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in shear flow
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A theoretical description is provided for the nonequilibrium conformational and dynamical
properties of a polymer in shear flow. Using a mean-field semiflexible chain model, which accounts
for hydrodynamic interactions within the preaveraging approximation, analytical expressions are
derived for the dependence of the deformation, orientation, and relaxation times on polymer
persistence length and shear rate. Moreover, the rheological properties of a dilute polymer solution
are discussed. The model yields shear thinning at large Weissenberg numbers. The analytical results
are compared with fluorescence microscopy measurements of individual DNA molecules, which
yield qualitative and partial quantitative agreement. © 2010 American Institute of Physics.
�doi:10.1063/1.3497642�

I. INTRODUCTION

Individual polymers in solution exhibit a remarkably
reach structural and dynamical behavior in external flow
fields.1,2 Fluorescence microscopy studies on single DNA
molecules in shear flow reveal large conformational changes
due to tumbling motion.1–4 A polymer chain continuously
undergoes stretching and compression cycles and never
reaches a steady-state extension. The detailed evolution itself
depends upon the shear rate. The microscopic conforma-
tional and dynamical properties are tightly linked to the mac-
roscopic rheological behavior of a polymer solution and give
rise to phenomena such as shear rate dependent viscosities,
normal stress differences, and shear thinning.5–7

By the same experimental technique, valuable quantita-
tive information has been obtained for the nonequilibrium
properties of DNA molecules, such as their deformation, ori-
entation, and viscosity, both, for free and tethered
molecules.1,3,4,8–11 Moreover, the extension and relaxation
behavior have been measured1,10 as well as the tumbling
time3,4 and the orientational distribution function of de-
formed DNA molecules.4

Since shear flows are ubiquitous in biological systems
and technical applications, e.g., microfluidics, capillary flow,
or flows near surfaces, the understanding of the dynamics of
individual flexible and semiflexible polymers, such as DNA,
actin filaments, or fd-viruses is of fundamental interest.

Various analytical approaches have been adopted to
achieve a microscopic understanding of the nonequilibrium
properties of polymers in flow. Often flexible polymers are
considered neglecting hydrodynamic and excluded volume
interactions,6,7,12–19 but taking finite chain extensibility into
account.20 Other approaches account for excluded volume
interactions21,22 or take hydrodynamic interactions,23 or
both,24,25 and finite chain extensibility into account.26,27 The
effect of chain stiffness has been addressed in Refs. 28–30.

A broad spectrum of nonequilibrium computer simula-
tions has been performed to overcome deficiencies of ana-
lytical approaches. Brownian dynamics simulations have
been performed for Gaussian polymers with31 and without32

hydrodynamic interactions. More realistic simulations ac-
count for the finite chain extensibility and excluded volume
interactions.33–36 In Brownian dynamics simulations, hydro-
dynamic interactions are taken into account by the Oseen
tensor5,37 or the Rotne–Prager tensor.38 Aside from Ref. 39,
which employs Gaussian polymers, typically finite extensible
polymers are considered with excluded volume
interactions.3,40–48 Moreover, molecular dynamics simula-
tions with explicit solvent have been performed in Refs.
49–51. Results of mesoscale hydrodynamics simulations are
presented in Ref. 48 exploiting the lattice Boltzmann
method. In addition, the multiparticle collision dynamics ap-
proach has been used52,53 and the smoothed profile method.54

The various simulations yield nonequilibrium properties
very similar to the experimentally observed behavior on a
polymer length scale, e.g., polymer deformation and align-
ment along the flow direction as well as polymer tumbling,
and on macroscopic scales, e.g., non-Newtonian viscosities
due to shear thinning at sufficiently large flow rates.6 For the
latter, a considerable range of power-law exponents, which
describe the decrease of the viscosity with shear rate, has
been found and there seems to be no consensus on the
asymptotic dependence in the limit of an infinite shear rate.
There are several reasons for the observed dependencies,
which are sometimes related to the particular approach.
However, often the range of considered polymer lengths and
shear rates is too small. Thus, rather a crossover behavior is
observed than the asymptotic behavior.

Despite certain shortcomings, the analytical calculations
and computer simulations provide valuable insight into the
nonequilibrium behavior of polymers. However, for a micro-
scopic understanding of the flow phenomena an analytical
description is desirable, specifically an approach that quanti-
tatively accounts for experimental findings. Such a compre-a�Electronic mail: r.winkler@fz-juelich.de.

THE JOURNAL OF CHEMICAL PHYSICS 133, 164905 �2010�

0021-9606/2010/133�16�/164905/11/$30.00 © 2010 American Institute of Physics133, 164905-1

http://dx.doi.org/10.1063/1.3497642
http://dx.doi.org/10.1063/1.3497642
http://dx.doi.org/10.1063/1.3497642


hensive description seems to be difficult to achieve, because
of the complexity of interactions such as inextensible poly-
mer bonds, excluded volume and hydrodynamic interactions,
and chain stiffness. However, computer simulations3,9 and
theoretical studies21 suggest that excluded volume interac-
tions are of minor relevance at large shear rates and that the
conformational, dynamical, and rheological properties are
rather generic features of polymers in flow.

