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Abstract

In this work we investigate the relationship between gross anatomic structural network
properties, neuronal dynamics and the resultant functional structure in dissociated rat
hippocampal cultures. Specifically, we studied cultures as they developed under two
conditions: the first supporting glial cell growth (high glial group), and the second one
inhibiting it (low glial group). We then compared structural network properties and the
spatio-temporal activity patterns of the neurons. Differences in dynamics between the two
groups could be linked to the impact of the glial network on the neuronal network as the
cultures developed. We also implemented a recently developed algorithm called the functional
clustering algorithm (FCA) to obtain the resulting functional network structure. We show that
this new algorithm is useful for capturing changes in functional network structure as the
networks evolve over time. The FCA detects changes in functional structure that are consistent
with expected dynamical differences due to the impact of the glial network. Cultures in the
high glial group show an increase in global synchronization as the cultures age, while those in
the low glial group remain locally synchronized. We additionally use the FCA to quantify the
amount of synchronization present in the cultures and show that the total level of
synchronization in the high glial group is stronger than in the low glial group. These results
indicate an interdependence between the glial and neuronal networks present in dissociated
cultures.

1. Introduction

The study of networks and their role in social, technological
and biological settings has recently been realized to be of
great importance in understanding these complex systems.
However, much work has focused on the study of the structural
properties of static networks in which the nodes and edges of
the network remain constant over time or are examined over
a snapshot or time window during which they are effectively
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static [1–5]. While this work has contributed much to our
understanding of networks, it fails to recognize that many
types of networks are composed of dynamic elements which
are connected to form a specific function. In these dynamic
networks, we can define a new type of structure called
functional structure. Here connections between nodes are
derived from a functional relationship between their dynamics.

The brain is a specific example of a dynamic network
in which functional structure has gained a great deal of
attention [6–9]. When studying the brain, one can examine the
relationship between the anatomical network structure of the
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neurons and the resulting dynamics which define the functional
network structure. The availability of new data from large-
scale brain imaging techniques such as fMRI has allowed for
the large-scale studies of the relationship between structure
and dynamics of different brain regions, and often one finds a
correlation between the anatomical connections between brain
regions and the resulting functional structure [10–13].

However, while functional connections between neurons
can exist due to underlying anatomical connections, intrinsic
neuronal properties and/or chemical imbalances can also
alter brain dynamics [14]. For example, computational
studies modeling epilepsy have shown that changing either
intrinsic neuronal excitability (but not network topology) [15]
or network topology (but not excitability) [16] can lead to
increased network synchronization. It is therefore imperative
to develop analysis and experimental methods that allow one
to probe the functional structure of neuronal networks under a
variety of conditions in order to determine the underlying cause
of the observed functional relationships. Specifically, one
would like to be able to relate differences in functional network
structure to differences in anatomical network structure or
changes in neuronal properties.

In order to relate functional structure to other network
properties, one must first define how functional structure is
deduced. Here we will focus on the use of the functional
clustering algorithm (FCA) which was recently developed
to define groups of similar neurons based upon statistically
significant relationships between their firing events. When
combined with a recently published similarity metric (average
minimum distance (AMD)) which detects synchronization in
discrete event data, this algorithm can detect groups of neurons
which fire synchronously when applied to spike train data
[17]. This allows one to record the activity of neurons in the
form of spike trains and deduce functional network structure
directly from the dynamics of the neurons. When combined
with an experimental setup in which neuronal dynamics can
be easily recorded under different conditions, this provides
a powerful tool for relating functional structure with other
network properties.

Dissociated cultures are a good reduced system in which
to study neuronal dynamics because they maintain many
properties of neuronal interactions, but also have the advantage
of the relative ease of structural and pharmacological
manipulation [18–22]. The gross structural properties of
the culture can be observed using labeling techniques and
dynamics of single neurons can be electrically recorded. They
are thus a useful tool to simultaneously study how anatomical
connectivity, functional structure and brain dynamics relate.

In this type of culture preparation, a single cell suspension
of hippocampal cells is plated onto a culture dish. The
neurons attach to the surface of the dish and start to grow
processes, forming synapses with other neurons and creating
a two-dimensional network of neurons. After 3–7 days, these
neurons will begin to spontaneously fire action potentials, and
as the cultures age, the neural activity evolves into highly
synchronous activity in the form of network bursts, during
which almost all neurons will fire action potentials [23, 24].
The dynamics of these network bursts have been studied to

examine burst patterning [25–29], learning [20, 21, 30, 31],
and with pharmacological manipulation as a model of epilepsy
[32–34].

