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Abstract. Let M be any compact simply-connected oriented d-
dimensional smooth manifold and let F be any field. We show that
the Gerstenhaber algebra structure on the Hochschild cohomol-
ogy on the singular cochains of M , HH∗(S∗(M), S∗(M)), extends
to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra
was conjectured to exist and is expected to be isomorphic to the
Batalin-Vilkovisky algebra on the free loop space homology on M ,
H∗+d(LM) introduced by Chas and Sullivan. We also show that
the negative cyclic cohomology HC∗

−(S∗(M)) has a Lie bracket.
This Lie bracket is expected to coincide with the Chas-Sullivan
string bracket on the equivariant homology HS1

∗ (LM).
Structures d’algèbres de Batalin-Vilkovisky sur la co-

homologie de Hochschild.
Soit M une variété lisse orientée compact simplement connexe

de dimension d. Soit F un corps commutatif quelconque. Nous
montrons que la structure d’algèbre de Gerstenhaber sur la coho-
mologie de Hochschild des cochâınes singulières de M , HH∗(S∗(M), S∗(M)),
s’étend en une algèbre de Batalin-Vilkovisky. L’existence d’une
telle algèbre de Batalin-Vilkovisky était conjecturée. Il est prévu
qu’une telle algèbre soit isomorphe à l’algèbre de Batalin-Vilkovisky
sur l’homologie des lacets libres sur M , H∗+d(LM), introduite par
Chas and Sullivan. Nous montrons aussi que la cohomologie cy-
clique négative HC∗

−(S∗(M)) possède un crochet de Lie. Ce cro-
chet de Lie devrait coincider avec le crochet des cordes de Chas et
Sullivan sur l’homologie équivariante HS1

∗ (LM).

1. Introduction

Except where specified, we work over an arbitrary field F. Let M be
a compact oriented d-dimensional smooth manifold. Denote by LM :=
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map(S1,M) the free loop space on M . Chas and Sullivan [1] have
shown that the shifted free loop homology H∗+d(LM) has a structure
of Batalin-Vilkovisky algebra (Definition 8). In particular, they showed
that H∗+d(LM) is a Gerstenhaber algebra (Definition 7). On the other
hand, let A be a differential graded (unital associative) algebra. The
Hochschild cohomology of A with coefficients in A, HH∗(A,A), is a
Gerstenhaber algebra. These two Gerstenhaber algebras are expected
to be related:

Conjecture 1. (due to [1, “dictionary” p. 5] or [4]?) If M is sim-
ply connected then there is an isomorphism of Gerstenhaber algebras
H∗+d(LM) ∼= HH∗(S∗(M), S∗(M)) between the free loop space homol-
ogy and the Hochschild cohomology of the algebra of singular cochains
on M .

Félix, Thomas and Vigué-Poirrier [13, Section 7] proved that there
is a linear isomorphism of lower degree d (See notation 6 for our degree
conventions).

(2) D : HH−p−d(S∗(M), S∗(M)∨)
∼=→ HH−p(S∗(M), S∗(M)).

We prove

Theorem 3. (Theorem 22) The Connes coboundary map on HH∗(S∗(M), S∗(M)∨)
defines via the isomorphism (2) a structure of Batalin-Vilkovisky alge-
bra extending the Gerstenhaber algebra HH∗(S∗(M), S∗(M)).

Assume that M is simply-connected. Jones [19] proved that there is
an isomorphism

J : Hp+d(LM)
∼=→ HH−p−d(S∗(M), S∗(M)∨)

such that the ∆ operator of the Batalin-Vilkovisky algebra H∗+d(LM)
and Connes coboundary map B∨ on HH∗−d(S∗(M), S∗(M)∨) satisfies
J ◦∆ = B∨ ◦ J . Of course, we conjecture:

Conjecture 4. The isomorphism

D ◦ J : Hp+d(LM)
∼=→ HH−p(S∗(M), S∗(M))

is a morphism of graded algebras.