Experiments55–57 and computer simulations58,59 have
shown that the equilibrium dynamical properties of semiflex-
ible DNA molecules in solution are quantitatively described
by a Gaussian semiflexible polymer model60–67 over a wide
range of flexibilities. This model has also been used to suc-
cessfully describe the orientational distribution and tumbling
dynamics of DNA molecules in shear flow.29 In the present
article, the same model is applied to study the conforma-
tional, dynamical, and rheological properties of polymers.
Various quantities are compared with experimental results on
DNA molecules. Moreover, the influence of stiffness is dis-
cussed in detail, specifically for objects much stiffer than
�-DNA.

The studies reach beyond those of Ref. 28, where the
Harris–Hearst model68 is adopted to describe semiflexible
polymers under shear, in several respects, specifically hydro-
dynamic interactions are taken into account by a preaveraged
hydrodynamic tensor. I like to stress that the Harris–Hearst
model does not correctly describe the equilibrium properties
of a semiflexible polymer,63,69 but an adequate description of
flexible polymers can be expected.

The paper is organized is follows. In Sec. II, the theoret-
ical model of the semiflexible polymer is outlined. Section
III presents results for conformational and dynamical prop-
erties, and in Sec. IV the rheological characteristics are dis-
cussed. Results are compared with experimental data in Sec.
V. Finally, Sec. VI summarizes the major findings.

II. MODEL: SEMIFLEXIBLE POLYMER IN SHEAR
FLOW

A. Equations of motion

A mean-field model is adopted for a semiflexible
polymer,60–65 which is denoted as Gaussian semiflexible
polymer. Here, the polymer is considered as a continuous,
differentiable space curve r�s , t�, where s �−L /2�s�L /2� is
the contour coordinate along the chain of length L and t is
the time. In the presence of hydrodynamic interactions,5,37

the equation of motion is given by the Langevin
equation29,56,67,70,71

�

�t
r�s,t� = �

−L/2

L/2

H�r�s�,r�s����2�kBT
�2

�s�2r�s�,t�

− �kBT
�4

�s�4r�s�,t� + ��s�,t��ds� + Kr�s,t� ,

�1�

with the boundary conditions

�2�
�

�s
r�s,t� − �

�3

�s3r�s,t��
�L/2

= 0, �2�

�2�0
�

�s
r�s,t� � �

�2

�s2r�s,t��
�L/2

= 0. �3�

The stochastic force ��s , t� is assumed to be stationary,
Markovian, and Gaussian with zero mean.5,72 T is the tem-
perature and kB is the Boltzmann constant. The hydrody-
namic tensor is defined as H�r�s� ,r�s���=Q�r�s�−r�s���
+I��s−s�� /3�	, where the term with the delta function ac-
counts for the local friction, Q�r�s�−r�s��� is the Rotne–
Prager tensor29,38,56,67,71 and 	 the solvent viscosity. The term
with the second derivative captures the chain flexibility, i.e.,
it accounts for the chain entropy. The term with the fourth
derivative is the bending force. Only the element Kxy = 
̇ of
the shear rate tensor K is different from zero, where 
̇ is the
shear rate. The Lagrangian multipliers ��s�, �0=���L /2�,
and � are determined by constraints.73 In general, this yields
for a polymer in three dimensions �=3 / �4p� and �0=3 /4,
where p is related to the persistence length lp via
p=1 / �2lp�.65,73 The Lagrangian multiplier ��s� is determined
by the condition 	u�s�2
=1, with the tangent vector u�s�
=�r /�s, and depends on shear rate. Under nonequilibrium
conditions, the tension varies along the polymer contour.
Hence, � depends on s and has to be determined self-
consistently. To avoid this complication, the local constraints
are relaxed and replaced by the global one

�
−L/2

L/2

	u2
ds = L . �4�

As a consequence, the polymer will be stronger stretched in
the central part and less toward its ends.65 However, the full
solution of a discrete free draining polymer model with in-
dividual Lagrangian multipliers for every bond and bond
angle,63,65,73 respectively, yields expectation values for global
quantities such as viscosity that deviate only very little from
those determined with the constraint �4� in the limit of a
nearly continuous polymer. Hence, the solution of the equa-
tions of motion with the constraint �4� suffices for any prac-
tical purpose.

The mean-field character of the model is reflected in the
particular persistence length dependence of � and the average
constraint for the tangent vector, which implies nonzero con-
tour length fluctuations. The Kratky–Porod wormlike chain
model74–76 requires u�s�2=1 and leads to a different �.71,73

To solve the nonlinear equations of motion, Zimm’s
preaveraging approximation is applied,5,56,77 which
leads to the preaveraged hydrodynamic tensor H�s ,s��
=I���s−s�� /3�	+Q�s−s���, with

Q�s� =
���s� − d�

3�	
� 3

2���s�
exp−

3d2

2��s�� . �5�

The Heaviside step function � is introduced to exclude self-
interactions and d is the thickness of the molecule.56,67,71 �
= 	�r�s�−r�s���2
 is the mean square distance between two
points at s and s�
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��s� =
�s�
p

