==外部連結==
*[https://www.youtube.com/watch?v=wQ_cm_1cIZQ 央視官方頻道-氫能新未來] {{Wayback|url=https://www.youtube.com/watch?v=wQ_cm_1cIZQ |date=20190409064740 }}


== 參考文獻 ==
====法國====
綠氫逐漸在法國變得普遍。 該國於2019年制定一金額1.5億歐元的綠氫計劃,以建立所需的基礎設施,提供巴士和火車等交通系統所需的燃料。 名為Corridor H2的計畫是一項類似倡議,將在[[奧克西塔尼亞]]地區,沿著[[地中海]]和[[北海]]之間的路線建立氫氣配送設施網路。 Corridor H2計畫將從[[歐洲投資銀行]]獲得4,000萬歐元貸款。<ref name=":77">{{Cite web |title=French port bets big on floating wind farms planned in Mediterranean |url=https://www.eib.org/en/essays/floating-wind-farms |access-date=2022-09-26 |website=European Investment Bank |language=en |archive-date=2023-07-15 |archive-url=https://web.archive.org/web/20230715105107/https://www.eib.org/en/essays/floating-wind-farms |dead-url=no }}</ref><ref>{{Cite web |date=2022-06-23 |title=Green Hydrogen: A key investment for the energy transition |url=https://blogs.worldbank.org/ppps/green-hydrogen-key-investment-energy-transition |access-date=2022-09-26 |website=blogs.worldbank.org |language=en |archive-date=2024-02-22 |archive-url=https://web.archive.org/web/20240222005750/https://blogs.worldbank.org/ppps/green-hydrogen-key-investment-energy-transition |dead-url=no }}</ref>
{{reflist|2}}


== 參見 ==
====德國====
德國汽車製造商[[BMW]]已花費多年時間致力於氫氣使用的研究。<ref>{{Cite web |date= 2007-10-24 |title=E3B1C256-BFCB-4CEF-88A6-1DCCD7666635<!-- Bot generated title --> |url=https://www.scmp.com/article/612717/test-drive-bmws-car-future-its-gas |url-status=live |archive-url=https://web.archive.org/web/20211029174424/https://www.scmp.com/article/612717/test-drive-bmws-car-future-its-gas |archive-date=2021-10-29 |access-date=2021-10-12}}</ref>
{{Portal box|能源|可再生能源}}


德國政府於2020年發佈國家氫能策略,並於2023年7月予以更新,以推動氫能技術的發展和應用,實現氣候目標。策略包括的內容有:擴大國內綠氫生產、投資氫氣基礎設施及促進氫氣應用。策略還強調國際合作的重要性。德國政府認為建立全球氫能市場對於實現全球氣候目標非常重要。德國將為此積極參與國際氫能合作,並推動氫能技術和標準的全球化。<ref>{{cite web | url =https://www.bmwk.de/Redaktion/EN/Hydrogen/Dossiers/national-hydrogen-strategy.html | title =The National Hydrogen Strategy | publisher =The Federal Government | date = | accessdate =2024--07-17 | archive-date =2024-07-17 | archive-url =https://web.archive.org/web/20240717084921/https://www.bmwk.de/Redaktion/EN/Hydrogen/Dossiers/national-hydrogen-strategy.html | dead-url =no }}</ref>
* [[可持续能源]]

* [[冰岛的可再生能源]]
根據一份發佈於2024年2月19日的報導,德國政府的計畫是預定把氫氣為燃料的發電廠作為即將關閉的[[燃煤發電廠]]的替代品,以及對[[間歇性再生能源]]的補充之用(最有可能協助平衡再生能源發電量的長期波動問題)。這與德國政府更宏大的氫能願景一致。目前正計劃到2032年建成10,000公里的氫氣管道網絡,並在2024年至2027年期間投入高達200億歐元以發展氫能產業。所提的計畫經需經過德國國會的協商,以及[[歐盟執行委員會]]的核准。<ref>{{cite web | url =https://www.bruegel.org/analysis/four-questions-germanys-big-hydrogen-power-plan | title =Four questions for Germany’s big hydrogen power plan | publisher =Bruegel | date =2024-02-19 | authors =Ben McWilliams and Georg Zachmann | accessdate =2024--07-17 | archive-date =2024-07-17 | archive-url =https://web.archive.org/web/20240717084919/https://www.bruegel.org/analysis/four-questions-germanys-big-hydrogen-power-plan | dead-url =no }}</ref>
* [[清潔能源]]

====冰島====
[[冰島]]承諾到2050年成為世界上第一個氫經濟體。<ref>{{cite web |last=Hannesson |first=Hjálmar W. |date=2007-08-02 |title=Climate change as a global challenge |url=http://www.mfa.is/speeches-and-articles/nr/3800 |url-status=live |archive-url=https://web.archive.org/web/20140107205851/http://www.mfa.is/news-and-publications/nr/3800 |archive-date=2014-01-07 |access-date=2008-05-09 |publisher=[[Iceland]] [[Minister for Foreign Affairs of Iceland|Ministry for Foreign Affairs]]}}</ref>冰島處於獨特的地位,該國的汽車及{{le|漁船船隊|Fishing fleet}}仰賴進口的石油作為燃料。該國擁有豐富的[[地熱能]]資源,以至於當地的電價實際上低於發電用的碳氫化合物的價格。

冰島已經將其剩餘電力轉為出口商品和碳氫化合物替代品。 該國於2002年利用電解生產氫氣2,000噸,主要用於生產製作化肥的氨。氨的成本中,有90%是能源成本。

該國首都[[雷克雅維克]]擁有一支使用壓縮氫氣運行的小型城市公車試點車隊,<ref name="detnews">{{cite news |last=Doyle |first=Alister |date=2005-01-14 |title=Iceland's hydrogen buses zip toward oil-free economy |agency=Reuters |url=http://www.detnews.com/2005/autosinsider/0501/14/autos-60181.htm |url-status=dead |access-date=2008-05-09 |archive-url=https://archive.today/20120724042846/http://www.detnews.com/2005/autosinsider/0501/14/autos-60181.htm |archive-date=2012-07-24}}</ref>並且正進行利用氫氣為該國漁船隊提供動力的研究(例如由{{le|冰島新能源公司|Icelandic New Energy}}進行)。出於符合符合實際的目的,冰島並不打算完全取代石油燃料。

===波蘭===
波蘭自2021年即開始逐步建立氫氣加氣站。<ref>{{Cite web |url=https://hydrogen-central.com/orlen-hydrogen-refueling-stations-poland/ |title=存档副本 |access-date=2024-08-13 |archive-date=2024-07-09 |archive-url=https://web.archive.org/web/20240709025027/https://hydrogen-central.com/orlen-hydrogen-refueling-stations-poland/ |dead-url=no }}</ref><ref>{{Cite web |title=Poland plans new hydrogen stations |url=https://wbj.pl/poland-plans-new-hydrogen-stations/post/142659 |access-date=2024-07-10 |website=wbj.pl |language=en |archive-date=2024-07-14 |archive-url=https://web.archive.org/web/20240714094329/https://wbj.pl/poland-plans-new-hydrogen-stations/post/142659 |dead-url=no }}</ref>

===印度===
據說印度採用氫氣和{{le|氫氣增強壓縮天然氣|HCNG}}的原因有幾個,其中之一是推廣全國天然氣網路工作已經開始,且天然氣已經成為主要的汽車燃料。此外,印度城市地區有嚴重空氣污染問題。<ref>{{Cite web |title=Hydrogen vehicles and refueling infrastructure in India |url=https://www.energy.gov/sites/prod/files/2014/03/f10/cng_h2_workshop_11_das.pdf |url-status=live |archive-url=https://web.archive.org/web/20170612130231/https://energy.gov/sites/prod/files/2014/03/f10/cng_h2_workshop_11_das.pdf |archive-date=2017-06-12 |access-date=2019-09-28}}</ref><ref>{{cite journal |last1=Das |first1=L |date=1991 |title=Exhaust emission characterization of hydrogen-operated engine system: Nature of pollutants and their control techniques |url=https://archive.org/details/sim_international-journal-of-hydrogen-energy_1991_16_11/page/765 |journal=International Journal of Hydrogen Energy |volume=16 |issue=11 |pages=765–775 |doi=10.1016/0360-3199(91)90075-T}}</ref>估計印度的氫氣在成本下降和新生產技術的推動下,將有近80%生產的氫氣會是綠氫。<ref>{{Cite web|url=https://www.bridgeindia.org.uk/wp-content/uploads/2021/03/Bridge-India-UK-India-Energy-Report-2021.pdf|title=UK-India Energy Collaborations report|access-date=2024-08-13|archive-date=2021-05-05|archive-url=https://web.archive.org/web/20210505205035/https://www.bridgeindia.org.uk/wp-content/uploads/2021/03/Bridge-India-UK-India-Energy-Report-2021.pdf|dead-url=no}}</ref>