Notice that Conjecture 4 implies that the composite D ◦ J is an
isomorphism of Batalin-Vilkovisky algebras between the Chas-Sullivan
Batalin-Vilkovisky algebra and the Batalin-Vilkovisky algebra defined
by Theorem 22. Therefore Conjecture 4 implies Conjecture 1.

Cohen and Jones [4, Theorem 3] first mentioned an isomorphism of
algebras

Hp+d(LM)
∼=→ HH−p(S∗(M), S∗(M)).
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Over the reals or over the rationals, two proofs of such an isomorphism
of graded algebras have been given by Merkulov [25] and Félix, Thomas,
Vigué-Poirrier [14].

Theorem 22 comes from a general result (Propositions 11 and 12)
which shows that the Hochschild cohomology HH∗(A,A) of a differ-
ential graded algebra A which is a “symmetric algebra in the derived
category”, is a Batalin-Vilkovisky algebra. As second application of
this general result, we recover the following theorem due to Thomas
Tradler.
Theorem 5. [26, Example 2.15 and Theorem 3.1] (Corollary 19) Let
A be a symmetric algebra. Then HH∗(A,A) is a Batalin-Vilkovisky
algebra.

This theorem has been reproved and extended by many people [24,
20, 28, 5, 21, 22, 18, 8] (in chronological order). The last proof, the
proof of Eu et Schedler [8] looks similar to ours.

Thomas Tradler gave a somehow complicated proof of the previous
theorem (Corollary 19). Indeed, his goal was to prove our main theorem
(Theorem 22). In [29] or in [27], Tradler and Zeinalian proved Theo-
rem 22 but only over a field of characteristic 0 [29, “rational simplicial
chain” in the abstract] or [27, Beginning of 3.1]. Costello’s result [5,
Section 2.1] is also over a field of characteristic 0.

Over Q, we explain in Corollary 20 how to put a Batalin-Vilkovisky
algebra structure on HH∗(S∗(M ; Q), S∗(M ; Q)) from a slight general-
isation of Corollary 19 (Theorem 18). In fact both Félix, Thomas [12]
and Chen [3, Theorem 5.4] proved that the Chas-Sullivan Batalin-
Vilkovisky algebraH∗+d(LM ; Q) is isomorphic to the Batalin-Vilkovisky
algebra given by Corollary 20.

Remark that, over Q, when the manifold M is formal, a consequence
of Félix and Thomas work [12], is that H∗+d(LM) is always isomor-
phic to the Batalin-Vilkovisky algebra HH∗(H∗(M);H∗(M)) given by
Corollary 19 applied to the symmetric algebra H∗(M). Over F2, in [23],
we showed that this is not the case. The present paper seems to explain
why:

The Batalin-Vilkovisky algebra on HH∗(S∗(M), S∗(M)) given by
Theorem 22 depends of course on the algebra S∗(M) but also on a
fundamental class [m] ∈ HH−d(S∗(M), S∗(M)∨) which seems hard to
compute. This fundamental class [m] involves chain homotopies for the
commutativity of the algebra S∗(M).

The Batalin-Vilkovisky algebra on HH∗(S∗(M ; Q), S∗(M ; Q)) given
by Corollary 20, depends of
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-a commutative algebra, Sullivan’s cochain algebra of polynomial
differential forms APL(M) [10],

-and of the fundamental class [M ] ∈ Hd(APL(M)∨).
Acknowledgment: We wish to thank Jean-Claude Thomas for a dis-

cussion concerning Ginzburg’s preprint [17]. We would like also to
thank Yves Félix for explaining us the wonderful isomorphism (2).