−
1

2p2 �1 − exp�− 2p�s��� . �6�

The linear equations of motion are solved by the eigenfunc-
tion expansion5,56,66,67,71

r�s,t� = �
n=0



�n�t��n�s�, ��s,t� = �
n=0



�n�t��n�s� , �7�

where �n�s� satisfies the eigenvalue equation

�kBT
d4

ds4�n�s� − 2�kBT
d2

ds2�n�s� = �n�n�s� , �8�

with the eigenvalue �n. The eigenfunctions are given by

�0 =�1

L
,

�n�s� =�cn

L
�n�

sinh �n�s

cosh �n�L/2
+ �n

sin �ns

cos �nL/2�, n odd, �9�

�n�s� =�cn

L
�n�

cosh �n�s

sinh �n�L/2
− �n

cos �ns

sin �nL/2�, n even,

with

�n�
2 − �n

2 =
2�

�
, �0 = 0, �n = kBT���n

4 + 2��n
2� . �10�

The above eigenfunctions are different form those of the
Harris-Hearst model.28,68 The constants cn follow from the
normalization condition and the wave numbers �n and �n� are
determined by the boundary conditions �2� and �3�.56,66,67,71

The amplitudes �n�t� obey the equations

d

dt
�n�t� = �

m=0



Hnm−
3�	

�m
�m�t� + �m�t�� + K�n, �11�

where Hnm=Qnm+�nm / �3�	�,

Qnm =� �
−L/2

L/2

�n�s��Q�s − s���n�s�dsds�, �12�

	�n��t��m��t��
 = 2kBT�����t − t��/Hnm, �13�

and � ,�� �x ,y ,z�. The free draining relaxation times �n

=3�	 /�n depend on shear rate via �.
A full solution of Eq. �11� requires diagonalization of the

matrix Q.58,66,67 However, the diagonal elements typically
dominate for the whole range of flexibility parameters pL
and are close to the full eigenvalues of Q.25,66,67,78 Therefore,
only the diagonal elements Qnn will be considered in the
following. A numerical solution taking into account a sub-
block of the slowest relaxation modes is presented in Refs.
58 and 59 for semiflexible polymers. A comparison with
mean square displacement data of DNA molecules in solu-
tion obtained by fluorescence correlation spectroscopy
measurements57 yields excellent agreement58 and shows that
the analytical solution with the diagonal elements only over-
estimates the mean square displacement only slightly for
time scales longer than the bending relaxation time.59 This

difference can be corrected by taking into account a scale
factor for the hydrodynamic interactions, which yields
slightly larger relaxation times and provides an excellent
agreement between theory and experiments on DNA.57

The mode decoupled, but spatial coupled Eq. �11� can
easily be solved and amplitude correlation functions be de-
termined, which enter in calculations of expectation
values.29,56,66,67,71 We find 	�n��t��m��t��

=�nm	�n��t��n��t��
 with

	�nx�t��nx�0�
 =
kBT�n

3�	
e−�t�/�̃n1 +


̇2�̃n

2
��t� + �̃n�� ,

	�ny�t��ny�0�
 =
kBT�n

3�	
e−�t�/�̃n,

�14�

	�nx�t��ny�0�
 =
kBT�n
̇

3�	
e−�t�/�̃nt��t� +

�̃n

2
� ,

	�ny�t��nx�0�
 =
kBT�n
̇

3�	
e−�t�/�̃nt��− t� +

�̃n

2
� ,

and 	�nz�t��nz�0�
= 	�ny�t��ny�0�
. All other correlations are
zero. The relaxation times �̃n are given by

�̃n =
�n

1 + 3�	Qnn
, �15�

and depend on hydrodynamic interactions. As expressed by
these relations, shear flow induces correlations in time and
the history of time evolution of the polymer is important for
its conformations and dynamical behavior.

B. Lagrangian multiplier

The Lagrangian multiplier �=3p� /2 follows from Eq.
�4�, where �=��
̇� captures the shear rate dependence and
��0�=1. By inserting the eigenfunction expansion �7� one
obtains from Eq. �4�

�
n=1



	�n�0�2
�n = 1, �16�

with

	�n�0�2
 =
kBT

�	
�n +

kBT
̇2

6�	
�n�̃n

2, �17�

and �n=����n�s� /�s�2ds /L. A numerical solution of the
equation yields ��
̇�.

The sum in Eq. �16� over the first term on the right hand
side of Eq. �17� can be evaluated analytically with the help
of the partition function65

164905-3 Semiflexible polymers in shear flow J. Chem. Phys. 133, 164905 �2010�



kBT

�	L
�
n=1



�n�n

=

� 1

2pL
1 −

1

�
� + 2�tanh�2pL��� +

1
��

+ ��

�1 + ��tanh�2pL��� + 2��
→

pL→ 1
��

.

�18�

This expression is governed by the bending modes. Without
bending modes, the sum would not converge.