然而該國目前在氫能方面僅處於研究、開發和示範階段。<ref>{{Cite web |title=MNRE: FAQ |url=https://mnre.gov.in/file-manager/UserFiles/faq_hydrogenenergy.htm |url-status=live |archive-url=https://web.archive.org/web/20190921111217/https://mnre.gov.in/file-manager/UserFiles/faq_hydrogenenergy.htm |archive-date=2019-09-21 |access-date=2019-09-28}}</ref><ref>[https://web.archive.org/web/20120927155111/http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/cng_h2_workshop_9_chenoy.pdf Overview of Indian Hydrogen Programme]</ref>加氫站的數量仍很少,<ref>{{Cite web |title=H2 stations worldwide |url=https://www.netinform.net/h2/h2stations/h2stations.aspx |url-status=live |archive-url=https://web.archive.org/web/20190921111217/https://www.netinform.net/h2/h2stations/h2stations.aspx |archive-date=2019-09-21 |access-date=2019-09-28}}</ref>但預計數目很快就會增加。<ref>{{Cite web |date=23 February 2016 |title=India working on more H2 stations |url=https://www.gasworld.com/india-working-on-hydrogen-fuel-stations/2010006.article |url-status=live |archive-url=https://web.archive.org/web/20190921111210/https://www.gasworld.com/india-working-on-hydrogen-fuel-stations/2010006.article |archive-date=2019-09-21 |access-date=2019-09-28}}</ref><ref>{{Cite news |title=Shell plans to open 1200 fuel stations in India, some of which may include H2 refilling |newspaper=The Economic Times |url=https://economictimes.indiatimes.com/industry/energy/oil-gas/shell-plans-opening-1200-retail-stations-in-india-in-10-years/articleshow/65660768.cms |url-status=live |access-date=2019-09-28 |archive-url=https://web.archive.org/web/20190922161455/https://economictimes.indiatimes.com/industry/energy/oil-gas/shell-plans-opening-1200-retail-stations-in-india-in-10-years/articleshow/65660768.cms |archive-date=2019-09-22}}</ref><ref>{{Cite web |title=Hydrogen Vehicles and Refueling Infrastructure in India |url=https://www.energy.gov/sites/prod/files/2014/03/f10/cng_h2_workshop_11_das.pdf |url-status=live |archive-url=https://web.archive.org/web/20170612130231/https://energy.gov/sites/prod/files/2014/03/f10/cng_h2_workshop_11_das.pdf |archive-date=2017-06-12 |access-date=2019-09-28}}</ref>

===沙烏地阿拉伯===
於2017年在該國西北角啟動的[[新未來城]]計畫中將完全使用再生能源,其中包含自2025年開始每年將生產約120萬噸的綠氨。<ref>{{Cite web |date=2021-04-21 |title=Saudi Arabia's $5bn green hydrogen-based ammonia plant to begin production in 2025 |url=https://energy-utilities.com/saudi-arabia-s-5bn-green-hydrogenbased-ammonia-news111872.html |access-date=2022-01-13 |website=Energy & Utilities |language=en |archive-date=2021-04-21 |archive-url=https://web.archive.org/web/20210421122019/https://energy-utilities.com/saudi-arabia-s-5bn-green-hydrogenbased-ammonia-news111872.html |dead-url=no }}</ref>

===土耳其===
{{le|土耳其能源和自然資源部|Turkish Ministry of Energy and Natural Resource}}與[[聯合國工業發展組織]]於2004年在[[伊斯坦堡]]創建{{le|國際氫能技術中心|International Centre for Hydrogen Energy Technologies}}(UNIDO-ICHET),此組織僅運作至2012年。<ref>{{cite web |date=2009-08-31 |title=Independent Mid-Term Review of the UNIDO Project: Establishment and operation of the International Centre for Hydrogen Energy Technologies (ICHET), TF/INT/03/002 |url=http://www.unido.org/fileadmin/user_media/About_UNIDO/Evaluation/TORs/TOR%20ICHET%20final.PDF |url-status=dead |archive-url=https://web.archive.org/web/20100601075325/http://www.unido.org/fileadmin/user_media/About_UNIDO/Evaluation/TORs/TOR%20ICHET%20final.PDF |archive-date=1 June 2010 |access-date=2010-07-20 |publisher=[[UNIDO]] |df=dmy-all}}</ref>該國能源和自然資源部於2023年部發佈有氫能技術策略和發展路線圖。<ref>{{Cite web |title=Announcement – Republic of Türkiye Ministry of Energy and Natural Resources |url=https://enerji.gov.tr/announcements-detail?id=20349 |access-date=2024-02-14 |website=enerji.gov.tr |archive-date=2024-08-15 |archive-url=https://web.archive.org/web/20240815093912/https://enerji.gov.tr/announcements-detail?id=20349 |dead-url=no }}</ref>

===英國===
根據[[畢馬威]](以會計業務為中心的大型國際專業服務集團)發佈的研究報告,到2021年,包括[[澳大利亞]]、[[智利]]、[[芬蘭]]、德國、挪威、葡萄牙和[[西班牙]]等10個國家已經制定氫戰略。英國也於2021年發佈氫戰略,時任商業、能源及工業部大臣Kwasi Kwarteng表示:"到2030年,氫可在化學品、煉油廠、電力和航運等重型運輸等污染性能源密集產業方面發揮重要脫碳作用。英國這項策略設定到2030年將實現5百萬瓦低碳氫化合物產能的企圖 - 相當於每年可取代天然氣為約300萬個英國家庭提供電力。"<ref>{{cite news | url =https://www.forbes.com/sites/feliciajackson/2024/05/16/hydrogen-from-renewables-could-save-the-uk-15-billion/ | title =Hydrogen From Renewables Could Save The UK £1.5 Billion | publisher =Forbes | date =2024-05-16 | accessdate =2024--07-17 | archive-date =2024-07-17 | archive-url =https://web.archive.org/web/20240717084916/https://www.forbes.com/sites/feliciajackson/2024/05/16/hydrogen-from-renewables-could-save-the-uk-15-billion/ | dead-url =no }}</ref>

===美國===
美國國內的幾家汽車公司(例如[[通用汽車]]和[[豐田汽車]])已經開發使用氫的汽車。<ref>{{Cite web |title=Are hydrogen fuel cell vehicles the future of autos? |url=https://abcnews.go.com/Business/hydrogen-fuel-cell-vehicles-future-autos/story?id=74583475 |url-status=live |archive-url=https://web.archive.org/web/20210117010939/https://abcnews.go.com/Business/hydrogen-fuel-cell-vehicles-future-autos/story?id=74583475 |archive-date=2021-01-17 |access-date=2021-01-18 |website=ABC News |language=en}}</ref>然而截至2020年2月僅加利福尼亞州部分地區擁有,多數地區的氫基礎設施尚未開發。<ref>{{Cite news |last=Siddiqui |first=Faiz |title=The plug-in electric car is having its moment. But despite false starts, Toyota is still trying to make the fuel cell happen. |language=en-US |newspaper=Washington Post |url=https://www.washingtonpost.com/technology/2020/02/26/hydrogen-fuel-cell-cars/ |url-status=live |access-date=2021-01-18 |archive-url=https://web.archive.org/web/20210119142059/https://www.washingtonpost.com/technology/2020/02/26/hydrogen-fuel-cell-cars/ |archive-date=2021-01-19 |issn=0190-8286}}</ref>[[國家可再生能源實驗室]]與Xcel Energy公司合作,於2007年在[[科羅拉多州]]建立一設施,利用[[風力發電廠]]生產的電力電解水,以生產氫氣。<ref>{{cite web |date= 2007-01-08 |title=Experimental 'wind to hydrogen' system up and running |url=http://www.physorg.com/news87494382.html |url-status=live |archive-url=https://web.archive.org/web/20130126092957/http://phys.org/news87494382.html |archive-date=2013-01-26 |access-date=2008-05-09 |publisher=Physorg.com}}</ref>於2024年,德克薩斯州已建立五個加氣站樞紐,以提供使用氫氣為燃料的重型卡車使用。<ref>{{Cite web |url=https://www.hydrogenfuelnews.com/hydrogen-stations-texas/8562318/ |title=存档副本 |access-date=2024-08-13 |archive-date=2024-07-15 |archive-url=https://web.archive.org/web/20240715095534/https://www.hydrogenfuelnews.com/hydrogen-stations-texas/8562318/ |dead-url=no }}</ref>由氫能開發公司綠氫國際 (Green Hydrogen International, GHI) 於德克薩斯州,使用太陽能與風能生產的電力製造綠氫的生產設施(稱為氫城(Hydrogen City)),首期工程將於於2026年投產。<ref>{{cite web | url =https://newatlas.com/energy/worlds-largest-green-hydrogen-city/ | title =World's largest green H2 hub, Hydrogen City, to open in Texas in 2026 | publisher =New Atlas | authors =Loz Blain | date =2022-03-08 | accessdate =2024-07-17 | archive-date =2024-07-09 | archive-url =https://web.archive.org/web/20240709012130/https://newatlas.com/energy/worlds-largest-green-hydrogen-city/ | dead-url =no }}</ref>

美國非營利組織{{le|燃料電池與氫能協會|Fuel Cell and Hydrogen Energy Association}}擬定的路線圖,強調氫氣是種具有多功能性的再生能源系統,既是可運輸、儲存的能源載體,也是運輸部門的燃料、建築物供暖以及工業供熱和原料的來源。"透過採取正確的行動,可以強化美國在能源領域的領導地位,並藉由在2030年創造1,400億美元年收入和70萬個工作機會,以及在2050年創造7,500億美元年收入和340萬個工作機會,來強化我國的經濟。"此外,燃料電池與氫能協會(FCHEA)主席莫瑞·馬可維茲(Morry Markowitz)表示,"如果現在採取正確的行動,建立具競爭力的氫能產業,可在2050年滿足全國14%的能源需求。"<ref>{{cite web | url =https://www.fchea.org/us-hydrogen-study | title =Road Map to a US Hydrogen Economy | publisher =Fuel Cell and Hydrogen Energy Association | date =2021 | accessdate =2024--07-17 | archive-date =2024-08-04 | archive-url =https://web.archive.org/web/20240804033120/https://www.fchea.org/us-hydrogen-study | dead-url =no }}</ref>

== 參見 ==
{{colbegin}}
* [[替代燃料]]
* {{le|聯合循環氫氣發電廠|Combined cycle hydrogen power plant}}
* [[能源開發]]
* [[能源開發]]
* {{le|氫損傷|Hydrogen damage}}
* [[氫汽車]]
* {{le|氫燃料電池發電廠|Hydrogen fuel cell power plant}}
* {{le|氫燃料內燃機載具|Hydrogen internal combustion engine vehicle}}
* {{le|H-Prize計畫|H-Prize}}
* {{le|氫動力飛機|Hydrogen-powered aircraft}}
* {{le|洛蘭氫氣社區|Lolland Hydrogen Community}}
* {{le|熱裂解#裂解甲烷萃取氫氣|Pyrolysis#Methane pyrolysis for hydrogen}}
*{{le|2020年迄今永續能源研究時間軸#氫能源|Timeline of sustainable energy research 2020–present#Hydrogen energy}}