2. Hochschild homology and cohomology

We use the graded differential algebra of [10, Chapter 3]. In particu-
lar, an element of lower degree i ∈ Z is by the classical convention [10,
p. 41-2] of upper degree −i. Differentials are of lower degree −1. All
the algebras considered in this paper, are unital and associative. Let
A be a differential graded algebra. Denote by sA the suspension of A,
(sA)i = Ai−1. Let d0 be the differential on the tensor product of com-
plexes A⊗ T (sA)⊗ A. We denote the tensor product of the elements
a ∈ A, sa1 ∈ sA, . . . , sak ∈ sA and b ∈ A by a[a1| · · · |ak]b. Let d1 be
the differential on the graded vector space A⊗ T (sA)⊗ A defined by:

d1a[a1| · · · |ak]b =(−1)|a|aa1[a2| · · · |ak]b

+
k−1∑
i=1

(−1)εia[a1| · · · |aiai+1| · · · |ak]b

− (−1)εk−1a[a1| · · · |ak−1]akb;

Here εi = |a| + |a1| + · · · + |ai| + i. The bar resolution of A, denoted
B(A;A;A), is the differential graded (A,A)-bimodule (A ⊗ T (sA) ⊗
A, d0 + d1).

Denote by Aop the opposite algebra of A. Recall that any (A,A)-
bimodule can be considered as a left (or right) A ⊗ Aop-module. The
Hochschild chain complex is the complex A⊗A⊗Aop B(A;A;A) denoted
C∗(A,A). Explicitly C∗(A,A) is the complex (A⊗ T (sA), d0 + d1) with
d0 obtained by tensorization and [6, (10) p. 78]

d1a[a1| · · · |ak] =(−1)|a|aa1[a2| · · · |ak]

+
k−1∑
i=1

(−1)εia[a1| · · · |aiai+1| · · · |ak]

− (−1)|sak|εk−1aka[a1| · · · |ak−1].

The Hochschild homology is the homology H of the Hochschild chain
complex:

HH∗(A,A) := H(C∗(A,A)).
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LetM be a differential graded (A,A)-bimodule. The Hochschild cochain
complex ofA with coefficients inM is the complex HomA⊗Aop(B(A;A;A),M)
denoted C∗(A,M). Explicitly C∗(A,M) is the complex

(Hom(T (sA),M), D0 +D1).

Here for f ∈ Hom(T (sA),M), D0(f)([ ]) = dM(f([ ])), D1(f)([ ]) = 0,
and for k ≥ 1, we have:

D0(f)([a1|a2|...|ak]) = dM(f ([a1|a2|...|ak]))−
k∑
i=1

(−1)εif([a1|...|dAai|...|ak])

and

D1(f)([a1|a2|...|ak]) = −(−1)|sa1| |f |a1f([a2|...|ak])

−
∑k

i=2(−1)εif([a1|...|ai−1ai|...|ak])

+(−1)εkf([a1|a2|...|ak−1])ak ,

where εi = |f |+ |sa1|+ |sa2|+ ...+ |sai−1|.
The Hochschild cohomology of A with coefficients in M is

HH∗(A,M) = H(C∗(A,M)).

Since we work over an arbitrary field F, the bar resolutionB(A;A;A)
'→

A is a semi-free resolution of A as an (A,A)-bimodule (same proof
as in the normalized case [10, Proposition 19.2(ii)]). Therefore the
Hochschild homology of A is the differential torsion product

HH∗(A,A) = TorA⊗A
op

(A,A)

and the Hochschild cohomology is

HH∗(A,M) = ExtA⊗Aop(A,M)

where the latter denotes the differential ”Ext” in the sense of J.C.
Moore (cf [9, Appendix]).

Notation 6. Let n ∈ Z be an integer. We denote by HHn(A,M) the
set [HH∗(A,M)]n of homogeneous elements of upper degree n in the
graded vector space HH∗(A,M). We denote also by HHn(A,A) the set
[HH∗(A,A)]n of homogeneous elements of lower degree n in the graded
vector space HH∗(A,A). Therefore, HH∗(A,M) is the upper graded
vector space {HHn(A,M)}n∈Z and HH∗(A,A) is the lower graded vec-
tor space {HHn(A,A)}n∈Z. If A and M are concentrated in degree 0,
theses notations coincide with the usual ones.