To arrive at an analytical solution, we first consider the
limit of a flexible polymer, i.e., pL�1, for which

�n�s� = ��
2

L
sin��ns� , n odd

�2

L
cos��ns� , n even,� �19�

and �n=n� /L, which yields �n=�n
2 /L. Then, the sum over

the second term of Eq. �17� results in

�
n=1


kBT
̇2

6�	L
�n�̃n

2�n
2 →

pL,��1 Wi2�4

540pL�31 +
�2

4p2L2�2

, �20�

where �n
2�n /L��	 / �kBTpL�� and �̃n / �̃1

0

��1+�2 / �4p2L2�� / ��n2� has been used, i.e., for the latter
hydrodynamic interactions are neglected. The Weissenberg
number Wi= 
̇�̃1

0 is introduce, with �̃1
0 the longest relaxation

time at equilibrium. Then, � follows from

�3 − �5/2 −
�4Wi2

540pL
1 +

�2

4p2L2�2

= 0. �21�

For Wi�1, the equation yields

� = Wi2/3 �4

540pL
�1/3

. �22�

� depends on the product pL and is essentially independent
of hydrodynamic interactions within the preaveraging ap-
proximation. The latter is a consequence of the fact that �i�
the sum over modes is dominated by the first mode due to
the fast decay of other summands. The ratio between the
sums of Rouse and Zimm modes is �n=1

 1 /n4 /�n=1
 1 /n3

=0.9, i.e., the error is at the worst 10%, but Zimm modes are
obtained for pL�104 only, a ratio much larger than typical
values for DNA molecules. �ii� The dependence on hydrody-
namic interactions is adsorbed in the Weissenberg number.

Equation �21� suggests that for polymers with pL�10 a
length and persistence length independent behavior is ob-
tained, when �measured� quantities are presented in terms of
Wi /�pL. The chain and persistence length dependents enters
via the relaxation times �n and �n; both are equilibrium prop-
erties. It has to be kept in mind that all polymer properties
depend on � and hence on pL.

In the limit of a semiflexible chain, i.e., pL�1, and for
�→, �1

0=�	L3 / �12kBT� and �n /�1
0�12 / ��pLn2�, because

the contribution of the bending modes vanishes in the limit
�→ as will be discussed in Sec III A. Hydrodynamic in-
teractions are even less important for semiflexible polymers

than for flexible ones, because the integrals of Eq. �12� yield
a logarithmic correction in n only.67,71 Therefore, � is given
by

� =  4

15
�1/3Wi2/3

pL
, �23�

in this limit. Hence, a different chain length dependence is
obtained for flexible and semiflexible polymers, if the Weis-
senberg number is defined via the longest relaxation time at
equilibrium. The theoretical result compares well with the
data of Fig. 1 in the respective limit.

In the limit Wi→0, � is given by

� = �1 + Wi2/�6pL� , pL � 1

1 + Wi2�4/�270pL� , pL � 1.
� �24�

The full numerical solution is presented in Fig. 1 for
various values of pL. As predicted by the analytical solution
�21�, a limiting curve is assumed for pL�1. In contrast, for
pL�1 a strong dependence is obtained on persistence
length. However, in the limit Wi→, � exhibits the depen-
dence ��Wi2/3 even for semiflexible and rather stiff poly-
mers. This is a result of the � dependence of the relaxation
times as will be discussed Sec. III A. Introducing the Weis-
senberg number Wiz= 
̇�z, where �z is the Zimm relaxation,
i.e., the longest relaxation time without bending modes, Fig.
2 shows that the curves for the various pL values approach
the limiting behavior given by Eq. �22�.

I like to emphasize that the dependence of � on persis-
tence length is not an artifact by the constraint Eq. �4�. The
solution of a discrete model with bond constraints for every
individual bond yields qualitatively and quantitatively the
same dependence for the average over all bonds in the con-
tinuum limit.

III. RESULTS

A. Relaxation times

The relaxation times �n �Eq. �15�� depend on the shear
rate via the Lagrangian multiplier �

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

μ

Wi/(pL)
1/2

FIG. 1. Lagrangian multipliers � as function of the Weissenberg number
Wi= 
̇�̃1

0 for pL=10−3, 10−2, 10−1, 100, and 101 �left to right�. The lines for
larger pL are indistinguishable from that for pL=10. The blue dashed line
indicates the analytical solution Eq. �22�.
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�n =
�	

�pkBT�n
2�1 +

�n
2

4p2�
�−1

. �25�

The bending contribution ��n
4 vanishes in the limit pL��

→ for any pL and the relaxation times become equal to
those of a flexible polymer, i.e., under the influence of shear,
a polymer behaves more and more like a flexible polymer
with increasing Weissenberg number.

This is illustrated in Figs. 3 and 4. In Fig. 3, the relax-
ation times exhibit a crossover from stretching �n�100� to
bending �n�100� mode dominated behavior for �=1.67,70

The crossover shifts to large mode numbers with increasing
shear rate and the flexible mode regime increases. At the
same time, the relaxation times decrease because �n��−1

and the polymer dynamics becomes faster. Since pL�1, hy-
drodynamic interactions contribute to the mode dependence
of �̃n. However, the relaxation times do not exhibit the de-
pendence �̃n�n−3/2 of the Zimm times.5,77 This asymptotic
behavior is only obtained for pL�104.

Figure 4 displays the dependence of the longest relax-
ation time on persistence length and Weissenberg number.
For pL→0—more precisely for �pL�2��1�—the first mode
and relaxation time are given by

�1L = �48pL�1 + pL���1/4, �26�

�1 =
�	L3

12kBT�1 + pL��
= �1

0 1 + pL

1 + pL�
. �27�

The latter term is essentially independent of pL, because �1
+ pL�� / �1+ pL��1+ pL��−1��1+Wi2 /6 for Wi�1 and
��4 /15�1/3Wi2/3 for Wi�1. A comparison with the numeri-
cally calculated relaxation times shows that the ratio is very
well approximated by �̃1 / �̃1

0= �1+ pL� / �1+ pL�� for pL�1.
This ratio depends only very weakly on pL. Correspondingly,
the curves become indistinguishable for pL�10−1 in Fig. 4.