An often overlooked feature of these cultures is that they
are composed of both neural and glial cells, and in fact, the
neurons require the presence of glial cells to survive. While
neurons do not proliferate in the culture, the glial cells do,
and thus the number of glial cells in the culture will quickly
multiply, creating a confluent layer of support cells for the
neurons. However, it is possible to inhibit the division of
these cells through the addition of chemical blockers [35] or
the type of media used [36]. Different groups have studied
the dynamics of the neurons in cultures grown under both types
of conditions, although many studies allow the glial cells to
multiply in order to provide a continuous layer of support for
the neurons [24, 27, 37].

While the dynamics of the network bursts produced by
the neurons in these cultures are often investigated, the impact
of the glial network on the neuronal dynamics is less studied.
However, recent work suggests that glial cells, and specifically
astrocytes (a certain type of glial cell), can have numerous
impacts on neuronal networks [38]. The presence of glial cells
is known to impact the development of neurons [39], which
will certainly affect their dynamics, but astrocytes have also
been shown to exhibit calcium oscillations which can affect
intracellular calcium dynamics in neurons [40–43]. Calcium
plays multiple roles in neuronal signaling, so these calcium
oscillations likely contribute to the activity of the neurons.
Additionally, astrocytes have been shown to mediate calcium
waves during the developmental stage (first two weeks) of
dissociated cortical networks, and the presence of these waves
influences the dynamics and maturation of the culture [44].
Recent work has also shown that astrocytes modulate slow
oscillations in cortical networks through the regulation of
synaptic receptors [45]. We therefore expect that changes in
the glia network should impact the dynamics of the neuronal
network in developing cultures.

In this paper, we are interested in studying differences
in the functional structure derived from the dynamics of the
neuronal network in the presence of either a low or high density
of glial cells. We investigate dissociated hippocampal cultures
during the developmental stage and examine the underlying
anatomical network structure of both neurons and glial cells
and how these networks interact to influence the resulting
functional network structure. The cultures are grown on
multi-electrode arrays (MEAs) which allow for the recording
of individual action potentials from cells near the electrodes.
We analyze the formation of spatio-temporal activity patterns
using a recently published clustering technique (FCA) to
determine the resulting functional network structure [17] and
show that this algorithm is useful for capturing changes
in functional network structure in dynamic networks which
evolve over time. We then relate this evolving functional
structure to gross anatomical network properties obtained
through immunolabeling and DiI staining.

The paper is organized as follows. Section 2 describes the
experimental methods and analysis. The results are presented
in sections 3 and 4. Section 3 describes the anatomical
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structure and dynamics of the cultures. In section 4, we
focus on the resulting functional network structure and how
this structure changes over time and between groups. The
relationship between all three areas is discussed in section 5,
where we further describe how the structure of the glial
and neuronal networks influences the dynamics and resulting
functional structure of the neuronal network.

2. Experimental methods and analysis

2.1. Cell culture preparation

Dissociated cell cultures were prepared from neurons (and
glia) obtained from the hippocampus of P1 Wistar rats using
a protocol modified from [21]. Briefly, hippocampi were
first chemically digested in a trypsin solution followed by
mechanical titration with a flamed pasteur pipette. Cells
were centrifuged and re-suspended in Neurobasal-A medium
supplemented with B-27, 5% heat activated horse serum,
0.5 mM L-glutamine, 0.5 mM pen-strep and 10 mM HEPES.
The cell density was adjusted by the addition of media such
that the density upon plating would be ∼1400 cells mm−2.

The cell suspension was plated on MEAs (Multi Channel
Systems, Reutlingen, Germany) which had previously been
coated with 0.05% poly-ethylene-imine in borate buffer
followed by the 20 μg mL−1 laminin solution in media.
Cultures were maintained in a humidified incubator with a
95%O2/5%CO2 saturated atmosphere at 37 ◦C.

Between 24 and 36 hours after plating, cultures were split
into high and low glial groups, HGG and LGG, respectively.
Neurobasal-A media supplemented with horse serum as
described above was added to cultures in the HGG to allow
for the proliferation of glial cells, while the media of the
LGG was replaced with Neurobasal-A media that had not
been supplemented with horse serum. The sera-free media
environment keeps the number of glia cells in these cultures
constant by inhibiting their division. Following this, half of
the media was replaced with the appropriate fresh media once
in a week.

2.2. MEA recordings

Cultures were recorded at 8, 11 and 13 days in vitro (DIV) for
N = 5 cultures in the HGG and N = 4 cultures in the LGG.
For recordings, media was replaced with a recording buffer
to maintain the pH of the culture. Cultures were recorded at
25 kHz using a multi-channel systems data acquisition card
and MC-Rack software. During the recordings, cultures were
maintained at 37 ◦C and each recording lasted 5 min.