{{colend}}
{{Portalbar|Energy|Renewable energy}}

==參考文獻==
{{reflist|2|refs=
<ref name="Hydrogen production :2">{{Cite web |last=Deign |first=Jason |date=2020-06-29 |title=So, What Exactly Is Green Hydrogen? |url=https://www.greentechmedia.com/articles/read/green-hydrogen-explained |url-status=live |archive-url=https://web.archive.org/web/20220323195427/https://www.greentechmedia.com/articles/read/green-hydrogen-explained |archive-date=2022-03-23 |access-date=2022-02-11 |website=Greentechmedia}}</ref>}}

===資料來源===
*{{cite book
|ref = {{harvid|UKCCC H2|2018}}
|publisher = UK [[Committee on Climate Change]]
|title = Hydrogen in a low-carbon economy
|year = 2018
|url = https://www.theccc.org.uk/wp-content/uploads/2018/11/Hydrogen-in-a-low-carbon-economy.pdf
|access-date = 2024-08-13
|archive-date = 2024-07-15
|archive-url = https://web.archive.org/web/20240715155721/https://www.theccc.org.uk/wp-content/uploads/2018/11/Hydrogen-in-a-low-carbon-economy.pdf
|dead-url = no
}}

*{{cite book
|ref = {{harvid|IEA H2|2019}}
|publisher = [[International Energy Agency]]
|title = The Future of Hydrogen
|year = 2019
|url-access = registration
|url = https://www.iea.org/reports/the-future-of-hydrogen
|access-date = 2024-08-13
|archive-date = 2019-12-12
|archive-url = https://web.archive.org/web/20191212143741/https://www.iea.org/reports/the-future-of-hydrogen
|dead-url = no
}}

==外部連結==
{{Commons}}
{{wikiquote}}
* [http://www.iphe.net/ International Partnership for the Hydrogen Economy] {{Wayback|url=http://www.iphe.net/ |date=20240826063307 }}
* [https://www.iea.org/reports/hydrogen Hydrogen] {{Wayback|url=https://www.iea.org/reports/hydrogen |date=20230705151537 }}. International Energy Agency. 2022
* [http://www.h2euro.org/ European Hydrogen Association] {{Wayback|url=http://www.h2euro.org/ |date=20240908021514 }}
* [https://model.energy/products/ Online calculator for green hydrogen production and transport costs] {{Wayback|url=https://model.energy/products/ |date=20240112101948 }}

{{模板:新興技術}}
{{Alternative propulsion}}


{{DEFAULTSORT:Hydrogen Economy}}
[[Category:鲜绿环境主义]]
{{draft categories|
[[Category:氢经济| ]]
[[分類:氫經濟]]
[[Category:新兴技术]]
[[分類:氫技術]]
[[分類:工業氣體]]
[[分類:可再生燃料|*]]
[[Category:Fuel technology]]
}}

2024年9月20日 (五) 13:21的最新版本

國際再生能源總署表示,氫能在化學生產、煉油、國際航運和鋼鐵製造等領域具有最高的減碳潛力。[1]

氫經濟(英語:hydrogen economy)是一總稱,用來描述使用氣與低碳電力,共同發揮作用以減少溫室氣體排放的作為。目的是在暫且尚無法有更便宜、更節能的清潔解決方案情況下減少排放。[2]在此背景下,氫經濟包括氫的生產及使用,以有助於逐步淘汰化石燃料和進行氣候變化緩解

生產氫氣的方式有幾種。目前全球生產的絕大多數氫氣都是"灰氫(grey hydrogen)"- 將天然氣中的甲烷經過高溫蒸汽重整 (SMR) 製成。蒸氣重整過程所排放的溫室氣體佔2021年全球總量的1.8%。[3]而低碳氫氣中的"藍氫(blue hydrogen)"是使用蒸氣重整法製成,但附設有碳捕集與封存(CCS)設施以消除排放,或是"綠氫(green hydrogen)" - 使用再生能源產生的電力將水電解而得,兩者目前所生產的氫氣在總產量中只有不到1%的佔比。[4]每年全球生產的1億噸[5]氫氣幾乎全部用於煉油(於2021年的佔比為43%)和工業(57%),後者主要用於製造氨(再製成化肥)和甲醇[6](pp. 18, 22, 29)

人們普遍設想要緩解氣候變化,在未來的氫經濟中必須以低碳氫氣取代灰氫。[7]而截至2024年,尚不清楚何時可生產足夠的低碳氫氣來逐步淘汰所有灰氫。氫氣於未來的最終用途可能是在重工業(例如與高溫工藝一起運作的電力、生產綠氨和有機化學品原料及在煉鋼方面取代焦炭)、長途運輸(例如航運、航空和較小規模的重型卡車)和長期儲能方面。[8][9]氫氣在未來不大會應用在輕型車輛和建築物供暖等應用,主要是出於經濟和環境的考量。[10][11]但氫氣在儲存、管道運輸和使用方面都具挑戰性 - 因為它具有甚易發生爆炸,有安全上的顧慮,且使用效率遠較直接使用電力為低。由於目前可用的低碳氫氣相對較少,可將其運用在較難脫碳的應用中,來最大限度提高氣候效益。[11]

截至2023年,用到氫氣的幾種化學製程(例如製造化肥所需的氨氣)還沒真正的替代品。[12]低碳和零碳氫氣的成本可能會影響其在化學原料、長途航空和航運以及長期能源儲存的使用程度。低碳和零碳氫氣的生產成本正在演化中。未來成本可能受到碳稅、能源地理和地緣政治因素、能源價格、技術及其原材料需求的影響。隨著時間,生產綠氫的成本可能會發生最大程度的降幅。[13]

史上與當代理念

[编辑]

起源

[编辑]

英國出生的遺傳學家進化生物學家約翰·伯頓·桑德森·霍爾丹於1923年提出使用氫氣作為主要儲能方式的概念。他預測英國用於發電的煤碳儲備即將枯竭,而提出建立風力發電機網絡的構想,所生產的電力用來電解水,產生氫氣和氣,實現長期儲存能量,以解决風能發電固有的間歇性問題。[14]而"氫經濟"這個名詞是由化學教授約翰·博克里斯英语John Bockris於1970年在通用汽車 (GM) 技術中心發表演講時提出。[15]博克里斯認為在氫經濟中,以核能太陽能發電產生的氫能作為能源載體英语Energy carrier,用在不適於電氣化的應用,有助於處理人們對化石燃料枯竭和環境污染日益增長的擔憂。[2][16]

密西根大學建議採用氫經濟以處理使用碳氫化合物燃料的一些負面影響 - 碳(如二氧化碳一氧化碳、未完全燃燒的碳氫化合物等)被釋放進入大氣。現代對氫經濟的興趣通常可追溯到密西根大學的勞倫斯·W·瓊斯英语Lawrence W. Jones教授於1970年發表的技術報告,[17]他呼應博克里斯解決能源安全和環境挑戰的雙重理念。但瓊斯只關注使用核電作為電解用能源,且主要關注氫氣在運輸中的應用,首要是用於航空和重型貨物運輸,與霍爾丹和博克里斯兩人的著重點並不相同。[18]

之後演進

[编辑]
國際再生能源總署於2022年提出的綠氫價值鏈技術領導力機會。[19]:55

於2000年代,由於對氫經濟概念的關注驟增,而被一些對能源替代技術批評者和支持者多次描述為炒作(參見書籍《對氫氣的炒作英语The Hype About Hydrogen》),[20][21][22]於此的投資者在經濟泡沫中曾蒙受損失。[23]人們對這種能源載體的興趣在2010年代重新興起,特別是當氫能委員會(由92家領先的能源運輸工業和投資公司執行全球CEO領導的計劃)於2017年創立。幾家車廠已開始販售氫燃料電池汽車,其中豐田汽車現代汽車等公司以及中國業界都計劃在未來十年將此類汽車的銷售數量大幅增加。[24][25]

氫氣在全球汽車中的角色較先前的預期有縮小趨勢。[26][27]截至2022年底,全球僅售出70,200輛氫動力汽車,[28]充電式電動車輛的銷量為2,600萬輛。[29]

2020年代初期的氫經濟強調電力和氫氣的互補性,以及使用電解作為主要製氫工藝,與早期觀點雷同。[8]擁護者將重點放在將全球升溫限制在1.5°C的必要性,並優先考慮將綠氫的生產、運輸和使用放在重工業(如與電力共同用於高溫製程、[30]作為綠氨和有機化學的原料[8]及替代煉鋼時所用的焦炭),[31]長途運輸(例如航運、航空和較小程度上的重型卡車)以及長期儲存能源的用途。[8][9]

目前氫氣市場

[编辑]

於2022年,全球氫氣產量價值超過1,550億美元,預計將以每年高於9%的成長率持續到到2030年。[32]

於2021年,全球分子氫 (H2)的產量有9,400萬公噸。[33]其中大約六分之一是石化產業生產流程中的副產品。[4]大多數的氫氣由專用設施生產,其中99%以上從化石燃料中產出,主要透過天然氣蒸氣重整(70%)和煤氣化(30%,且幾乎全在中國生產)。[4]只有低於1%的專用氫氣生產是低碳的:於化石燃料蒸氣重整中附設有CCS設施、透過電解生產綠氫以及透過生物質生產。[4]全球於2021年生產氫氣過程所產生的二氧化碳排放量為9.15億噸,[34]佔能源相關二氧化碳排放量的2.5%,[35]佔全球溫室氣體排放量的1.8%。[3]

目前市面上生產的氫氣幾乎全部用於煉油(2021年為4千萬噸)和工業用途(5.4千萬噸)。[6](pp. 18, 22)在煉油過程中,氫氣被用於一種稱為"加氫裂化反應"的程序,將重質石油原料轉化成更輕的餾分,以便用作燃料。工業用途主要用於製造合成肥料所用的氨(2021年為3.4千萬噸)、甲醇(1.5千萬噸)和直接還原鐵(又稱海綿鐵,5百萬噸)。[6](p. 29)

生產

[编辑]