The bending contribution to the relaxation times van-
ishes in the limit pL���1 independent of pL, and the poly-
mer behavior is governed by the flexible modes �n even for
pL�1. However, the hydrodynamic contribution 1 / �1
+3�	Qnn� to the relaxation times is always determined by
the actual value of pL, and a logarithmic correction in n is
obtained for pL�1.67,71

B. Conformations

The polymer conformations under flow are characterized
by the mean square end-to-end distance tensor E, with the
components E��= 	�r��L /2�−r��−L /2���r��L /2�−r��
−L /2��
, and the radius of gyration tensor G with the com-
ponents G��=�−L/2

L/2 	�r��s�−r�,cm��r��s�−r�,cm�
ds /L, where
rcm denotes the center-of-mass position of the polymer.63 At
equilibrium, the polymer is isotropic in average and the
mean square end-to-end distance and radius of gyration are
given by56,63

	rE
2
 = �

�=1

3

E�� =
L

p
−

1

2p2 �1 − e−2pL� , �28�

	rG
2 
 = �

�=1

3

G�� =
L

6p
−

1

4p2 +
1

4p3L
−

1

8p4L2 �1 − e−2pL� .

�29�

With the eigenfunction expansion �7� and the correlation
functions �14�, the tensor elements read
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FIG. 2. Lagrangian multipliers � as function of the Weissenberg number
Wiz= 
̇�z for pL=104, 100, 5�10−1, 2�10−1, 10−1, 5�10−2, and 2�10−2,
10−2 �left to right�. �z is the longest relaxation time of a polymer without
bending modes. The thickness of the polymer is d /L=10−4.
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FIG. 3. Relaxation times �̃n as function of mode number for �
=1,10,102 ,103 ,104 �top to bottom�, pL=102, and d /L=10−4.
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E�� = E��
�1� +

2kBTWi2

3�	L
�

n,odd



�n
2L

2
��n �̃n

�̃1
0�2

��x,

�30�

G�� = G��
�1� +

kBTWi2

6�	L
�
n=1



�n �̃n

�̃1
0�2

��x,

where

E��
�1� =

L

3p�
−

1

3p2�3/2��� + coth�pL����
,

�31�

G��
�1� =

kBT

3�	L
�
n=1



�n.

For pL�1, the expressions reduce to

E�� =
	rE

2

3�

+
�4L2Wi2

720pL�3��x,

�32�

G�� =
	rG

2 

3�

+
�4L2Wi2

5670pL�3��x,

and for pL�1, we find

E��

= �
L2

3�1 + pL��1 +
Wi2

2
 1 + pL

1 + pL�
�2

��x� , pL�� � 1

L2

3pL�
1 +

3Wi2

5�pL��2��x� , pL�� � 1,�
�33�

G�� = �E��/12, pL�� � 1

L2

18pL�
1 +

144Wi2

315�pL��2��x� , pL�� � 1, � �34�

if only the first mode is taken into account for pL���1, and
for pL���1 the relaxation times �n of Eq. �25� and �1

0 of
Eq. �27� are used. As discussed before, hydrodynamic inter-
actions have been neglected. They yield an even smaller con-
tribution as in the calculation of �.

Figure 5 shows mean square end-to-end distances and
radii of gyration for various persistence lengths. The poly-
mers extend along the flow direction and saturate at large
Weissenberg numbers due the finite chain extensibility. For
pL�1, a monotonous increase is obtained, whereas for pL
�1, Exx passes through the maximum Exx /Exx

0 �3, where
Exx

0 = 	rE
2
 /3 and approaches a plateau value at large Wi. Cor-

respondingly, Gxx seems to assume the value Gxx /Gxx
0 �3,

where Gxx
0 = 	rG

2 
 /3, before it finally approaches a larger lim-
iting value. The nonmonotonous behavior of the stiff poly-
mers can be explained as follows: Since they resemble rod-
like objects, the shear flow aligns them in the flow direction.
This implies a maximal change of extension by a factor
three, which corresponds to the observed ratio. For even
larger Wi the influence of bending modes decreases, i.e., the
polymers become more flexible. Hence, the mean square
end-to-end distances decrease and the radii of gyration in-

crease. The crossover to the flexible behavior depends on
persistence length and appears at large Wi for stiffer poly-
mers. Therefore, the maximum in Exx shifts to larger Wi with
decreasing pL.