2.3. Cell fixation and staining

Cultures used in staining studies were grown on culture dishes
following the same protocol as those used for recordings. The
cultures were fixed using 4% paraformaldehyde in phosphate
buffered saline (PBS) at either 8, 11 or 13 DIV to correspond
to the days of recordings. DiI crystals were dissolved to a
saturated solution in cold liver oil and micro-droplets of the
solution were placed on neuronal cell bodies, allowing the dye

to dissolve through the cell. After 5 days, the neurons were
imaged using an Olympus IX71 microscope.

After DiI staining and imaging, cultures were
immunolabeled for synapses by standard
immunocytochemical techniques. Samples were blocked
with the blocking solution, followed first by incubation with
a monoclonal anti-synaptophysin primary antibody, and then
by a fluorescein-conjugated secondary antibody. Cultures
were then imaged on a Zeiss LSM 510-META laser-scanning
confocal microscope with a 63× objective. After imaging,
samples were labeled for glial cells using an anti-glial
fibrillary acidic protein (GFAP) primary antibody followed
by an AMCA-conjugated secondary antibody. Cultures were
then imaged on a Deltavision-RT fluorescent microscope with
a 10× objective.

2.4. Process length/form

Sholl analysis [46] was performed on the arborization of
imaged neurons by counting the number of process crossings
with concentric circles of increasing radii centered on the
soma. The median crossing distance, total number of crossings
and longest process length were then computed from the
distribution of process crossings. For cultures in the HGG,
this analysis was done on N = 9, 11 and 14 randomly
chosen neurons for DIV 8, 11 and 13 respectively and on
N = 10, 12 and 13 neurons for DIV 8, 11 and 13 in the LGG,
respectively.

2.5. Synaptic density

DiI-synaptophysin labeled images were analyzed using
ImageJ software for synaptic density along neuronal processes.
Images were normalized for contrast and each channel was
thresholded to distinguish the signal from background. The
density of synapses was calculated by dividing the number
of co-localized areas of synapse and process by the total area
encompassed by processes, resulting in the number of synapses
per unit area of processes stained by DiI.

2.6. Glial cell density

GFAP labeled images were analyzed using ImageJ software
to determine the glial cell density. Images were thresholded
to separate the signal from background and the percentage
of the image covered in glial cells, P, was measured. In
order to compare different culture conditions, we compute the
normalized difference of P between the HGGs and the LGGs
denoted as PH and PL, respectively:

D = [PH − PL]

[PH + PL]
. (1)

2.7. Spike detection

The local field potential recorded from each electrode was
assessed for spiking activity and active channels were selected
for spike detection. Signals were first filtered through a high-
pass Butterworth filter at 250 Hz. Spike detection was done
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using a thresholding method, using five standard deviations
of the baseline noise as the threshold value. Since it is
difficult to reliably separate individual neuronal spikes in
these types of bursting recordings [25], no attempt was made
to distinguish between single neurons recorded by the same
electrode. However, due to the moderate plating density, we
expect that each electrode will record the activity of only a
single or a few neurons.

2.8. Cross-correlation

Spike trains from each active electrode were first convolved
with a Gaussian kernel with a standard deviation of 1 ms and
the signal was demeaned (the mean value of the signal was
subtracted). The cross-correlation is then given by

Ĉ(Si, Sj ) = C(Si, Sj )√
C(Si, Si) · C(Sj , Sj )

, (2)

where C is the linear cross-correlation function:

C(Si, Sj ) =
∫ ∞

−∞
Si(t)Sj (t) dt. (3)

The average value of cross-correlation was then computed as a
function of distance, where the distance was binned in intervals
of 100 μm and averaged over cultures within each group.

3. Results: anatomical structure and dynamics

We analyze structural and functional connectivity in
dissociated hippocampal cultures grown under conditions
which allow for the proliferation of glial cells (HGG) or inhibit
the division of glial cells (LGG). Cultures were grown either on
culture dishes and used for immunolabeling/staining studies
(figures 1(a) and (b)) or on MEAs for the recording of neuronal
dynamics (figures 1(c) and (d)). Here, we present results
describing the properties of the anatomical network structure
during the developmental stage of the cultures and describe
the neuronal dynamics which correspond to these underlying
structural networks.

3.1. Anatomical network structure

We first examined the anatomic structural properties of the
cultures. Although it is not feasible to determine the exact
connectivity structure of the cultures (despite the reduction
of the system, the resulting network is still quite complex),
we are capable of studying gross properties of the network
structure which could lead to differences in dynamics and
functional structure. As discussed previously, we control the
proliferation of the glial cells such that, over time, we obtain
a HGG and a LGG. Although the neurons do not proliferate
over time, they do grow processes and synapses, changing the
neuronal network structure as the cultures age.

