SYNTHESIS OF Y-LACTONES FROM ALKENES EMPLOYING p-METHOXYBENZYL CHLORIDE AS +CH2-CO2 EQUIVALENT1 Englbert Bäuml, Kai Tscheschlok, Rudolf Pock, and Herbert Mayr* Institut für Chemie der Medizinischen Universität zu Lübeck Ratzeburger Allee 160, D-2400 Lübeck 1, Federal Republic of Germany **Abstract.** The ZnCl₂ catalyzed reaction of p-methoxybenzyl chloride with alkenes yields the 1:1 addition products 3, which are converted into the Y-lactones 4 via Ru(VIII) catalyzed oxidative degradation of the aromatic ring. The transformation of alkenes into Y-lactones (eq.1) via addition reactions of free radicals has been described by several authors. Boldt performed the conversion (eq.1) by radical initiated addition of bromodicyanomethane towards alkenes and subsequent hydrolysis and decarboxylation. Analogously, Y-lactones were obtained from alkenes and α -bromocarboxylic acids or the tin salts of α -iodo or α -bromoacetic acid. The oxidative addition of carboxylic acids to alkenes, which is achieved in basic medium with metal ions (e.g. Mn*++) as oxidants also involves a free radical addition step. We report now on an electrophilic addition pathway for the transformation (eq.1), which is especially suited for the synthesis of Y,Y-bisalkylated Y-lactones. The ZnCl₂·OEt₂ catalyzed⁶ reaction of p-methoxybenzyl chloride 1 with the alkenes 2a-f affords high yields of the 1:1 addition products 3a-f under conditions analogous to those reported for additions of other S_N1 active chlorides. For the Ru(VIII)-catalyzed oxidations of the aromatic ring, solutions of the crude adducts 3 (10 mmol) in CH₂Cl₂ (50 ml) were added dropwise to well stirred mixtures of RuCl₃ (0.8 mmol), CH₂Cl₂ (50 ml) and 140 ml of a 2.16 M aqueous NaOCl solution. Satisfactory yields of the lactones 4 are obtained, if the rate of addition of 3 to the oxidants is slow enough to allow the intermediate regeneration of RuO₄, which is recognizable by its gold-orange color. The use of acetonitrile as a cosolvent, which has been recommended for related oxidations, was found to diminish the yield of 4. As expected, the oxidation of the aromatic ring is greatly enhanced by the methoxy group, since the oxidation of 3f gave 26% of the lactone 4f (yield not optimized), which incorporates an intact phenyl group. Preliminary experiments show that an analogous reaction sequence can be carried out with α-substituted benzyl chlorides. The scope of the novel lactone synthesis and of its intramolecular variant is presently under investigation. Acknowledgement. We thank Ms. R. Lammers for exploratory experiments, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. ## References and Notes - K. Tscheschlok, Diplomarbeit Fachhochschule Lübeck. 1988. 1) - P. Boldt, W. Thielecke, J. Etzemüller, Chem. Ber. 102, 4157 (1969). 2) - 3) T. Nakano, M. Kayama, H. Matsumoto, Y. Nagai, Chem. Lett. 1981, 415. - 4) G.A. Kraus, K. Landgrebe, Tetrahedron 41, 4039 (1985). - E.I. Heiba, R.M. Dessau, P.G. Rodewald, J. Am. Chem. Soc. 96, 7977 (1974) 5) - H. Mayr, W. Striepe, J. Org. Chem. 50, 2995 (1985).H. Mayr, W. Striepe, J. Org. Chem. 48, 1159 (1983). 6) - 7) - Reviews: (a) D.G. Lee, M. van den Engh in "Oxidation in Organic Chemistry", Part B, W.S. Trahanovsky, Ed., Academic Press: New York, 1973, Chapt. IV.; (b) A.H. Haines, Methods for the Oxidation of Organic Compounds, Academic Press: London, 1985, pp. 192 (a) P.H.J. Carlsen, T. Katsuki, V.S. Martin, K.B. Sharpless, J. Org. Chem. 46, 3936 - 9) (1981). (b) H. Orita, T. Hayakawa, K. Takehira, Bull. Chem. Soc. Jpn. 59, 2637 (1986). - J. Lehmann, M. Marquardt, Synthesis 1987, 1064. 10) - C. Metzger, D. Borrmann, R. Wegler, Chem. Ber. 100, 1817 (1967). 11) ## (Received in Germany 3 October 1988) a) ¹H NMR of **4a**: ref.¹⁰; **4b**, **f**: ref.²; **4c**: ref.¹¹; **4d** (CDCl₃): δ 0.95 (t, J = 7.1 Hz, 3 H), 1.35-1.70 (m (4 H) superimposed by s (3 H) at 1.34), 1.95-2.19 (m, 2 H), 2.56-2.66 (m, 2 H); **4e** (CDCl₃): δ 1.04 (s, 9 H), 1.48 (s, 3 H), 1.65 and 1.75 (AB system with J_{AB} = 14.9 Hz, 2 H), 1.80-2.14 (m, 2 H), 2.55-2.65 (m, 2 H).