跳转到内容

辐角

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自Arg函數

数学中,複數辐角是指复数在复平面上对应的向量和正向实数轴所成的有向。复数的辐角值可以是一切实数,但由于相差(即弧度)的辐角在实际应用中没有差别,所以定义复数的辐角主值为辐角)后的余数,定义取值范围在)之间。复数的辐角是复数的重要性质,在不少理论中都有重要作用。

定义

[编辑]
复数辐角的直观示意图

设有非零复数,记作,其中的为实数,那么复数的辐角指的是使下列等式:

成立的任何实数。直观上来说,假设非零复数在复平面中对应的向量是(右图蓝色向量),那么它的辐角是所有能够描述正实数轴到的转角的有向角。其中有向角的正方向规定为逆时针方向。图中可以看出,相差的倍数的角都可以是辐角。这个性质也可以从三角函数是以为周期的周期函数中推导出来。

只有非零复数才有辐角,复数的辐角是没有定义的。

辐角主值

[编辑]

同一个复数的辐角有无穷多个,以集合表示为,而对于所有都相同,所以实际只需要以其中一个辐角为代表,此辐角称为辐角主值主辐角,记作。一般约定使用区间中的值作为辐角主值(也有另一种常见的约定是以区间中的值作为辐角主值)。如果复数的辐角主值是,那么它的所有辐角值就是:

注意:也有書籍記載的 定義是倒轉的。

辐角的计算

[编辑]

给定一个形如的非零复数,辐角主值是将它映射到区间中的函数。辐角主值函数可以用反三角函数来描述:

或者配合半角公式

性质

[编辑]

复数的一个辐角绝对值可以用来组成复数的极坐标形式:

在极坐标形式下计算,可以得到复数乘积和商的辐角的规律:

于是对复数幂次的辐角也有:

复数的共轭的辐角则满足:

参考来源

[编辑]