In order to quantify the differences in the glial network
between the two culture groups, we labeled astrocytes as
previously described and computed the normalized difference
(section 2.6) between the percentage of area covered by
astrocytes for cultures in the HGG and LGG. This quantity

mu 02mu 02

(a)

mu 02mu 02

(b)

(c) (d )

Figure 1. (a) Immunocytochemical labeling of neurons and
astrocytes showing morphology. Neurons are immunolabeled for
beta-III tubulin (red), while astrocytes are immunolabeled for GFAP
(green). (b) Example of an isolated neuron stained with DiI (red).
Synapses are immunolabeled for synaptophysin (green).
(c) Example of a culture grown on an MEA showing the spatial
layout of the electrodes (black dots) The distance between
electrodes is 200 μm. (d) Example of recorded activity from a
culture displaying bursting dynamics. The spatial layout of the
activity traces corresponds to the spatial layout of the electrodes
shown in (c). Each window represents a 500 ms time window
during which the synchronous firing of neurons can be seen.
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Figure 2. The normalized difference calculated between the
percentage of coverage of glial cells in the HGGs and LGGs
(equation (1)). This measure remains approximately constant over
time due to the fact that the glial cells do not multiply in the LGG
and have already covered the culture dish by 8 DIV in the HGG.

is plotted as a function of DIV in figure 2. The measure shows
that, as expected, the area covered by astrocytes is higher for
the HGG, and that the ratio of coverage between the culture
groups remains fairly constant over time (due to the fact that
astrocytes do not proliferate in the LGG and have already
formed a confluent layer by 8 DIV in the HGG).

4



Phys. Biol. 7 (2010) 046004 S Feldt et al

M
e

d
ia

n
 c

ro
ss

in
g

 d
is

ta
n

ce
 (
µm

) 140

120

100

80

60

40

20

0

DIV
14121086

T
o

ta
l n

u
m

b
e

r 
o

f 
cr

o
ss

in
g

s

1000

800

600

400

200

0

DIV
14121086

Lo
n

g
e

st
 p

ro
ce

ss
 le

n
g

th
 (
µm

)

400

300

200

100

0

DIV
14121086 D

e
n

si
ty

 o
f 

sy
n

a
p

se
s 

(s
yn

a
p

se
s/

µm
2

)

0.03

0.02

0.01

0.00

DIV
14121086

(a)

)d(

high glial group

low glial group high glial group

low glial group

high glial group

low glial group
high glial group

low glial group

(b)

(c)

Figure 3. Neuronal process morphology and synapses. (a)–(c) Properties of the distribution derived by a Sholl analysis conducted on DiI
labeled neurons (see section 2.4). (a) Median crossing radius as a function of DIV. (b) Total number of crossings. (c) Longest process
length. (d) Density of synapses co-localized with DiI stained neuronal process, as a function of DIV.

We then studied the structure of the neuronal network
for the two culture groups using a Sholl analysis described in
section 2.4. From the distribution of the number of process
crossings as a function of radii, we computed the median
crossing distance, the total number of crossings and the longest
process length for each neuron. These results are presented
as a function of DIV in figures 3(a)–(c) for each culture
group. We see changes as the cultures age and in certain cases
between groups for these measures. The median crossing
distance (a) and the longest process length (c) increase as a
function of time for neurons in the HGG, but both measures
show a slight decrease for 13 DIV cultures in the LGG. This
represents a re-organizing of the distribution over time since
the total number of crossings increases as the cultures age
as depicted in figure 3(b). Neurons in the LGG are growing
more local arborizations, as compared to those in the HGG
whose processes continuously increase in length over time.
However, it should be noted that the density of synapses along
these processes is similar over time between the two culture
groups, although it is slightly higher for neurons in the HGG
initially (figure 3(d)).

Together, these labeling results indicate that neurons in
the LGG are involved in more local signaling, while those in
the HGG are developing more long-range connections.

3.2. Dynamics

We studied the dynamics of the cultures as a function of age to
determine the effects of the changing glial network and growth
of neuronal processes. Cultures were recorded from 8, 11 and
13 DIV as described in section 2. Spike detection was done
on the recorded signals and the resulting spike activity was
analyzed as follows.