本節摘自氫氣生產英语Hydrogen production

生產氫氣有幾種工業法可用。目前世界上幾乎所有的氫氣供應均由化石燃料產出。[36][37]:1在此過程中,高溫蒸氣和天然氣的主要成分 - 甲烷 - 之間發生化學反應而產生氫氣。利用此過程生產一噸氫氣會排放6.6–9.3噸二氧化碳。[38]如果在過程中利用CCS技術,將大部分碳排放清除時,所得的氫氣即稱為藍氫。[39]

經由再生電力將水電解,所生產的氫氣稱為綠氫。較[40][41]少數的定義會將來自其他低排放來源(例如生物質)的氫氣也納入綠氫範疇。[42]目前生產綠氫的成本比生產灰氫更高,前者的能量轉換效率本來就低。[43]其他氫氣生產方法包括生物質氣化、甲烷熱裂解和開採埋藏於地下的天然氫氣英语Natural hydrogen[44][45]

截至2023年,不到1%的專用氫氣生產是來自低碳工藝,即藍氫、綠氫和生物質所產的氫。[4]

用途

[编辑]
一些預期氫氣的中期用途,但分析師之間意見不一。[46]
使用氫燃料,需要開發專門的加工、運輸和儲存基礎設施

氫氣可透過兩種不同的方式用作燃料:用於燃料電池中產生電力,以及透過燃燒產生熱量。[47]當燃料電池消耗氫氣時,唯一的排放物是水氣。[47]燃燒氫氣時會排放有害的氮氧化物[47]

工業

[编辑]

在限制全球暖化的背景下,低碳氫氣(特別是綠氫)很有可能在脫碳產業中發揮重要作用。[48]氫燃料可產生鋼鐵、水泥玻璃和化學品工業過程所需的高熱,與其他技術(例如煉鋼電弧爐)共同促進工業脫碳。[30]但氫氣可在氨和有機化學品的清潔生產方面發揮更大的作用。[48]

使用低碳氫氣來減少溫室氣體排放的必要性有可能重塑工業活動的地理格局,因為具有適當氫氣生產潛力的地點將以新的方式與物流基礎設施、原材料可用性、人力和技術資本相互作用。[48]

交通運輸

[编辑]

對氫經濟概念的大部分興趣都集中在氫能載具,特別是飛機上。[49][50]氫能載具產生的區域性空氣污染明顯少於傳統車輛。[51]到2050年,交通運輸的能源需求可能有20%至30%由氫氣和合成燃料提供。[52][53][54]

使用氨和甲醇等氫衍生合成燃料(如綠氨及綠甲醇)以及燃料電池技術於交通運輸,可能會在航運、航空以及較小程度的重型卡車中發揮最大的應用。[8]氫已在燃料電池公車中使用多年。它也用作太空飛行器推進的燃料。

國際能源署(IEA)提出的2022年淨零排放情境 (NZE) 中,預計到2050年,氫氣將佔鐵路能源需求的2%,而屆時90%的鐵路旅行預計均將電氣化(目前為45%)。氫在鐵路運輸中的作用可能會集中在電氣化困難,或成本高昂的線路上。 [55]NZE預計到2050年,氫氣能滿足重型卡車能源需求的約30%,主要用於長途重型貨運(電池動力約佔60%)。[56]

氫氣可作為經改裝後內燃機的燃料,但燃料電池經由電化學產生電力,比熱力機具更有效率優勢。而燃料電池的生產成本比一般內燃機更高,也比內燃機需要更高純度的氫燃料。[57]

截至2022年底,全球在輕型道路車輛領域(包括乘用車在內)已售出70,200輛燃料電池電動車,[28]而充電式電動車輛為2,600萬輛。[29]隨著電動車以及相關電池技術和基礎設施迅速崛起,氫氣在汽車中的作用相對上已很微小。[26][27]

平衡能源系統與儲能

[编辑]

來自水電解的綠氫有可能解決再生能源所具間歇性的問題。生產綠氫既可充分利用超額生產再生電力的問題,又可以能源載體的形式長期儲存,以在再生電力低產量期間用於發電。[58][59]

[编辑]

能替代氣態氫作為能源載體的是氨(將氫與空氣中的氮結合而成)。氨容易液化、運輸和(直接或間接)作為清潔燃料。[60][61]但氨的缺點有毒性高、將氮氣(N2)和氫氣(H2)合成為氨氣(NH3)的能源效率低下,以及將NH3轉化為N2時,並未分解的微量NH3會導致質子交換膜燃料電池中毒(導致電池性能下降及電池壽命縮短)。

建築物

[编辑]

天然氣供應鏈中的許多行業團體(天然氣網路、燃氣鍋爐製造商)正推廣用於空間和水加熱的燃氫鍋爐,以及用於烹飪的爐具,以減少住宅和商業建築中的二氧化碳排放。[62][63][11]其主張是目前天然氣的最終用戶可等待現有天然氣管道轉換為適於輸送氫氣,消費者不需做任何事,僅更換加熱用具和爐具即可。[62][63][11]

對32項非關商業利益的氫氣用於建築物供暖的研究所進行的審查,結果發現與區域供暖網絡、電氣化供暖(主要是透過熱泵)和烹飪、使用太陽能熱水器、廢熱以及安裝節能措施以降低供暖需求相比,氫氣在經濟性和氣候效益方面通常都遠不如這些方法。[11]由於生產氫氣效率低下,使用藍氫取代天然氣供暖可能需用到三倍的甲烷,而使用綠氫則需用到兩到三倍熱泵所需的電力。[11]將熱泵與氫氣鍋爐結合,可在住宅供暖領域發揮作用,不然升級輸電網路以滿足高峰電力需求的成本將會很高。[11]

雖然氫氣的利基作用在特定環境和地區可能適合,[11]但廣泛使用氫為建築物供暖將帶來更高的能源成本、更高的供暖成本和更高的環境影響。如果在建築物中部署及使用氫氣,會把工業和交通運輸中本來已取得不易,可供脫碳應用的氫氣成本提高。[11]

生物合成天然氣

[编辑]

截至2019年,雖然在技術上可透過薩巴捷反應從生物能源中的氫氣和二氧化碳生產合成天然氣(bio-SNG),並配屬碳補集與封存設備(兩者聯合簡稱BECCS),但會受可用的永續生物能源數量的限制,[64]任何生物合成天然氣的產量大約僅足以供生產航空生物燃料英语Aviation biofuel之用。[65]

安全性

[编辑]
一名NASA工程師用玉米穗掃帚掃過一區域的方式以找出氫氣火焰所在。氫氣燃燒產生的火焰幾乎難以目視察覺。

氫氣對人類具有許多安全上的風險 - 與空氣混合時可能會發生爆炸和火災、吸入純氫會導致窒息、[66]液態氫是一種低溫液體,具有與極度寒冷的液體相關的危險(例如凍傷),[67]及氫氣會渗入許多金属中,除可能發生洩漏之外,還會造成氫脆等問題,[68]導致裂縫發生與爆炸。[69]

氫氣即使與普通空氣少量混合也極易燃燒。氫氣和空氣的體積比在低至4%的混合就可能發生點燃。[70]此外,氫氣燃燒的火焰雖然温度極高,但幾乎難以肉眼察覺,因此容易造成意外燒傷。[71]

氫氣基礎設施

[编辑]

本節摘自氫氣基礎設施

氫氣基礎設施包含有氫氣輸送管道、氫氣生產英语Hydrogen production場址和用於分配以及銷售氫燃料的加氫站,[72]這些是能成功導入氫經濟的先決條件。[73]

輸送氫氣的管線
一間位於斯洛維尼亞,以蒸氣重整法由天然氣中萃取氫氣,名為Belinka Perkemija的工廠(2015年)。

氫氣基礎設施主要由工業氫氣輸送管道和加氫站組成。未連結氫氣輸送管的加氫站將透過氫氣罐、壓縮氫氣管式拖車英语Compressed-hydrogen tube trailer液氫拖車英语liguid hydrogen trailer、液氫罐車或現場專用生產設備取得供應。

管道是長距離運輸氫氣最便宜的方式。在大型煉油廠中必然有氫氣管道存在,氫氣被用於裂解原油,成為燃料。 IEA建議利用現有工業港口進行氫氣生產,利用現有天然氣管道進行輸送,以及進行國際合作和運輸。[74]

截至2019年,缺乏國際性電網連結的韓國日本[75]正進行氫經濟投資。[76]日本福島氫能研究廠英语Fukushima Hydrogen Energy Research Field於2020年3月啟用,號稱是全球最大的氫氣生產設施。[77]整個廠地大部分佈滿太陽能光電面板陣列,所生產的電力,加上來自電網的電力,用於電解水來生產氫燃料。[78]

儲存

[编辑]
一座NASA甘迺迪太空中心的液態氫氣儲存槽。

本節摘錄自儲氫

儲存氫氣的方法有幾種 - 包括機械式,例如使用高壓和低溫,或製成依需要再釋放氫氣的化合物。雖然有不同行業生產大量氫氣,但大部分均供現場使用,特別是用於氨的合成。氫氣多年來一直以壓縮氣體或低溫液體的形式儲存,並利用鋼瓶、管道和低溫儲罐運輸,用於工業,或作為太空火箭的推進劑。由於氫氣的沸點非常低(約為−252.882°C或−423.188°F)。要達到如此的低溫需要使用大量能量。

分子氫(H2)在質量上具有非常高的能量密度(部分原因是其莫耳質量低),但成為環境條件下的氣體時,其體積能量密度變得非常低。如果要將純氫作車輛燃料使用,則必須以能量密集的形式儲存,才能行使足夠的里程。由於氫是最小的分子,因此很容易從容器中逸出。將氫氣的洩漏、運輸和生產成本列入考慮,其全球暖化潛勢 (簡稱GWP) 為11.6。而甲烷的GWP為34。[79]

成本

[编辑]