Gerstenhaber proved that the Hochschild cohomology of A with co-
efficients in A, HH∗(A,A), is a Gerstenhaber algebra [16].
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Definition 7. A Gerstenhaber algebra is a commutative graded algebra
A equipped with a linear map {−,−} : Ai ⊗ Aj → Ai+j+1 of degree 1
such that:
a) the bracket {−,−} gives A a structure of graded Lie algebra of
degree 1. This means that for each a, b and c ∈ A
{a, b} = −(−1)(|a|+1)(|b|+1){b, a} and
{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}.

b) the product and the Lie bracket satisfy the following relation called
the Poisson relation:

{a, bc} = {a, b}c+ (−1)(|a|+1)|b|b{a, c}.

In this paper, we show that for some algebras A, the Gerstenhaber
algebra structure of HH∗(A,A) extends to a Batalin-Vilkovisky alge-
bra.

Definition 8. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra
A equipped with a degree 1 linear map ∆ : Ai → Ai+1 such that
∆ ◦∆ = 0 and such that the bracket is given by

(9) {a, b} = (−1)|a|
(
∆(a ∪ b)− (∆a) ∪ b− (−1)|a|a ∪ (∆b)

)
for a and b ∈ A.

3. The isomorphism between HH∗(A,A) and HH∗(A,A∨)

Proposition 11 gives an isomorphism between the Hochschild coho-
mology of A with coefficients in A, HH∗(A,A) and the Hochschild
cohomology of A with coefficients in the dual A∨, HH∗(A,A∨). To
obtain an isomorphism HH∗(A,A) ∼= HH∗(A,A∨), one could ask for

an isomorphism or a quasi-isomorphism of A-bimodules Θ : A
'→ A∨.

But this condition is too strong. Instead, we are going to ask just for
a derived isomorphism of (A,A)-bimodules m from A to A∨.

Let m be any derived morphism of (A,A)-bimodules from A to A∨.
The hypothesis of Proposition 11 is a sufficient (and in fact necessary)
condition for m to be a quasi-isomorphism (=isomorphism in the de-
rived category).

This method for obtaining an isomorphismHH∗(A,A) ∼= HH∗(A,A∨)
is a generalisation of the method used by Félix, Thomas and Vigué-
Poirrier in the case A = S∗(M) to obtain the isomorphism (2).

Then we show that this isomorphism looks like a Poincaré duality
isomorphism: this isomorphism is given by the action of the algebra
HH∗(A,A) on a fundamental class [m] ∈ HH∗(A,A∨).
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Let us first recall the definition of the action ofHH∗(A,A) onHH∗(A,A∨).
Let A be a (differential graded) algebra. Let M and N be two A-
bimodules. Let f ∈ C∗(A,M) and g ∈ C∗(A,N). We denote by
⊗A(f, g) ∈ C∗(A,M ⊗A N) the linear map defined by

⊗A(f, g)([a1| . . . |an]) =
n∑
p=0

±f([a1| . . . |ap])⊗A g([ap+1| . . . |an]).

Here ± is the Koszul sign (−1)|g|(|a1|+...|+ap|+p). This define a natural
morphism of complexes

⊗A : C∗(A,M)⊗ C∗(A,N)→ C∗(A,M ⊗A N)

Therefore, in homology, we have a natural morphism

H∗(⊗A) : HH∗(A,M)⊗HH∗(A,N)→ HH∗(A,M ⊗A N)

If we let take A = M , and use the isomorphism of A-bimodules

A⊗A N
∼=→ N, a⊗A n 7→ a.n,

the composite

(10) C∗(A,A)⊗ C∗(A,N)
⊗A→ C∗(A,A⊗A N) ∼= C∗(A,N)

is a left action of C∗(A,A) on C∗(A,N). In the particular case, A =
M = N , this composite is the usual cup product on C∗(A,A) denoted
∪.

Denote by A∨ the dual of A. Let η : F → A be the unit of the
algebra. Then we have a natural map

HH∗(η,A∨) : HH∗(A,A∨)→ HH∗(F, A∨) ∼= H(A∨).

Proposition 11. Let [m] ∈ HH−d(A,A∨) be an element of lower de-
gree d such that the morphism of left H(A)-modules

H(A)
∼=→ H(A∨), a 7→ a.HH−d(η, A∨)([m])

is an isomorphism. Then the action of HH∗(A,A) on [m] ∈ HH−d(A,A∨)
gives the isomorphism of lower degree d of HH∗(A,A)-modules

HHp(A,A)
∼=→ HHp−d(A,A∨), a 7→ a · [m].