The visual observation of the recording sessions shows
that cultures in the HGG tend to persistently fire in network
bursts with short silences in between bursts, while those in the
LGG tend to fire in a single long burst with longer quiescent
periods between bursting events. These quiescent periods
grow in length over time. In order to show these differences
in neuronal dynamics as the two culture groups evolve, we
present raster plots of bursting activity at successively smaller
time scales in figure 4. In figure 4(a) we show 100 s of
bursting activity for cultures in the HGG (two columns on the
left) and LGG (two columns on the right) at 8 and 13 DIV.
This time scale allows one to examine the bursting activity
at large-burst time scales. We look at progressively smaller
(10 s and 1 s) windows in figures 4(b)–(c). Here, raster plots
are shown for the time window enclosed by the shaded box in
the above panel. One can see that the larger bursts depicted
at the 100 s time scale are actually composed of a much finer
structure of smaller bursting behavior. As the cultures develop,
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Figure 4. Examples of typical raster plots from a culture in the HGG and the LGG at 8 and 13 DIV. (a) Shown at a time scale of 100 s to
visualize large-scale bursting behavior. (b) Activity shown at the 10 s time scale for data enclosed in the red box in the above plots. (c) Short
time scale bursting activity shown for 1 s of data from the area enclosed in the blue box in the above plots. (d) Cross-correlation as a
function of the distance between electrodes for cultures in the HGG (left) and the LGG (right). Spikes were convolved with a Gaussian with
a standard deviation of 1 ms to detect small time scale correlations within firing patterns.

we see changes in the structure of this behavior at each time
scale. At 8 DIV, both culture groups fire with a somewhat
similar structure at each time scale. However, by 13 DIV,
we see that differences in the bursting behavior of the have
become apparent at each time scale. While the HGG shows
long periods of large-scale bursting at the 100 s time scale, the
LGG bursts in shorter burst events with long silent periods.
If we examine these bursts at the 10 s scale, we can see that
the longer bursts of the HGG are actually composed of shorter
events of bursting separated by short silences, while the LGG
fires in a burst of continuous activity. If we again examine
these bursts at the 1 s time scale, it becomes apparent that the
bursting of the HGG contains a bursting structure at an even

shorter time scale. While some of this bursting structure is
evident at 13 DIV in the LGG, it is clear that the firing here is
more continuous during the length of the large-scale burst and
there is less overall short-scale bursting behavior.

As expected, examining the correlation of neuronal
activity as a function of the distance between electrodes shows
no relationship at large time scales as the large-scale bursting
behavior is global (with nearly all active electrodes showing
activity during the burst) and possibly driven by calcium
oscillations in the glial network [44]. However, at shorter
time scales, the relationship between electrode distance and
neuronal firing is less clear. In figure 4(d) we show the average
cross-correlation between spiking activity for cultures at each
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stage of development plotted as a function of the distance
between electrodes. For this calculation, neuronal spikes
convolved with a Gaussian with a standard deviation of 1 ms
(see section 2.8). While there is no relationship between
distance and correlation for 8 and 11 DIV cultures, we see
that in both culture groups, at 13 DIV, there is an increase in
the correlation between electrodes which are spatially closer
to each other. This indicates that changes in the networks
of both culture groups allow the neuronal network structure
to more highly influence the overall dynamics at the shorter
time scales. The fact that the overall correlation is higher
for neurons in the LGG results from an increased density of
neuronal firing during bursts as discussed below. This suggests
that measures which require discrete binning such as cross-
correlation (despite being normalized for firing frequency)
should be used with caution when examining the dynamics
of spiking activity with structure at very short time scales as
exhibited here, as the binning or convolution can blur detailed
patterning present at these short time scales.

The changes in the neuronal network are also apparent
when examining the number of active electrode channels as a
function of DIV. An active electrode was defined as a channel
from which reliable spiking activity could be detected using
the thresholding method. It should be noted that in order to
record the activity from a neuron, the neuron must lie very near
to the electrode and be well attached to the surface of the dish.
As the network ages, some neurons die and others begin to
fire, meaning that the active electrodes can change over time.
However, one expects the overall number of active electrodes
to increase over time as the neuronal processes grow, allowing
for more neurons to be recruited into spontaneous activity as
the network becomes more highly connected. The number of
active electrodes is plotted for both the HGGs and the LGGs
in figure 5(a). In both groups this number increases over time,
yet is consistently higher for the HGG. This indicates that the
higher number of glial cells provides additional support for
the neuronal network, allowing for the recruitment of more
spatially separated sites into the bursting activity.

In figure 5(b), we plot the average number of spikes per
active electrode as a function of time. Cultures from each
group exhibit nearly the same number of spikes which tells
us that the differences seen in the bursting structure between
the two culture groups represent differences in network
organization and not simply a lack of activity in one culture
group. Thus, the firing rate of neurons during bursts in the
LGG at 13 DIV is higher than those in the HGG as cultures in
the LGG display large quiescent periods with no or minimal
spiking.