要更廣泛使用氫氣,需要在其生產、儲存、分配和使用方面進行投資。氫成本的估算因而變得很複雜,需要對能源投入成本(通常是天然氣和電力)、生產工廠和方法(例如綠氫或藍氫)、所使用的技術(例如鹼性水電解英语Alkaline water electrolysis質子交換膜電解英语Proton exchange membrane electrolysis) 、儲存和分配方法以及不同的成本要素如何隨時間變化進行假設。[80](pp. 49–65)下表顯示灰氫、藍氫和綠氫平均化成本的的估計值,以每公斤氫氣美元表示(其中數據以其他貨幣或單位提供時,則使用給定年份的美元平均匯率),假設1公斤氫氣的熱值為33.3千瓦時(kWh))。

生產方式 註記 目前成本 (2020年–2022年) 預計2030年成本 預計2050年成本
灰氫 (未包含碳稅)
國際能源署提供[81] 2022年6月估計的成本(俄羅斯入侵烏克蘭導致天然氣價格飆升) 2021: 1.0–2.5
2022: 4.8–7.8
普華永道提供[82] 2021: 1.2–2.4
藍氫
國際能源署提供[81] 2022年6月(俄羅斯入侵烏克蘭導致天然氣價格飆升)估計的成本 2021: 1.5–3.0
2022: 5.3–8.6
英國能源安全及淨零部 提供[83] 幅度受天然氣價格影響 2020: 1.6–2.7 1.6–2.7 1.6–2.8
美國顧問公司GEP Worldwide提供[84] 2022: 2.8–3.5 - -
國際智囊團能源轉型委員會英语Energy Transitions Commission提供[80](p. 28) 2020: 1.5–2.4 1.3–2.3 1.4–2.2
綠氫
國際能源署提供[81] 對2030年及2050年的估計,把在條件良好地區建設太陽能發電廠的假設列入 2021: 4.0–9.0 <1.5 <1.0
2022: 3.0-4.3
英國政府提供[83] 使用電網電力(適用於英國),幅度取決於電價、電解技術和成本。 2020: 4.9–7.9 4.4–6.6 4.0–6.3
利用閒置可再生電力(適用於英國),幅度取決於電解技術和成本。 2020: 2.4–7.9 1.7–5.6 1.5–4.6
國際再生能源總署(IRENA)提供[85] 2020: 2.2–5.2 1.4–4.1 1.1–3.4
GEP Worldwide[84] 資料來源指出從2010年起,綠氫生產成本已下降60% 2022: 3.0–6.0
投資銀行Lazard提供[86] 2022: 2.8–5.3
普華永道提供[82] 2021: 3.5–9.5 1.8–4.8 1.2–2.4
能源轉型委員會提供[80](p. 28) 2020: 2.6–3.6 1.0–1.7 0.7–1.2

商業上可行的氫氣生產,估算的成本幅度廣闊,截至2022年,在不徵收碳稅的情況下,生產灰氫最為便宜,其次是藍氫,接下來是綠氫。預計到2050年,藍氫的生產成本不會大幅下降,[83][80](p. 28)而會隨天然氣價格波動,並可能因使用CCS仍無法完全消除產生的碳而被徵收碳稅。[80](p. 79)從2010年到2022年期間電解設備的成本下降60%,[84]之後由於資本成本增加而略有上升。[23]預計成本到2030年和2050年還會大幅下降,[87](p. 26)隨著再生能源發電成本下降,綠氫成本也跟著下降。[88][80](p. 28)最便宜的是利用超額生產的再生電力(若不加以利用,可能必須限制發電英语Curtailment (electricity)),此情況對於能配合低功率和間歇式電源的電解槽營運有利。[87](p. 5)

高盛集團公司於2022年發表的一項分析報告,預計全球到2030年生產綠氫將可達到與灰氫相同的成本,如果對灰氫徵收全球碳稅,前述生產綠氫降低成本的時間會更為提前。[13]就單位能源成本而言,藍氫和灰氫的成本始終高於其使用的化石燃料,而綠氫的成本始終高於製造它的再生電力成本。

美國歐盟對生產清潔氫氣的補貼遠高於印度的。[89]

幾個選定國家的近期情況

[编辑]
一輛於捷克布爾諾運行的梅賽德斯-賓士Citaro巴士,巴士動力由氫燃料電池提供。

世界各地正在測試用於運輸的氫氣,特別是在美國(加利福尼亞州馬薩諸塞州)、加拿大日本、歐盟(葡萄牙挪威丹麥德國)和冰島

衡量一個國家是否擁有大型天然氣基礎設施,並可供公民使用的一個指標是該國擁有以天然氣為燃料的汽車數量。擁有此類天然氣汽車數量最多的國家是(依數量順序排列):[90]伊朗中國巴基斯坦阿根廷、印度、巴西義大利哥倫比亞泰國烏茲別克玻利維亞亞美尼亞孟加拉國埃及秘魯烏克蘭,美國。以天然氣為燃料的汽車也可以改裝使用氫氣。

此外,有少數私人住宅中會裝置微型熱電聯產設備,可使用氫氣、天然氣或是液化石油氣等來運作。[91][92]

澳大利亞

[编辑]

西澳大利亞州規劃和基礎設施部運作三輛梅賽德斯-賓士Citaro燃料電池公車,是珀斯永續運輸能源燃料電池公車試驗的一部分。[93]該試驗於2004年9月開始,並於2007年9月結束。氫氣是煉油廠工業製程的副產品。這些巴士在珀斯北部郊區名為馬拉加(Malaga)的一個車站加氣。

昆士蘭州州長白樂琪和企業家安德魯·佛里斯特英语Andrew Forrest於2021年宣佈昆士蘭州將建造一座世界上最大的氫氣工廠。[94]

澳洲再生能源署英语Australian Renewable Energy Agency (ARENA) 已對28個氫項目投資5,500萬澳元,包含早期研發、早期試驗和部署計畫。該國能源和排放部長安格斯·泰勒(Angus Taylor) 在2021年低排放技術聲明中宣稱該機構的既定目標是以每公斤2美元的價格以電解方式生產氫氣。[95]

中國

[编辑]

根據總部位於華盛頓哥倫比亞特區智庫 - 戰略與國際研究中心於2022年2月發表的評論,其中重點:[96]

  • 中國尚未制定國家氫能發展戰略,但各省政府和商業企業已啟動氫能項目,以支持燃料電池汽車(FCV)的部署和生產再生氫能。[97]
  • 中國已是全球最大的氫氣生產國(主要來自化石燃料)[98]和第三大燃料電池汽車市場。
  • 中國巨大的再生能源發電能力可支持再生氫能的快速擴展。
  • 該國於再生氫能生產的巨大潛力和龐大的能源消費格局可能表示中國既不會成為氫氣出口國,也不會成為氫氣進口國。
  • 運輸部門,尤其是卡車和巴士,可能仍將是中國氫能應用的重點,但氫能在工業部門的應用似乎正在興起。

中國從2010年起的氫氣產量每年增長6.8%,到2020年已達到3,300萬噸。[98]該國於2022年冬季奧林匹克運動會活動中部署多達1,000輛由國產氫燃料電池驅動的巴士,展現其已具有成熟的技術能力。[98]

歐盟

[编辑]

歐盟國家中已擁有較大型天然氣管道系統的國家有比利時、德國、法國荷蘭,有可能用於氫氣輸送。[99]歐盟於2020年成立歐洲清潔氫聯盟(ECHA)。[100][101]

法國

[编辑]

綠氫逐漸在法國變得普遍。 該國於2019年制定一金額1.5億歐元的綠氫計劃,以建立所需的基礎設施,提供巴士和火車等交通系統所需的燃料。 名為Corridor H2的計畫是一項類似倡議,將在奧克西塔尼亞地區,沿著地中海北海之間的路線建立氫氣配送設施網路。 Corridor H2計畫將從歐洲投資銀行獲得4,000萬歐元貸款。[102][103]

德國

[编辑]

德國汽車製造商BMW已花費多年時間致力於氫氣使用的研究。[104]

德國政府於2020年發佈國家氫能策略,並於2023年7月予以更新,以推動氫能技術的發展和應用,實現氣候目標。策略包括的內容有:擴大國內綠氫生產、投資氫氣基礎設施及促進氫氣應用。策略還強調國際合作的重要性。德國政府認為建立全球氫能市場對於實現全球氣候目標非常重要。德國將為此積極參與國際氫能合作,並推動氫能技術和標準的全球化。[105]

根據一份發佈於2024年2月19日的報導,德國政府的計畫是預定把氫氣為燃料的發電廠作為即將關閉的燃煤發電廠的替代品,以及對間歇性再生能源的補充之用(最有可能協助平衡再生能源發電量的長期波動問題)。這與德國政府更宏大的氫能願景一致。目前正計劃到2032年建成10,000公里的氫氣管道網絡,並在2024年至2027年期間投入高達200億歐元以發展氫能產業。所提的計畫經需經過德國國會的協商,以及歐盟執行委員會的核准。[106]

冰島

[编辑]

冰島承諾到2050年成為世界上第一個氫經濟體。[107]冰島處於獨特的地位,該國的汽車及漁船船隊英语Fishing fleet仰賴進口的石油作為燃料。該國擁有豐富的地熱能資源,以至於當地的電價實際上低於發電用的碳氫化合物的價格。

冰島已經將其剩餘電力轉為出口商品和碳氫化合物替代品。 該國於2002年利用電解生產氫氣2,000噸,主要用於生產製作化肥的氨。氨的成本中,有90%是能源成本。

該國首都雷克雅維克擁有一支使用壓縮氫氣運行的小型城市公車試點車隊,[108]並且正進行利用氫氣為該國漁船隊提供動力的研究(例如由冰島新能源公司英语Icelandic New Energy進行)。出於符合符合實際的目的,冰島並不打算完全取代石油燃料。

波蘭

[编辑]

波蘭自2021年即開始逐步建立氫氣加氣站。[109][110]

印度

[编辑]

據說印度採用氫氣和氫氣增強壓縮天然氣英语HCNG的原因有幾個,其中之一是推廣全國天然氣網路工作已經開始,且天然氣已經成為主要的汽車燃料。此外,印度城市地區有嚴重空氣污染問題。[111][112]估計印度的氫氣在成本下降和新生產技術的推動下,將有近80%生產的氫氣會是綠氫。[113]