The polymers shrink transverse to the flow direction,
where the model yields the same behavior in the gradient and
vorticity direction, although simulations show that the two
directions are inequivalent due to excluded volume
interactions.53,79 The relative end-to-end distance obeys
Eyy /Eyy

0 = �1+ pL� / �1+ pL�� for all Wi, as is obvious from
Eqs. �31�–�33�. The radius of gyration follows the depen-
dence Gyy /Gyy

0 = �1+ pL� / �1+ pL�� for pL���1 and
Gyy /Gyy

0 =2 / �pL�� for pL���1, respectively. The latter ra-
tio expresses the difference between the radius of gyration of
a flexible and a rodlike polymer. Hence, this component of
the end-to-end distance and the radius of gyration of semi-
flexible and stiff polymers exhibits the limiting behavior
Gyy /Gyy

0 �Wi−2/3 for pL���1. Experiments and simula-
tions yield a similar value in the corresponding limit.9,42

In the limit pL�1, the off-diagonal component Gxy is
well approximated by

Gxy = �
Wi�1 + pL�2L2

72�1 + pL��2 , pL�� � 1

Wi�1 + pL�L2

45�pL��2 , pL�� � 1.� �35�

Since pL� is independent of the persistence length in that
limit, a universal curve is obtained. For a flexible polymer
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Gxy =
�2WiL2

540pL�2 . �36�

Hence, the off-diagonal element increases linearly with the
Weissenberg number for ��1 and decrease as Wi−1/3 for
Wi→.

The theoretical model yields maximum values for Exx
m

and Gxx
m in the limit Wi→ that seem to be larger than those

obtained experimentally. This is due to contour lengths fluc-
tuations of the Gaussian model. However, the deviation, e.g.,
1−Exx /Exx

m from the limiting value is proportional to Wi−1/3

for both, Exx and Gxx. This is in agreement with the scaling
considerations and simulations of Ref. 11.

C. Alignment

Aside from deformation, polymers exhibit a preferred
alignment in shear flow, as has been shown experimentally,
in computer simulations, and theoretical calculations. The
alignment can be characterized by the angle �G, which is the
angle between the major axis of the gyration tensor and the
flow direction. It is obtained from G as

tan�2�G� =
2Gxy

Gxx − Gyy
. �37�

With the expressions �32� and �34�, we find for pL�1

tan�2�G� =
21�

�2Wi
, �38�

and for pL�1

tan�2�G� = �2�1 + pL��/Wi, pL�� � 1

7pL�/�4Wi� , pL�� � 1.
� �39�

Hence, in any case tan�2�G��Wi−1/3 in the limit Wi→.
Figure 6 displays tan�2�G� for various persistence

lengths. There is a clear length dependence for flexible poly-
mers, whereas a limiting curve is assumed for stiff polymers.
In the inset, experimental data are compared with theoretical
predictions. A detailed discussion is provided in Sec. V.

D. End-to-end vector relaxation

The nonequilibrium dynamics of a polymer depends on
shear rate. As an example, the end-to-end vector relaxation
behavior is addressed. The end-to-end vector correlation
function reads

	rE�t�rE�0�
 = �
n,odd

4�n
2�L/2�	�n�t��n�0�


=
4kBT

�	
�

n,odd

�n
2�L/2��n1 +

Wi2

6
 �̃n

�̃1
0�2

+
Wi

6


̇t�̃n

�̃1
0 �exp−


̇t�1
0

Wi�̃n
� , �40�

with the correlation functions �14�. Here, the combination 
̇t
is used as dimensionless quantity. Since Wi= 
̇�̃1

0,

̇t̃�1

0 / �Wi�̃n�= t / �̃n. For every mode, 	rE�t�rE�0�
 includes a
purely exponentially decaying term and a term linear in time
multiplied by the same exponential function. Hence, the cor-
relation function decays in a nonexponential manner for suf-
ficiently large Weissenberg numbers. This is reflected in Fig.
7, where theoretical results are presented for �-DNA-like
polymers. At short times, the nonexponential decay is clearly
visible.

To obtain an analytical approximation of the full corre-
lation function, only the first mode in Eq. �40� is taken into
account, which yields for the normalized correlation
function20,28

	rE�t�rE�0�

	rE�0�2


= 1 +
Wi
̇t��̃1/�̃1

0�/6
1 + Wi2��̃1/�̃1

0�2/6
�exp−


̇t�1
0

Wi�̃1
� .

�41�

Approximations for the relaxation times are discussed in Sec.
II B for large and small pL. Specifically, for pL�1, Eq. �41�
reads
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	rE�t�rE�0�

	rE�0�2


= 1 +
Wi
̇t

6��1 + Wi2/�6�2��
�exp−


̇t�

Wi
� .

�42�

This expression depends explicitly and implicitly via the La-
grangian multiplier � on the Weissenberg number. The full
theoretical curves of Fig. 7 are reasonably well described by
this expression.

IV. RHEOLOGY

A. viscosity

The polymer contribution 	p to the viscosity of a �dilute�
solution follows from the virial expression of the stress ten-
sor �xy by 	p=�xy / 
̇. The stress tensor itself is related to the
force density F of Eq. �1� via

�xy = −
1

V
�

−L/2

L/2

	Fx�s�ry�s�
ds , �43�

which yields

	p =
kBT

2V
�
n=1



�̃n�
̇� , �44�

with the eigenfunction expansion �7�.
The viscosity is proportional to the relaxation times and

depends on the Weissenberg number only via the Lagrangian
multiplier �. Hence, its value, in particular the zero shear
rate viscosity 	p

0, is more sensitive to the presence of hydro-
dynamic interactions as compared to the previously dis-
cussed expressions, where the ratio �̃n / �̃1

0 enters only.
The relaxation times yield

	p = �
	p

0

�
, pL � 1

	p
0 1 + pL

1 + pL�
, pL�� � 1,� �45�

In the limit of stiff polymers, 	p is determined by the first
relaxation time for pL���1. For pL���1, all modes con-
tribute as for flexible polymers. Here, 	p�1 /�, but with a
proportionality factor different from 	p

0. The factor itself is
obtained as sum over �̃n=�n / �1+3�	Qnn�, where �n is given
in Eq. �25� and Qnn �12� is calculated for a semiflexible poly-
mer with the particular pL.