In the following sections we will present a methodology
to quantify these differences in dynamics based on functional
network structure. In order to account for the observed fine
scale structure of the bursting dynamics, we present a distance
metric designed for discrete event data and use this measure
along with a FCA to quantify spatial and temporal interactions
between electrode sites.
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Figure 5. (a) Number of active electrodes as a function of DIV for
both HGGs and the LGGs. While this number grows over time for
both groups, it remains smaller for cultures in the LGG indicating
that the glial network seems to influence the recruitment of sites in
the neuronal network. (b) Average number of spikes per active
electrode as a function of DIV during a 5 min recording. This
number is similar and grows for both culture groups as the cultures
become more active over time, corresponding to changes in the
neuronal networks.

4. Results: functional network structure

4.1. Determination of functional clusters

Functional clustering was determined from the obtained spike
train data using a clustering method recently developed
in our laboratory called the FCA [17]. Advantages of
using this algorithm include that the clustering is determined
directly from the dynamics of the recorded neurons through a
comparison to surrogate data, meaning that clustering is based
on statistically significant similarities between firing patterns.
The use of statistical significance to determine clustering also
means that the algorithm has a natural stopping point and no
a priori knowledge of the number of functional groupings is
required.

This algorithm incorporates the use of a similarity metric
and for the data in this paper, we use the AMD which
is designed to detect co-firing events in spike train data.
This new similarity metric was designed for use with the
FCA and recently published in [17]. When applied to data
from the previously described cultures, the AMD detects the
amount of synchronization between bursting events. Since
this measure is used in combination with the FCA, the result
is that the clustering of spike trains is based on the amount
of synchronization present between bursting events and
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VID 31VID 11VID 8

High glial group

Low glial group

VID 31VID 11VID 8

High glial group 8 DIV High glial group 13 DIV

Low glial group 8 DIV Low glial group 13 DIV

(a)

(b)

(c)

(d )

Figure 6. Examples of functional groupings obtained from the application of the FCA to culture data. (a),(c) Spatial representation of
functional clusters. Colored squares indicate active electrodes and squares of the same color belong to the same functional group. (a) HGG.
(c) LGG. The clustering becomes increasingly global over time for the high glial culture, while the clustering of the low glial culture
becomes increasingly fragmented. (b),(d) Examples of the dendrogram corresponding to the spatial maps in (a) and (c) at 8 DIV and
13 DIV. The dashed red line denotes the clustering cutoff.

spike trains (electrodes) whose firing patterns which show
statistically significant synchronization are grouped together.

Because the algorithm directly utilizes the dynamics of the
network to deduce statistically significant functional network
clusters, it is ideal for detecting changes in functional network
structure in networks whose dynamical properties evolve over
time. By using the FCA to determine functional structure
in our cultures as a function of DIV, we are able to detect
changes in functional network structure over time and quantify
differences between the culture groups as the cultures develop.
We briefly describe the algorithm below, and for a complete
description of the algorithm, please refer to [17].

The FCA can be summarized in the following five steps.

(1) Choose a similarity metric and create a matrix of pairwise
similarity values between all spike trains.

(2) Use surrogate data sets (see below) to calculate 95%
confidence intervals for each pairwise similarity. Use
this to determine the level of statistical significance for
each pairwise relationship.

(3) Choose the pair of trains with the highest significance
and group these trains together, recording the significance
between the trains. When grouping the two spike trains,
create a new train representing the joint activity by
merging the spikes into a single train.

(4) Remove the trains which were joined from the data set,
and recalculate the similarity matrix for the new set of
trains. Create new surrogate data sets, and re-calculate
the pairwise statistical significance.

(5) Repeat the joining steps (3) and (4), recording the
statistical significance used in each step of the algorithm
until no pairwise similarity is statistically significant,
indicating that the next joining step is not statistically
meaningful. At this point, determine the resultant
functional groupings by observing which spike trains have
been combined during the algorithm. The results of the
clustering algorithm are depicted using a dendrogram
where the dashed line denotes the cutoff point of the
algorithm as in figure 6.

8



Phys. Biol. 7 (2010) 046004 S Feldt et al

In order to assess similarities between firing patterns, one
must first choose a similarity metric (step 1). Here, we used the
AMD which is a new measure designed to detect synchronous
events in discrete event data [17], and was previously published
by the authors for use with the FCA to detect clusters of
synchronous neurons. To compute the AMD between two
spike trains Si and Sj , we calculate the distance �tik from each
firing event in Si to the closest firing event in Sj . We then
define

Dij/ji = 1

Ni/j

∑
k

�t
i/j

k , (4)

where Ni/j is the total number of spikes in Si or Sj , respectively.
Finally, we define the AMD to be

�ij = Dij + Dji

2
. (5)

Surrogate data sets used in the calculation of significance
were created through the addition of jitter to spikes (also known
as dithering or teetering) [47]. The jitter is drawn from a
uniform distribution over a given window. Here, we used a
jitter window of 70 ms, centered on each spike. This time scale
allows us to examine synchronization at the level of network
bursts that occur at short time scales within the cultures.