然而該國目前在氫能方面僅處於研究、開發和示範階段。[114][115]加氫站的數量仍很少,[116]但預計數目很快就會增加。[117][118][119]

沙烏地阿拉伯

[编辑]

於2017年在該國西北角啟動的新未來城計畫中將完全使用再生能源,其中包含自2025年開始每年將生產約120萬噸的綠氨。[120]

土耳其

[编辑]

土耳其能源和自然資源部英语Turkish Ministry of Energy and Natural Resource聯合國工業發展組織於2004年在伊斯坦堡創建國際氫能技術中心英语International Centre for Hydrogen Energy Technologies(UNIDO-ICHET),此組織僅運作至2012年。[121]該國能源和自然資源部於2023年部發佈有氫能技術策略和發展路線圖。[122]

英國

[编辑]

根據畢馬威(以會計業務為中心的大型國際專業服務集團)發佈的研究報告,到2021年,包括澳大利亞智利芬蘭、德國、挪威、葡萄牙和西班牙等10個國家已經制定氫戰略。英國也於2021年發佈氫戰略,時任商業、能源及工業部大臣Kwasi Kwarteng表示:"到2030年,氫可在化學品、煉油廠、電力和航運等重型運輸等污染性能源密集產業方面發揮重要脫碳作用。英國這項策略設定到2030年將實現5百萬瓦低碳氫化合物產能的企圖 - 相當於每年可取代天然氣為約300萬個英國家庭提供電力。"[123]

美國

[编辑]

美國國內的幾家汽車公司(例如通用汽車豐田汽車)已經開發使用氫的汽車。[124]然而截至2020年2月僅加利福尼亞州部分地區擁有,多數地區的氫基礎設施尚未開發。[125]國家可再生能源實驗室與Xcel Energy公司合作,於2007年在科羅拉多州建立一設施,利用風力發電廠生產的電力電解水,以生產氫氣。[126]於2024年,德克薩斯州已建立五個加氣站樞紐,以提供使用氫氣為燃料的重型卡車使用。[127]由氫能開發公司綠氫國際 (Green Hydrogen International, GHI) 於德克薩斯州,使用太陽能與風能生產的電力製造綠氫的生產設施(稱為氫城(Hydrogen City)),首期工程將於於2026年投產。[128]

美國非營利組織燃料電池與氫能協會英语Fuel Cell and Hydrogen Energy Association擬定的路線圖,強調氫氣是種具有多功能性的再生能源系統,既是可運輸、儲存的能源載體,也是運輸部門的燃料、建築物供暖以及工業供熱和原料的來源。"透過採取正確的行動,可以強化美國在能源領域的領導地位,並藉由在2030年創造1,400億美元年收入和70萬個工作機會,以及在2050年創造7,500億美元年收入和340萬個工作機會,來強化我國的經濟。"此外,燃料電池與氫能協會(FCHEA)主席莫瑞·馬可維茲(Morry Markowitz)表示,"如果現在採取正確的行動,建立具競爭力的氫能產業,可在2050年滿足全國14%的能源需求。"[129]

參見

[编辑]