Proof. Let εA : P
'→ A be a resolution ofA as left A⊗Aop-semifree mod-

ule. Let sA : A
'
↪→ P be a morphism of left A-modules which is a sec-

tion of εA. The morphism HH∗(η, A∨) : HH∗(A,A∨) → HH∗(F, A∨)
is equal to the following composite of

HH∗(A,A∨) := ExtA⊗Aop(A,A
∨)

Exti1 (A,A∨)
→ ExtA(A,A∨)
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and

ExtA(A,A∨)
Extη(η,A∨)→∼= ExtF(F, A∨) =: HH∗(F, A∨)

where i1 : A ↪→ A⊗ Aop is the inclusion of the first factor.
Therefore, HH∗(η, A∨) is the map induced in homology by the com-

posite

HomA⊗Aop(P,A
∨)

Hom(sA,A
∨)→ HomA(A,A∨)

ev(1A)→∼= A∨.

where ev(1A) is the evaluation at the unit 1A ∈ A. This composite maps
the cycle m ∈ HomA⊗Aop(P,A

∨) to m ◦ sA and then to (m ◦ sA)(1A).
Since m ◦ sA : A→ A∨ maps a ∈ A to a · ((m ◦ sA)(1)), by hypothesis,
m ◦ sA is a quasi-isomorphism. Since sA is a quasi-isomorphism, m :

P
'→ A∨ is also a quasi-isomorphism.
By applying the functorHomA⊗Aop(P,−) to the two quasi-isomorphisms

of A-bimodules

A
εA←
'
P

m→
'
A∨,

we obtain the quasi-isomorphism of complexes

HomA⊗Aop(P,A)
εA←
'
HomA⊗Aop(P, P )

HomA⊗Aop (P,m)
→
'

HomA⊗Aop(P,A
∨).

By applying homology, we get the desired isomorphism, since the action
of HH∗(A,A) on HH∗(A,A∨) is induced by the composition map

HomA⊗Aop(P,A
∨)⊗HomA⊗Aop(P, P )→ HomA⊗Aop(P,A

∨)

m⊗ f 7→ m ◦ f = HomA⊗Aop(P,m)(f)

Alternatively, the two isomorphisms

HH∗(A,A)
HH∗(A,εA)−1

→∼= HH∗(A,P )
HH∗(A,m)→∼= HH∗(A,A∨)

maps [εA] (which is the unit of HH∗(A,A)) to [idP : P → P ] and then
to [m]. They are morphisms of HH∗(A,A)-modules since

H∗(⊗A) : HH∗(A,A)⊗HH∗(A,N)→ HH∗(A,A⊗A N)

is natural with respect to N . �

4. Batalin-Vilkovisky algebra structures on Hochschild
cohomology

In this section, we explain when an isomorphism HH∗(A,A) ∼=
HH∗(A,A∨) gives a Batalin-Vilkovisky algebra structure on the Ger-
stenhaber algebra HH∗(A,A). Our proof relies on the proof of a similar
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result due to Ginzburg [17, Theorem 3.4.3 (ii)]. Ginzburg basically ex-
plains when an isomorphism HH∗(A,A) ∼= HH∗(A,A) gives a Batalin-
Vilkovisky algebra structure on HH∗(A,A).

Denote by B Connes boundary in the Hochschild complex C∗(A,A)
and by B∨ its dual in C∗(A,A∨) ∼= C∗(A,A)∨. We prove:

Proposition 12. Let [m] ∈ HH−d(A,A∨) such that the morphism of
HH∗(A,A)-modules

HHp(A,A)
∼=→ HHp−d(A,A∨), a 7→ a.[m]

is an isomorphism. If H∗(B
∨)([m]) = 0 then the Gerstenhaber algebra

HH∗(A,A) equipped with H∗(B
∨) is a Batalin-Vilkovisky algebra.

