
Comment on ‘‘Diffusion and Dimer Formation of CO
Molecules Induced by Femtosecond Laser Pulses’’

In a recent Letter [1], Mehlhorn et al. reported on
femtosecond-laser induced diffusion yield YðFÞ of a single
CO molecule on Cu(111) using a scanning tunneling mi-
croscope. As a function of the absorbed fluence F, they
observed that YðFÞ exhibits a linear increase at low F
followed by a strongly nonlinear increase at high F.
They proposed that the linear increase is induced by single
electronic transitions, while the strong increase can be
described using a friction model where hot electrons trans-
fer energy to the frustrated translation (FT) mode. They
assumed the electronic friction �e to depend on the elec-
tron temperature TeðtÞ, in accordance with earlier sugges-
tions [2]. However, it was proved that frictional coupling is
temperature independent if it originates from electron-hole
pair excitation [3]. The electronic friction is defined as
�el ¼ w1!0 � w0!1, where the decay rate w1!0 and the
thermal excitation rate w0!1 between the vibrational ex-
cited state and the ground state are given by �eðnB þ 1Þ
and �enB, respectively, and where nB ¼ ½expð@!=kBTÞ �
1��1 is the Bose-Einstein distribution function. It is clear
that �e is temperature independent, even when w1!0 and
w0!1 depend on the temperature.

Here we show how one can understand the experimental
results of Ref. [1] without using a temperature-dependent
friction. We propose an indirect heating of the FT mode via
the mode coupling to the frustrated rotation (FR) mode in
addition to a direct heating of the FT mode by laser
excitation [4]. We note that for CO diffusion on a Pt(111)
indirect heating of the FT mode by the FR mode repro-
duced the experimental results of the real-time monitoring
[4,5] and two-pulse correlation [6,7].

In the mode-coupling model we have two coupled equa-
tions: dUFT=dt ¼ ½�FT þ ð�FT;FR=@!FRÞUFR�ðUel �UFTÞ
and dUFR=dt ¼ ½�FR þ ð�FR;FT=@!FTÞUFTÞ�ðUel �UFRÞ,
where Ux ¼ @!=½expð@!=kBTxÞ � 1� denotes the energy
of a harmonic oscillator corresponding to the FT and FR
modes at the temperature Tx (where x ¼ FT, FR, and el).
Without intermode coupling (i.e., �FT;FR ¼ 0), neither

heating of the FTor FR mode can explain the experimental
data of Ref. [1]. However, using the measured �FT and �FR

[8] and a suitably chosen �FT;FR the calculated YðFÞ agrees
very well with the experimental result (see Fig. 1). In this
calculation we have used the diffusion barrier height Eb ¼
87 meV, which is close to the value (97� 4 meV) de-
duced from diffusion data for CO on Cu(110) [9]. Also,
the prefactor we use (R0 ¼ 3� 1013 s�1) is close to what
one expects from Kramers theory of activated processes,
which in the present case gives R0 � !FT=2� � 1013 s�1.

To summarize, in the friction model for heat transfer one
should use a temperature-independent electronic friction.
If the friction model cannot describe the experimental data

with a temperature-independent electronic friction, the
surface reaction involves more complex processes, e.g.,
involving two anharmonically coupled adsorbate modes
as assumed above. We believe that our model with inter-
mode coupling between the FT and FR modes captures the
essential elementary process behind CO diffusion [10].
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FIG. 1 (color online). Hopping yield per pulse as a function of
fluence: experimental results (red diamond), calculated (black)
by YðFÞ ¼ �Fþ R

Rðt; FÞdt, where Rðt; FÞ ¼ R0 exp½�Eb=
kBTFTðt; FÞ� (black curve). The parameters are � ¼ 1:0� 10�9

per pulse and per J=m2 and R0 ¼ 3� 1013 s�1 and Eb ¼
87 meV, �FT ¼ 2:5� 1010 s�1, and �FR ¼ �FT;FR ¼
1� 1012 s�1.
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