參考文獻

[编辑]
  1. ^ International Renewable Energy Agency. World Energy Transitions Outlook 1-5C Pathway 2022 edition. IRENA: 227. 2022-03-29 [2023-10-06] (英语). 
  2. ^ 2.0 2.1 Yap, Jiazhen; McLellan, Benjamin. A Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020. Environments. 2023-01-06, 10 (1): 11. ISSN 2076-3298. doi:10.3390/environments10010011可免费查阅. hdl:2433/284015可免费查阅 (英语). 
  3. ^ 3.0 3.1 Greenhouse gas emissions totalled 49.3 Gigatonnes CO2e in 2021.Global Greenhouse Gas Emissions: 1990–2020 and Preliminary 2021 Estimates. Rhodium Group. 19 December 2022 [2023-09-21]. (原始内容存档于2024-06-21) (美国英语). 
  4. ^ 4.0 4.1 4.2 4.3 4.4 Hydrogen. IEA. "Energy" section. 2023-07-10 [2023-09-21]. (原始内容存档于2024-09-19) (英国英语). 
  5. ^ Hydrogen. IEA. [2024-03-24] (英国英语). 
  6. ^ 6.0 6.1 6.2 IEA. Global Hydrogen Review 2022. International Energy Agency. 2022 [2023-08-25]. (原始内容存档于2023-01-10) (英国英语). 
  7. ^ Hydrogen could be used for nearly everything. It probably shouldn’t be.. MIT Technology Review. [2024-05-13] (英语). 
  8. ^ 8.0 8.1 8.2 8.3 8.4 IPCC. Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; et al , 编. Climate Change 2022: Mitigation of Climate Change (PDF). Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, US: Cambridge University Press (In Press). 2022: 91–92 [2024-08-13]. ISBN 9781009157926. doi:10.1017/9781009157926. (原始内容存档 (PDF)于2023-09-20). 
  9. ^ 9.0 9.1 IRENA. World Energy Transitions Outlook: 1.5 °C Pathway. International Renewable Energy Agency. Abu Dhabi: 95. 2021 [2023-09-21]. (原始内容存档于2024-08-27) (英语). 
  10. ^ Plötz, Patrick. Hydrogen technology is unlikely to play a major role in sustainable road transport. Nature Electronics. 2022-01-31, 5 (1): 8–10. ISSN 2520-1131. S2CID 246465284. doi:10.1038/s41928-021-00706-6 (英语). 
  11. ^ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Rosenow, Jan. Is heating homes with hydrogen all but a pipe dream? An evidence review. Joule. September 2022, 6 (10): 2225–2228. S2CID 252584593. doi:10.1016/j.joule.2022.08.015可免费查阅 (英语). 
  12. ^ Barnard, Michael. What's New On The Rungs Of Liebreich's Hydrogen Ladder?. CleanTechnica. 2023-10-22 [2024-02-17]. (原始内容存档于2024-09-15) (美国英语). 
  13. ^ 13.0 13.1 Goldman Sachs Research. Carbonomics: The Clean Hydrogen Revolution. Goldman Sachs: 4–6. [2023-09-25]. (原始内容存档于2024-06-04) (美国英语). 
  14. ^ Daedalus or Science and the Future, A paper read to the Heretics, Cambridge, on February 4th, 1923 – Transcript 1993. [2016-01-16]. (原始内容存档于2017-11-15). 
  15. ^ National Hydrogen Association; United States Department of Energy. The History of Hydrogen (PDF). hydrogenassociation.org. National Hydrogen Association: 1. [2010-12-17]. (原始内容 (PDF)存档于2010-07-14). 
  16. ^ Bockris, J. O'M. A Hydrogen Economy. Science. 1972-06-23, 176 (4041): 1323–1323 [2024-08-13]. ISSN 0036-8075. doi:10.1126/science.176.4041.1323. (原始内容存档于2024-05-05) (英语). 
  17. ^ Jones, Lawrence W. Toward a liquid hydrogen fuel economy. University of Michigan Environmental Action for Survival Teach In. Ann Arbor, Michigan: University of Michigan. 1970-03-13. hdl:2027.42/5800. 
  18. ^ Jones, Lawrence W. Toward a Liquid Hydrogen Fuel Economy (PDF). 1970-03-13: 2–3 [2024-08-13]. (原始内容存档 (PDF)于2024-03-03). 
  19. ^ IRENA (2022), Geopolitics of the Energy Transformation: The Hydrogen Factor, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-370-0.
  20. ^ Bakker, Sjoerd. The car industry and the blow-out of the hydrogen hype (PDF). Energy Policy. 2010, 38 (11): 6540–6544 [2019-12-11]. Bibcode:2010EnPol..38.6540B. doi:10.1016/j.enpol.2010.07.019. (原始内容存档 (PDF)于2018-11-03). 
  21. ^ Harrison, James. Reactions: Hydrogen hype. Chemical Engineer: 774–775. [2017-08-31]. (原始内容存档于2021-02-08). 
  22. ^ Rizzi, Francesco Annunziata, Eleonora Liberati, Guglielmo Frey, Marco. Technological trajectories in the automotive industry: are hydrogen technologies still a possibility?. Journal of Cleaner Production. 2014, 66: 328–336. doi:10.1016/j.jclepro.2013.11.069. 
  23. ^ 23.0 23.1 Can a viable industry emerge from the hydrogen shakeout?. The Economist. [2023-09-26]. ISSN 0013-0613. 
  24. ^ Murai, Shusuke. Japan's top auto and energy firms tie up to promote development of hydrogen stations. The Japan Times Online (Japan Times). 2018-03-05 [2018-04-16]. (原始内容存档于2018-04-17). 
  25. ^ Mishra, Ankit. Prospects of fuel-cell electric vehicles boosted with Chinese backing. Energy Post. 2018-03-29 [2018-04-16]. (原始内容存档于2018-04-17). 
  26. ^ 26.0 26.1 Plötz, Patrick. Hydrogen technology is unlikely to play a major role in sustainable road transport. Nature Electronics. January 2022, 5 (1): 8–10 [2024-08-13]. ISSN 2520-1131. S2CID 246465284. doi:10.1038/s41928-021-00706-6. (原始内容存档于2024-02-08). 
  27. ^ 27.0 27.1 Collins (l_collins), Leigh. 'Hydrogen unlikely to play major role in road transport, even for heavy trucks': Fraunhofer. Recharge | Latest Renewable Energy News. 2022-02-02 [2023-09-08]. (原始内容存档于2024-09-10). 
  28. ^ 28.0 28.1 Chu, Yidan; Cui, Hongyang. Annual update on the global transition to electric vehicles: 2022 (PDF). International Council on Clean Transportation. : 2–3 [2023-08-25]. 
  29. ^ 29.0 29.1 Global EV Outlook 2023. IEA. 2023-04-26: 14–24 [2023-08-25]. (原始内容存档于2024-09-18). 
  30. ^ 30.0 30.1 Kjellberg-Motton, Brendan. Steel decarbonisation gathers speed | Argus Media. www.argusmedia.com. 2022-02-07 [2023-09-07]. (原始内容存档于2024-02-08) (英语). 
  31. ^ Blank, Thomas; Molly, Patrick. Hydrogen's Decarbonization Impact for Industry (PDF). Rocky Mountain Institute: 2, 7, 8. January 2020. (原始内容存档 (PDF)于2020-09-22). 
  32. ^ Hydrogen Generation Market Size, Share & Trends Analysis Report, 2023 – 2030. www.grandviewresearch.com. [2023-08-30]. (原始内容存档于2023-07-05) (英语). 
  33. ^ Executive summary – Global Hydrogen Review 2022 – Analysis. IEA. [2023-09-21]. (原始内容存档于2024-08-23) (英国英语). 
  34. ^ Hydrogen. IEA. [2023-09-21]. (原始内容存档于2024-09-19) (英国英语). 
  35. ^ Energy-related emissions totalled 36.3 Gigatonnes CO2 in 2021.Global CO2 emissions rebounded to their highest level in history in 2021 – News. IEA. [2023-09-21]. (原始内容存档于2022-08-15) (英国英语). 
  36. ^ Reed, Stanley; Ewing, Jack. Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part. The New York Times. 2021-07-13 [2024-08-13]. (原始内容存档于2021-07-14). 
  37. ^ Rosenow, Jan. Is heating homes with hydrogen all but a pipe dream? An evidence review. Joule. 2022-09-27, 6 (10): 2225–2228. Bibcode:2022Joule...6.2225R. S2CID 252584593. doi:10.1016/j.joule.2022.08.015可免费查阅.  Article in press.
  38. ^ Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. Dream or Reality? Electrification of the Chemical Process Industries. CEP Magazine. American Institute of Chemical Engineers. March 2021 [2021-07-06]. (原始内容存档于2021-07-17). 
  39. ^ Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Research & Social Science. October 2021, 80: 102208 [2024-08-13]. Bibcode:2021ERSS...8002208G. doi:10.1016/j.erss.2021.102208. (原始内容存档于2021-10-17). 
  40. ^ Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino. The green hydrogen revolution. Renewable Energy. November 2023, 216: 119041. Bibcode:2023REne..21619041S. doi:10.1016/j.renene.2023.119041可免费查阅. 
  41. ^ Deign, Jason. So, What Exactly Is Green Hydrogen?. Greentechmedia. 2020-06-29 [2022-02-11]. (原始内容存档于2022-03-23). 
  42. ^ Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino. The green hydrogen revolution. Renewable Energy. November 2023, 216: 119041. Bibcode:2023REne..21619041S. doi:10.1016/j.renene.2023.119041可免费查阅. 
  43. ^ Evans, Simon; Gabbatiss, Josh. In-depth Q&A: Does the world need hydrogen to solve climate change?. Carbon Brief. 2020-11-30 [2020-12-01]. (原始内容存档于2020-12-01). 
  44. ^ Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet. Yale E360. [2024-03-23]. (原始内容存档于2024-08-23) (美国英语). 
  45. ^ Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart. Hydrogen energy futures – foraging or farming?. Chemical Society Reviews. 2024, 53 (5): 2258–2263. PMID 38323342. doi:10.1039/D3CS00723E可免费查阅. hdl:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d可免费查阅. 
  46. ^ Barnard, Michael. What's New On The Rungs Of Liebreich's Hydrogen Ladder?. CleanTechnica. 2023-10-22 [2024-03-10] (美国英语). 
  47. ^ 47.0 47.1 47.2 Lewis, Alastair C. Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NO x emissions. Environmental Science: Atmospheres. 10 June 2021, 1 (5): 201–207. S2CID 236732702. doi:10.1039/D1EA00037C可免费查阅 (英语). Template:Creative Commons text attribution notice
  48. ^ 48.0 48.1 48.2 IPCC. Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; et al , 编. Climate Change 2022: Mitigation of Climate Change (PDF). Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, US: Cambridge University Press (In Press). 2022: 1184 [2024-08-13]. ISBN 9781009157926. doi:10.1017/9781009157926. (原始内容存档 (PDF)于2023-09-20). 
  49. ^ Is the time now ripe for planes to run on hydrogen?. The Economist. [2024-02-17]. ISSN 0013-0613. 
  50. ^ Yusaf, Talal; Faisal Mahamude, Abu Shadate; Kadirgama, Kumaran; Ramasamy, Devarajan; Farhana, Kaniz; A. Dhahad, Hayder; Abu Talib, ABD Rahim. Sustainable hydrogen energy in aviation – A narrative review. International Journal of Hydrogen Energy. 2024-01-02, 52: 1026–1045. ISSN 0360-3199. doi:10.1016/j.ijhydene.2023.02.086可免费查阅. 
  51. ^ This company may have solved one of the hardest problems in clean energy. Vox. 2018-02-16 [2019-02-09]. (原始内容存档于2019-11-12). 
  52. ^ IRENA. The Hydrogen Factor. irena.org. [2022-10-19]. (原始内容存档于2022-10-19) (英语). 
  53. ^ Sustainable fuels and their role in decarbonizing energy | McKinsey. www.mckinsey.com. [2022-10-19]. (原始内容存档于2024-07-09). 
  54. ^ Spiryagin, Maksym; Dixon, Roger; Oldknow, Kevin; Cole, Colin. Preface to special issue on hybrid and hydrogen technologies for railway operations. Railway Engineering Science. 2021-09-01, 29 (3): 211. ISSN 2662-4753. S2CID 240522190. doi:10.1007/s40534-021-00254-x可免费查阅 (英语). 
  55. ^ World energy outlook 2022. International Energy Agency. : 150 [2024-08-13]. (原始内容存档于2022-10-27). Template:Creative Commons text attribution notice
  56. ^ Cozzi, Laura; Gould, Tim. World Energy Outlook 2022 (PDF). International Energy Agency. : 148 [2024-08-13]. (原始内容存档 (PDF)于2024-09-07). Template:Creative Commons text attribution notice
  57. ^ Stępień, Zbigniew. A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies. January 2021, 14 (20): 6504. ISSN 1996-1073. doi:10.3390/en14206504可免费查阅 (英语). 