In any case, the solution exhibits shear thinning, which
is expressed by � and is a consequence of the polymer inex-
tensibility. The fact that the decay of the viscosity is gov-
erned by �, i.e., by bond forces, is not surprising, since the
model yields a bond contribution to viscosity only.

In the limit Wi�1, the viscosity decreases as Wi−2/3. A
similar dependence has be found in experiments and
simulations.6,7,9,40,42 However, experiments and simulations
often predicted an exponent closer to 1/2.9,41,80 This is par-
tially explained by the fact that the crossover is very broad
between the zero shear viscosity and the limiting value for
Wi→. It is easily possible to fit a power-law with an ex-
ponent in the range of 1/2–2/3 over a decade of Weissenberg
numbers in this regime.6,7,9,41–43,50

For flexible polymers, the viscosity depends on the poly-
mer length via the multiplier �. Its dependence on molecular
weight is discussed in Sec. II B. Such a dependence has also
been observed in mesoscale hydrodynamic simulations of
polymer solutions.79

Stiffness has only a minor influence on the viscosity. In
particularly, 	p

0 is essentially independent of stiffness for
pL�1. Due to the change in the nature of the relaxation
times from bending modes dominated to stretching modes
dominated �flexible� behavior by increasing shear rate,67,70

there is a change in the slope of 	p in the vicinity of the
Weissenberg numbers where pL���1. As an example, the
viscosity for pL=10−2 is well described by the power-law
	p�Wi−0.6 for 103�Wi�105.

This behavior is illustrated in Fig. 8. There is a slight
difference in the viscosity for pL=10−1 �red� and pL=10−3

�green� in the range 102�Wi�106. A limiting curve is as-
sumed for stiff polymers in the limit Wi→.

B. Normal stress difference

The first normal stress coefficient �1= ��xx−�yy� / 
̇2 is
given by

�1 =
kBT

2V
�
n=1



�̃n
2. �46�

Since �1 is determined by the relaxation times, the consid-
erations of Sec. III apply also, and we find �1 /�1

0��−2

�Wi−4/3 for Wi�1, where �1
0 is the zero shear normal

stress coefficient. Surprisingly, the proportionality �1 /�1
0

� 
̇−4/3 is predicted by experiments and a broad spectrum of
simulations,9,40–43 although the viscosity may display a shear
rate dependence different from 	p� 
̇−2/3.

The model does not yield a second normal stress coeffi-
cient, in contrast to experimental results.6,7 This is related to
negligence of excluded volume interactions and fluctuations
in hydrodynamic interactions.7 As proposed in Refs. 7, 81,
and 82 a Gaussian approximation approach yields a nonva-
nishing and negative �2. Computer simulations show that
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�2 depends on intramolecular excluded volume as well as
hydrodynamic interactions6,7,41 and on polymer
concentration.79

V. COMPARISON WITH EXPERIMENTS

Experimental results are presented in Refs. 1, 8, and 9 of
conformational, dynamical, and rheological properties of
DNA molecules of length L1=48.5 kbp ��-DNA� and L2

=185 kbp obtained by fluorescence microscopy. Staining of
DNA molecules with YOYO-1 leads to an increase of their
contour lengths such that L1=22 �m 1,9,83 and
L2=84 �m.8,9 Polymer chain retraction experiments yield
the relaxation times �1=28 s ��-DNA� and �2=251 s in a
solvent of viscosity 	=300 cP.8,9 The actual value of the
persistence length of the stained molecules is not precisely
known. The studies of Ref. 84 suggest that lp increases by a
factor of 1.32 compared to its native value of lp=50 nm.
Comparing these measurements with our FCS studies of Ref.
57, however, indicates rather a factor of approximately 1.5
than 1.3. Thus, we will use the persistence length lp

=73 nm in the following, which corresponds to pL=150 and
570, respectively. With these values, the semiflexible chain
model yields relaxation times, which are approximately four
times larger than the experimental ones. For a quantitative
comparison between the results of the theoretical model and
the experimental data, four times larger Weissenberg num-
bers are used, i.e., With=4Wiex. The same factor has been
used in Ref. 29. In Ref. 29, the factor is motivated by the
agreement of the distributions of the alignment angle. Here,
the factor seems to be suitable due to the favorable agree-
ment of the viscosities and end-to-end relaxation behavior.