As we will see Proposition 12 is almost the dual of the following
Proposition due to Victor Ginzburg. Recall first that the Hochschild
cohomology of a (differential graded) algebra, acts on its Hochschild
homology [6, equation (18) and Proposition 2.6 p. 82]

HHp(A,A)⊗HHd(A,A)→ HHd−p(A,A)

η ⊗ c 7→ iη(c) = η.c

In non-commutative geometry, the action of η ∈ HH∗(A,A) on c ∈
HH∗(A,A) is denoted by iη(c).
Proposition 13. [17, Theorem 3.4.3 (ii)] Let c ∈ HHd(A,A) such
that the morphism of HH∗(A,A)-modules

HHp(A,A)
∼=→ HHd−p(A,A), η 7→ η.c

is an isomorphism. If H∗(B)(c) = 0 then the Gerstenhaber algebra
HH∗(A,A) equipped with H∗(B) is a Batalin-Vilkovisky algebra.

Remark 14. The condition H∗(B)(c) = 0 does not appear in [17, Theo-
rem 3.4.3 (ii)] since according to Ginzburg, this condition is automati-
cally satisfied for a Calabi-Yau algebra of dimension d. In both Propo-
sitions 12 and 13, if the condition H∗(B

∨)([m]) = 0 or H∗(B)(c) = 0 is
not satisfied, ∆(1) can be non zero and the relation (9) is replaced by
the more general relation

{ξ, η} = (−1)|ξ|[∆(ξ ∪ η)−
(−1)|ξ|ξ ∪ (∆η)− (∆ξ) ∪ η + (−1)|ξ|+|η|ξ ∪ η ∪ (∆1)].

Proof of Proposition 13. By definition, the ∆ operator on HH∗(A,A)
is given by (∆a).c := B(a.c) for any a ∈ HH∗(A,A). Therefore the
proposition follows from the following Lemma due to Victor Ginzburg.

�
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Lemma 15. [17, formula (9.3.2)] Let A be a differential graded algebra.
For any η, ξ ∈ HH∗(A,A) and c ∈ HH∗(A,A),

{ξ, η}.c = (−1)|ξ|B [(ξ ∪ η).c]− ξ.B(η.c)

+ (−1)(|η|+1)(|ξ|+1)η.B(ξ.c) + (−1)|η|(ξ ∪ η).B(c).

Proof. Let us recall the proof of Victor Ginzburg. Denote by

HHp(A,A)⊗HHj(A,A)→ HHj−p+1(A,A)

η ⊗ a 7→ Lη(a)

the action of the suspended graded Lie algebraHH∗(A,A) onHH∗(A,A).
Gelfand, Daletski and Tsygan [15] proved that the Gerstenhaber alge-
bra HH∗(A,A) and Connes boundary map B on HH∗(A,A) form a
calculus [6, p. 93]. Therefore, we have the following equalities

i{ξ,η} = {Lξ, iη} = Lξ ◦ iη − (−1)(|ξ|+1)|η|iη ◦ Lξ
= (−1)|ξ|{B, iξ} ◦ iη − (−1)(|ξ|+1)|η|iη ◦ (−1)|ξ|{B, iξ}

= (−1)|ξ|B◦iξ◦iη−iξ◦B◦iη+(−1)(|η|+1)(|ξ|+1)iη◦B◦iξ+(−1)|η|(|ξ|+1)iη◦iξ◦B
= (−1)|ξ|B◦iξ∪η−iξ◦B◦iη+(−1)(|η|+1)(|ξ|+1)iη◦B◦iξ+(−1)|η|iξ∪η◦B.

By applying this equality of operators to c, we obtain the Lemma. �

We now prove the following Lemma which is the dual of Lemma 15.

Lemma 16. Let A be a differential graded algebra. For any η, ξ ∈
HH∗(A,A) and m ∈ HH∗(A,A∨),

{ξ, η}.m = (−1)|ξ|B∨ [(ξ ∪ η).m]− ξ.B∨(η.m)

+ (−1)(|η|+1)(|ξ|+1)η.B∨(ξ.m) + (−1)|η|(ξ ∪ η).B∨(m).