To assess the level of statistical significance, we used
10 000 surrogate data sets to create the cumulative distribution
functions (CDF) of AMD values and determine 95% pairwise
significance levels. The scaled significance (figure 8) is
measured in units defined as the distance from the midpoint
of the CDF to the 95% significance cutoff. Thus, a scaled
significance greater or equal to 1 is deemed to be statistically
significant, while values below 1 are not.

The FCA was applied to the spike train data recorded from
cultures in both groups at 8, 11 and 13 DIV. In order to keep
the total number of spikes used in the algorithm below 50 000,
a 3 min window of data was used, with the exception of one
13 DIV culture in the LGG for which a 1 min time window
was used.

We would like to emphasize that the FCA was
specifically chosen for this study due to its ability to directly
detect statistically significant functional groupings from the
dynamics of neurons. Additionally, this algorithm (unlike
many other clustering algorithms) did not require a prior
knowledge of the number of functional groupings which we
expected to change as the networks evolved over time.

4.2. Differences in functional structure

Since we observe difference in dynamics as a function of DIV
as well as between culture groups, it is interesting to ask how
these differences will be embodied in the functional structure
of the network. To study the functional groupings of active
sites, we implemented the FCA as described above.

We first explore the functional clustering as a function
of time for cultures within each group. In figures 6(a) and
(c), we show examples of the spatial layout of the functional
groupings over time for the two culture groups. In this figure,
each square represents the spatial location of an electrode on
the culture. The spatial layout of the squares here corresponds

P
e

rc
e

n
ta

g
e

 in
 la

rg
e

st
 c

lu
st

e
r

1.0

0.8

0.6

0.4

0.2

0.0

DIV
14121086

high glial group

low glial group

Figure 7. Percentage of electrodes participating in the largest
functional cluster as a function of DIV. The percentage increases
over time for the HGG indicating the spread of global
synchronization. Although we also see an increase in this number
for cultures in the LGG, the percentage remains smaller, as these
groupings remain fragmented.

to the spatial layout of the MEAs as seen in figure 1. Colored
squares represent active electrodes, and squares of the same
color belong to the same functional group. The dendrograms
corresponding to the spatial clustering shown in the plots of
figure(a) and (c) at 8 and 13 DIV are shown in figures 6(b)
and (d) respectively. The red dashed line denotes the clustering
cutoff as described previously. For the case of the HGG, we see
that, initially, the culture contains multiple groups that largely
represent local spatial regions of the MEA. This indicates
that only local groups of neurons are involved in synchronous
activity during network bursts. However, as the culture ages,
the synchronization becomes increasingly global, and more
neurons over larger spatial distances are recruited to the largest
cluster. To quantify this effect, we plotted the percentage of
electrodes that participate in the largest cluster as a function
of DIV in figure 7.

Interestingly, we do not see this increase in cluster size in
the case of cultures from the LGG, as the clustering instead
remains spatially fragmented over time as seen in figure 6.
This fragmentation corresponds to the lack of change over
time in the percentage of electrodes that participate in the
largest cluster seen in figure 7.

Finally, we were interested in quantifying the level of
synchronization present in the detected functional groupings.
This was done through the examination of the scaled
significance used in the joining steps of the FCA (please refer
to section 4.1). An example of the scaled significance and the
significant clustering steps for a 11 DIV culture is shown in
figure 8(a). Note that a higher scaled significance indicates
a tighter relationship between spikes of electrodes. We then
calculated the average value of the scaled significance for the
statistically significant steps for each culture. In figure 8(b)
we show the average scaled significance used in the significant
clustering steps as a function of DIV for both the HGGs and
LGGs. The average scaled significance is greater for the HGG
on each recording day, indicating that the high glial cultures
show a tighter relationship between firing events during the
bursts. However, the average scaled significance grows over

9



Phys. Biol. 7 (2010) 046004 S Feldt et al

0

2

4

6

8

8 DIV 11 DIV 13 DIV

8

6

4

2

0

−2

Joining step in FCA 
2520151050

(a)

(b)

Figure 8. (a) Example of the scaled significance used in each step
of the FCA for an 11 DIV culture from the HGG. The dashed line
denotes the clustering cutoff, and steps above this line (enclosed in
the gray box) are statistically significant. (b) The average scaled
significance used in the significant clustering steps. This value was
averaged over cultures from the HGG and LGG and calculated as a
function of DIV. The significance increases as a function of time,
indicating an increase in the synchronization of spiking within
network bursts. The high glial cultures also show increased
significance (synchronization) compared to the low glial cultures.

time for cultures from both groups, indicating that the firing
becomes more synchronous as all cultures age.