  58. ^ Schrotenboer, Albert H.; Veenstra, Arjen A.T.; uit het Broek, Michiel A.J.; Ursavas, Evrim. A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy (PDF). Renewable and Sustainable Energy Reviews. October 2022, 168: 112744 [2024-08-13]. S2CID 250941369. doi:10.1016/j.rser.2022.112744. (原始内容存档 (PDF)于2024-05-28) (英语). 
  59. ^ Lipták, Béla. Hydrogen is key to sustainable green energy. Control. 2022-01-24 [2023-02-12]. (原始内容存档于2024-02-28). 
  60. ^ Agosta, Vito. The Ammonia Economy. July 10, 2003 [2008-05-09]. (原始内容存档于2008-05-13). 
  61. ^ Renewable Energy. Iowa Energy Center. [2008-05-09]. (原始内容存档于2008-05-13). 
  62. ^ 62.0 62.1 Collins, Leigh. Even the European gas lobby can't make a case for hydrogen boilers — so why does it say gases are needed to decarbonise heating?. Recharge | Latest renewable energy news. 2021-12-10 [2023-09-25]. (原始内容存档于2024-04-24) (英语). 
  63. ^ 63.0 63.1 Roth, Sammy. California declared war on natural gas. Now the fight is going national. Los Angeles Times. 2023-02-09 [2023-09-25]. (原始内容存档于2024-07-02) (美国英语). 
  64. ^ UKCCC H2 2018,第79頁: The potential for bio-gasification with CCS to be deployed at scale is limited by the amount of sustainable bioenergy available. .... "
  65. ^ UKCCC H2 2018,第33頁: production of biofuels, even with CCS, is only one of the best uses of the finite sustainable bio-resource if the fossil fuels it displaces cannot otherwise feasibly be displaced (e.g. use of biomass to produce aviation biofuels with CCS)."
  66. ^ Brown, W. J.; et al. Safety Standard for Hydrogen and Hydrogen Systems (PDF). NASA. 1997 [2017-07-12]. NSS 1740.16. (原始内容存档 (PDF)于2017-05-01). 
  67. ^ Liquid Hydrogen MSDS (PDF). Praxair, Inc. September 2004 [2008-04-16]. (原始内容 (PDF)存档于2008-05-27).  已忽略未知参数|df= (帮助)
  68. ^ 'Bugs' and hydrogen embrittlement. Science News. 1985-07-20, 128 (3): 41. JSTOR 3970088. doi:10.2307/3970088. 
  69. ^ Hayes, B. Union Oil Amine Absorber Tower. TWI. [2010-01-29]. (原始内容存档于2008-11-20). 
  70. ^ Hydrogen Safety (PDF). Office of Energy Efficiency and Renewable Energy. [2024-08-13]. (原始内容存档 (PDF)于2024-07-28). 
  71. ^ Walker, James L.; Waltrip, John S.; Zanker, Adam. Lactic acid to magnesium supply-demand relationships. John J. McKetta; William Aaron Cunningham (编). Encyclopedia of Chemical Processing and Design 28. New York: Dekker: 186. 1988 [2015-05-20]. ISBN 978-0-8247-2478-8. 
  72. ^ Hydrogen infrastructure project launches in USA. 2013-05-14 [2024-08-13]. (原始内容存档于2013-12-02). 
  73. ^ Eberle, Ulrich; Mueller, Bernd; von Helmolt, Rittmar. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy & Environmental Science. [2014-12-23]. (原始内容存档于2014-02-09). 
  74. ^ IEA H2 2019,第15頁
  75. ^ Japan's Hydrogen Strategy and Its Economic and Geopolitical Implications. Etudes de l'Ifri. [2019-02-09]. (原始内容存档于2019-02-10). 
  76. ^ South Korea's Hydrogen Economy Ambitions. The Diplomat. [2019-02-09]. (原始内容存档于2019-02-09). 
  77. ^ The world's largest-class hydrogen production, Fukushima Hydrogen Energy Research Field (FH2R) now is completed at Namie town in Fukushima.. Toshiba Energy Press Releases. Toshiba Energy Systems and Solutions Corporations. 2020-03-07 [2020-04-01]. (原始内容存档于2020-04-22). 
  78. ^ Patel, Sonal. Fukushima Hydrogen Energy Research Field Demonstrates Hydrogen Integration. POWER Magazine. 2022-07-01 [2023-10-05]. (原始内容存档于2024-05-25) (美国英语). 
  79. ^ Sand, Maria; Skeie, Ragnhild Bieltvedt; Sandstad, Marit; Krishnan, Srinath; Myhre, Gunnar; Bryant, Hannah; Derwent, Richard; Hauglustaine, Didier; Paulot, Fabien; Prather, Michael; Stevenson, David. A multi-model assessment of the Global Warming Potential of hydrogen. Communications Earth & Environment. 2023, 4: 203 [2024-04-11]. doi:10.1038/s43247-023-00857-8可免费查阅. (原始内容存档于2024-08-05). 
  80. ^ 80.0 80.1 80.2 80.3 80.4 80.5 Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy. Energy Transitions Commission. April 2021 [2023-08-25]. (原始内容存档于2024-05-16) (英国英语). 
  81. ^ 81.0 81.1 81.2 Global Hydrogen Review 2022. IEA. : 93 [2023-08-25]. (原始内容存档于2023-01-10) (英国英语). 
  82. ^ 82.0 82.1 PricewaterhouseCoopers. Green hydrogen economy – predicted development of tomorrow. PwC. [2023-08-25]. (原始内容存档于2021-05-29) (en-gx). 
  83. ^ 83.0 83.1 83.2 Hydrogen Production Costs 2021 annex: Key assumptions and outputs for production technologies. GOV.UK. [2023-08-25] (英语). 
  84. ^ 84.0 84.1 84.2 Saini, Anshuman. Green & Blue Hydrogen: Current Levelized Cost of Production & Outlook | GEP Blogs. www.gep.com. January 12, 2023 [2023-08-25]. (原始内容存档于2024-04-18) (英语). 
  85. ^ IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 °C Climate Goal页面存档备份,存于互联网档案馆), International Renewable Energy Agency, Abu Dhabi, p. 91.
  86. ^ 2023 Levelized Cost Of Energy+. Lazard. 2023-04-12: 27 [2023-08-25]. (原始内容存档于2023-08-27) (英语). 
  87. ^ 87.0 87.1 Patonia, Aliaksei; Poudineh, Rahmat. Cost-competitive green hydrogen: how to lower the cost of electrolysers?. Oxford Institute for Energy Studies. January 2022 [2023-08-25]. (原始内容存档于2024-03-05) (英语). 
  88. ^ Roser, Max. Why did renewables become so cheap so fast?. Our World in Data. 2023-09-01 [2024-08-13]. (原始内容存档于2023-07-31). 
  89. ^ Martin, Polly. India to offer green hydrogen production subsidy of up to $0.60/kg — for three years only. Hydrogen news and intelligence | Hydrogen Insight. 2023-06-29 [2023-09-26]. (原始内容存档于2023-10-02) (英语). 
  90. ^ Worldwide NGV statistics. [2019-09-29]. (原始内容存档于2015-02-06). 
  91. ^ Fuel Cell micro CHP. [2019-10-23]. (原始内容存档于2019-11-06). 
  92. ^ Fuel cell micro Cogeneration. [2019-10-23]. (原始内容存档于2019-10-23). 
  93. ^ Perth Fuel Cell Bus Trial. Department for Planning and Infrastructure, Government of Western Australia. 13 April 2007 [2008-05-09]. (原始内容存档于7 June 2008). 
  94. ^ 'Green industrial revolution': Queensland announces plans to mass produce green ammonia. ABC News. October 11, 2021 [2021-10-12]. (原始内容存档于2021-10-12) –通过www.abc.net.au. 
  95. ^ Australia's pathway to $2 per kg hydrogen – ARENAWIRE. Australian Renewable Energy Agency. 30 November 2020 [2021-01-06]. (原始内容存档于2020-12-15) (澳大利亚英语). 
  96. ^ Jane Nakano. China’s Hydrogen Industrial Strategy. CSIS. 2022-02-03 [2024-08-13]. (原始内容存档于2024-08-15). 
  97. ^ China’s Hydrogen Energy Industry: State Policy, Investment Opportunities. China Briefing. [2024-08-13]. (原始内容存档于2024-08-13). 
  98. ^ 98.0 98.1 98.2 Factsheet on China, the world’s largest Hydrogen producer and consumer. International PtX Hub. [2024-08-13]. (原始内容存档于2024-08-13). 
  99. ^ Hydrogen transport & distribution. [2019-09-29]. (原始内容存档于2019-09-29). 
  100. ^ Pollet, Mathieu. AExplainer: Why is the EU Commission betting on hydrogen for a greener future?. euronews. 2020 [2020-08-14]. (原始内容存档于2020-08-07). 
  101. ^ ECHA. [2020-08-14]. (原始内容存档于2020-08-12). 
  102. ^ French port bets big on floating wind farms planned in Mediterranean. European Investment Bank. [2022-09-26]. (原始内容存档于2023-07-15) (英语). 
  103. ^ Green Hydrogen: A key investment for the energy transition. blogs.worldbank.org. 2022-06-23 [2022-09-26]. (原始内容存档于2024-02-22) (英语). 
  104. ^ E3B1C256-BFCB-4CEF-88A6-1DCCD7666635. 2007-10-24 [2021-10-12]. (原始内容存档于2021-10-29). 
  105. ^ The National Hydrogen Strategy. The Federal Government. [2024--07-17]. (原始内容存档于2024-07-17). 
  106. ^ Ben McWilliams and Georg Zachmann. Four questions for Germany’s big hydrogen power plan. Bruegel. 2024-02-19 [2024--07-17]. (原始内容存档于2024-07-17). 
  107. ^ Hannesson, Hjálmar W. Climate change as a global challenge. Iceland Ministry for Foreign Affairs. 2007-08-02 [2008-05-09]. (原始内容存档于2014-01-07). 
  108. ^ Doyle, Alister. Iceland's hydrogen buses zip toward oil-free economy. Reuters. 2005-01-14 [2008-05-09]. (原始内容存档于2012-07-24). 
  109. ^ 存档副本. [2024-08-13]. (原始内容存档于2024-07-09). 
  110. ^ Poland plans new hydrogen stations. wbj.pl. [2024-07-10]. (原始内容存档于2024-07-14) (英语). 
  111. ^ Hydrogen vehicles and refueling infrastructure in India (PDF). [2019-09-28]. (原始内容存档 (PDF)于2017-06-12). 
  112. ^ Das, L. Exhaust emission characterization of hydrogen-operated engine system: Nature of pollutants and their control techniques. International Journal of Hydrogen Energy. 1991, 16 (11): 765–775. doi:10.1016/0360-3199(91)90075-T. 
  113. ^ UK-India Energy Collaborations report (PDF). [2024-08-13]. (原始内容存档 (PDF)于2021-05-05). 
  114. ^ MNRE: FAQ. [2019-09-28]. (原始内容存档于2019-09-21). 
  115. ^ Overview of Indian Hydrogen Programme
  116. ^ H2 stations worldwide. [2019-09-28]. (原始内容存档于2019-09-21). 
  117. ^ India working on more H2 stations. 23 February 2016 [2019-09-28]. (原始内容存档于2019-09-21). 
  118. ^ Shell plans to open 1200 fuel stations in India, some of which may include H2 refilling. The Economic Times. [2019-09-28]. (原始内容存档于2019-09-22). 
  119. ^ Hydrogen Vehicles and Refueling Infrastructure in India (PDF). [2019-09-28]. (原始内容存档 (PDF)于2017-06-12). 
  120. ^ Saudi Arabia's $5bn green hydrogen-based ammonia plant to begin production in 2025. Energy & Utilities. 2021-04-21 [2022-01-13]. (原始内容存档于2021-04-21) (英语). 
  121. ^ Independent Mid-Term Review of the UNIDO Project: Establishment and operation of the International Centre for Hydrogen Energy Technologies (ICHET), TF/INT/03/002 (PDF). UNIDO. 2009-08-31 [2010-07-20]. (原始内容 (PDF)存档于1 June 2010).  已忽略未知参数|df= (帮助)
  122. ^ Announcement – Republic of Türkiye Ministry of Energy and Natural Resources. enerji.gov.tr. [2024-02-14]. (原始内容存档于2024-08-15). 
  123. ^ Hydrogen From Renewables Could Save The UK £1.5 Billion. Forbes. 2024-05-16 [2024--07-17]. (原始内容存档于2024-07-17). 
  124. ^ Are hydrogen fuel cell vehicles the future of autos?. ABC News. [2021-01-18]. (原始内容存档于2021-01-17) (英语). 
  125. ^ Siddiqui, Faiz. The plug-in electric car is having its moment. But despite false starts, Toyota is still trying to make the fuel cell happen.. Washington Post. [2021-01-18]. ISSN 0190-8286. (原始内容存档于2021-01-19) (美国英语). 
  126. ^ Experimental 'wind to hydrogen' system up and running. Physorg.com. 2007-01-08 [2008-05-09]. (原始内容存档于2013-01-26). 
  127. ^ 存档副本. [2024-08-13]. (原始内容存档于2024-07-15). 
  128. ^ Loz Blain. World's largest green H2 hub, Hydrogen City, to open in Texas in 2026. New Atlas. 2022-03-08 [2024-07-17]. (原始内容存档于2024-07-09). 
  129. ^ Road Map to a US Hydrogen Economy. Fuel Cell and Hydrogen Energy Association. 2021 [2024--07-17]. (原始内容存档于2024-08-04). 
引用错误:在<references>标签中name属性为“Hydrogen production :2”的参考文献没有在文中使用

資料來源

[编辑]

外部連結

[编辑]

Template:新興技術 Template:Alternative propulsion