In Ref. 85, the longest relaxation times of �-DNA have
been determined experimentally for various solvent viscosi-
ties. These values are in good agreement with relaxation
times calculated by the Zimm model85 as well as those ob-
tained by the current semiflexible polymer model; the latter
values are approximately 15% smaller than the Zimm times.
For unstained �-DNA at the solvent viscosity 	=300 cP,
the theoretical approaches yield relaxation times that are ap-
proximately twice as larger as the experimental value �1

=28 s obtained for YOYO-1 stained molecules. The consid-
eration of changes in length and persistence length yields the
above mentioned increase in relaxation time by a factor of
four compared to �1. This discrepancy in relaxation times
obtained by stress relaxation and chain retraction experi-
ments has already been stressed in Ref. 85. However, it can-
not be explained by changes of the persistence length, be-
cause by staining we expect an increase of persistence length
rather than a decrease, and an increasing lp leads to increas-
ing relaxation times. There seems to be no satisfactory ex-
planation for this discrepancy at the moment. If we, however,
assume that the time �1 underestimates the longest relaxation
time of the stained DNA molecule, the actual experimental
Weissenberg number would be higher, in agreement with the
theoretical assumption. Here, more experimental studies are
necessary to resolve the influence of staining on polymer
dynamics.

The inset of Fig. 6 displays tan�2�G� for the two polymer
lengths. The theoretical curves qualitatively capture the de-
cay of the experimental data, but there is a shift to large
angles by approximately 1.7 of the experimental data for the
longer polymer. However, the experimental data exhibit no
polymer length dependence, at least as far as such a conclu-
sion can be drawn from the few data points. Mesoscale hy-
drodynamic simulations of flexible polymers in dilute solu-
tion provide clear evidence for a polymer length dependence
of �G.79

The end-to-end vector relaxation behavior is presented
in Fig. 7. The experimental data show the decay of the poly-
mer extension correlation function rather than that of the
end-to-end vector. Considering this difference, the theoretical
model captures the decay of the correlation function well for
all three Weissenberg numbers. I would like to point out that
the curves of Fig. 7 are also reasonably well described by the
analytical expression �42�.

Two factors determine the decay of the correlation func-
tion, the exponential term exp�−t / �̃1� and the term, which
linearly increases with time �cf. Eq. �42��. A presentation of
the time dependence in terms of the variable t / �̃1

0, i.e., in
terms of the longest relaxation time, eliminates differences in
the longest relaxation times between experimental data and
theoretical results. However, in Fig. 7 the variable 
̇t is used,
which implies a dependence of the exponential factor on the
Weissenberg number. Hence, for a consistent comparison,
the experimental value is taken for Wi. The term, which de-
pends linearly on time is important for Wi�1 and deter-
mines the nonexponential shape of the correlation function.
The chosen Weissenberg number is evidently suitable to de-
scribe the experimental findings.

Finally, the polymer contribution to viscosity is com-
pared in Fig. 8. Aside from the value at the largest Weissen-
berg number for �-DNA, the theoretical curves agree well
with the experimental data. The decay at large Wi is well
captured by the theoretical description, the asymptotic de-
pendence 	p�Wi−2/3 is reach for even large Weissenberg
numbers only.

In summary, the theoretical model provides an adequate
description of the nonequilibrium behavior of DNA mol-
ecules in shear flow. For certain properties, even a quantita-
tive description is achieved, if the Weissenberg number is
adequately chosen.

VI. SUMMARY AND CONCLUSIONS

In this article the conformational, dynamical, and rheo-
logical properties have been determined of a finite extensible
Gaussian semiflexible polymer model under shear flow. In
particular, the dependence of these properties on polymer
stiffness has been addressed.

The model neglects excluded volume interactions and
treats hydrodynamic interactions within the preaveraging ap-
proximation. Excluded volume interactions are certainly im-
portant for flexible polymers at low shear rates and they de-
termine the scaling behavior of such chains with respect to
their length. At large shear rates or large stiffnesses, excluded
volume interactions are less relevant although even stiff
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polymers behave increasingly flexible with increasing shear
rate, as has been shown in Sec. III A. Measurements and
simulations of the dynamics of DNA molecules and the com-
parison with the Gaussian semiflexible polymer model57–59

suggest that excluded volume interactions are of minor rel-
evance for DNA lengths �102 nm. The simulations of Ref.
3 and 9 as well as renormalization group studies21 lead to the
same conclusion. Hence, we can expect the model to reason-
ably well describe the nonequilibrium properties even to
some degree in a quantitative manner. The comparison of
various measured quantities with theoretical predictions con-
firms the expectation.

Hydrodynamic fluctuations seem to be of minor impor-
tance for most of the nonequilibrium polymer properties. Hy-
drodynamic interactions mainly affect the relaxation times,
the longest one determines the Weissenberg number. How-
ever, hydrodynamic fluctuations are relevant, as expressed by
a nonzero second normal stress coefficient, but seem to yield
�small� higher order contributions to other quantities only.

A large stiffness does not qualitatively change the shear
rate dependent properties of semiflexible polymers. The main
difference, compared to a flexible polymer, is the lack of a
chain length dependence of these properties. They exhibit
rather universal behavior for pL�1 and d /L=const. In con-
trast to flexible polymers, the quantitative values depend on
the ratio d /L.

A comparison with experimental results suggest that the
model provides an adequate qualitative and quantitative de-
scription of semiflexible polymer behavior in shear flow. It
might be necessary to adjust certain parameters, e.g., the
Weissenberg number, to match the theoretical and experi-
mental scales, but otherwise the essence is captured of the
underlying physical interactions and mechanisms. This un-
derlines the usefulness of the model for a qualitative and
even quantitative understanding of the nonequilibrium prop-
erties of flexible and semiflexible polymers.
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