5. Discussion

While the previous work has studied either structural and
neuronal properties of cultured networks or analyzed the
dynamics of these cultures, there is little work which attempts
to link changes in neuronal network properties to the resulting
dynamics and functional interactions. The work that has
been done is focused on the effects of different substrates
used to coat the dishes [48], on patterned plating of cultures
[26, 49], or the excitatory versus inhibitory action of GABA
as the cultures develop [37]. Here, we studied cultures grown
with either a high density of glial cells or a low density
of glial cells in order to relate the influence of the glial
network on neuronal dynamics as a function of time (and
therefore increasing density of glial cells). Additionally, we
used a recently developed clustering algorithm (FCA) [17]
to detect differences in functional network structure between
the two groups as the cultures developed over time. It

is known that the presence of glial cells shapes neuronal
development [39], and Sholl analysis on the arborization
of neuronal processes revealed that cultures in the HGG
contained neurons whose processes grew globally over time,
while cultures in the LGG grew increasingly local processes.
The study of synchronization in coupled oscillators has
shown that the addition of global connections (such as
in a small-world network) leads to greater synchronization
[50–52]. Additionally, astrocytes have been shown to mediate
spontaneous calcium waves which correspond to the presence
of synchronized activity in dissociated cortical cultures [44].
The presence of glial cells can also influence intrinsic neuronal
properties, and astrocytes have been shown to be responsible
for the modulation of slow oscillations in in vivo cortical
networks through the regulation of synaptic receptors [45]. It is
therefore reasonable to conclude that the observed differences
in neuronal dynamics between the HGGs and LGGs are linked
to the influence of the glial network on the neuronal network.

Both culture groups displayed synchronized activity in the
form of network bursts, but the specific form of these bursts
varied between the two groups. The high glial cultures had
more active electrodes; however, the total number of spikes
per electrode was similar between the two groups for each
recording session. As shown in previous studies [24], the
cultures became increasingly active over time as seen in the rise
of active electrodes and total spikes per electrode. However,
the cultures from the HGG displayed more structured bursting
activity at short time scales. Cultures from the LGG displayed
spiking patterns that evolved to periods of large-scale bursting
with long periods of silence in between bursts, corresponding
to an increase in the spiking frequency during bursts (but lack
of short time scale burst structure).

The changes in neuronal dynamics over time led to a
difference in functional classifications which we were able
to detect through the application of our recently developed
clustering algorithm. We applied the FCA to detect functional
clusters and examined the spatial aspect of the resultant
clusters. Cultures from the HGG initially showed the
formation of local clustering which became more global
over time as more electrodes participated in the largest
cluster and the cluster encompassed a larger spatial area.
However, cultures in the LGG showed a different behavior
as the groupings remained spatially fragmented over time
and fewer electrodes were included in the largest cluster.
These functional differences indicate that the cultures from
the HGG display bursting events at short time scales in which
many neurons display synchronous spiking activity, while
short time scale bursting events are consistently composed of
smaller groups of synchronous activity in the low glial culture.
Thus, the functional structure detected by the FCA reflects the
expected changes due to the impact of the glial network on the
neuronal network as discussed above.

We also quantified the amount of synchronization present
within the functional clusters by comparing the scaled
significance used in the joining steps of the FCA. Cultures
from the HGG showed greater values of significance indicating
that the firing events within the bursts are more highly
synchronized. The fact that these cultures have a higher
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glial density indicates that the glial network aids in the
synchronization of the neuronal network, which is again
consistent with what we expected from structural observations.
The significance used in clustering increased as a function of
DIV in both groups indicating that as the neuronal networks
evolve, the firing events become increasingly correlated. Thus,
the overall observed synchronization of bursts is the result of
changes in both the neuronal network and the underlying glial
network.

Despite the fact that dissociated neuronal cultures are a
simplified system and their structure and dynamics cannot be
directly linked to brain dynamics, we have shown that they
are a good reduced system in which to study the interplay of
structure and dynamics in neuronal networks. Unlike neuronal
data recorded from the intact brain of humans or animals
where it is difficult to study the properties of the underlying
network structure, we are able to manipulate gross properties
of the anatomical network structure and observe how these
changes affect neuronal dynamics. We can then apply methods
developed to detect functional structure (such as the FCA) and
relate the differences in the obtained clusterings to the known
structural changes. Understanding the interaction between
structural and functional network properties will be essential
in advancing the study of neuronal networks both in reduced
and in more complex systems. The implementation of novel
analysis methods, such as the FCA, allow for the discovery of
the important parameters that affect the relationships between
structure and dynamics. Although we apply this analysis to
a reduced system in this paper, these discoveries can later be
used to make inferences about network properties that can
direct research in more complicated systems such as the brain.
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