Proof. The action of HH∗(A,A) on HH∗(A,A) comes from a (right)
action of the C∗(A,A) on C∗(A,A) given by [6, (18) p. 82]

C∗(A,A)⊗ C∗(A,A)→ C∗(A,A)

(m[a1| . . . |an], f) 7→ if (m[a1| . . . |an]) :=
n∑
p=0

±(m.f [a1| . . . |ap])[ap+1| . . . |an].

Here ± is the Koszul sign (−1)|f |(|a1|+...|+an|+n). Therefore C∗(A,A) acts
on the left on the dual C∗(A,A)∨. Explicitly, the action is given by

C∗(A,A)⊗ C∗(A,A)∨ → C∗(A,A)∨

(f, ϕ) 7→ (f.ϕ)
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defined by

(f.ϕ)(m[a1| . . . |an]) = (−1)|f ||ϕ|+|f ||m|
n∑
p=0

ϕ ((m.f [a1| . . . |ap])[ap+1| . . . |an]) .

Through the canonical isomorphism C∗(A,A∨)
∼=→ C∗(A,A)∨, g 7→ ϕ

defined by

ϕ(m[a1| . . . |an]) := (−1)|m|(|a1|+...|an|+n)(g[a1| . . . |an])(m),

this left action coincides with the left action defined by the compos-
ite (10).

Let us be precise about our sign convention: we defineB∨ byB∨(m) :=
(−1)|m|m ◦ B. Denote by ε the sign (−1)|m|(|ξ|+|η|+1). For any m ∈
HH∗(A,A)∨, we have the following equalities:

m({ξ, η}.c) = ε({ξ, η}.m)(c),

(−1)|ξ|m◦B[(ξ∪η).c] = (−1)|ξ|+|m|[B∨(m)][(ξ∪η).c] = ε(−1)|η|[(ξ∪η).B∨(m)](c),

−m[ξ.B(η.c)] = (−1)1+|m||ξ|[ξ.m] ◦B(η.c) =

(−1)1+|m||ξ|+|ξ|+|m|[B∨(ξ.m)](η.c) = ε(−1)(|η|+1)(|ξ|+1)[η.B∨(ξ.m)](c),

by exchanging ξ and η,

(−1)(|η|+1)(|ξ|+1)m[η.B(ξ.c)] = −ε[ξ.B∨(η.m)](c),

(−1)|η|m[(ξ ∪ η).B(c)] = ε(−1)|η|+|m|[(ξ ∪ η).m] ◦B(c) =

ε(−1)|ξ|B∨[(ξ ∪ η).m](c).

Therefore by evaluating the linear form m ∈ HH∗(A,A)∨ on the terms
of the equation given by Lemma 15, we obtain the desired equality. �

Remark 17. The equality in Lemma 16 is the same as the equality
in Lemma 15. In fact, alternatively, to prove Lemma 16, we could
have proved that the Gerstenhaber algebra HH∗(A,A) and the dual
of Connes boundary map B∨ on HH∗(A,A∨) form a calculus. Indeed,
in the proof of Lemma 15, we have remarked that the desired equality
holds for any calculus.

Proof of Proposition 12. By definition the ∆ operator on HH∗(A,A)
is given by (∆a).m := B∨(a.m) for any a ∈ HH∗(A,A). Therefore the
proposition follows from Lemma 16. �
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5. Applications

As first application of Proposition 12, we show

Theorem 18. Let A be an algebra equipped with a degree d quasi-

isomorphism of A-bimodules Θ : A
'→ A∨ between A and its dual

Hom(A,F). Then the Connes coboundary map on HH∗(A,A∨) de-

fines via the isomorphism HH∗(A,Θ) : HHp(A,A)
∼=→ HHp−d(A,A∨)

a structure of Batalin-Vilkovisky algebra on the Gerstenhaber algebra
HH∗(A,A).

In representation theory [7], an (ungraded) algebra A is symmetric

if A is equipped with an isomorphism of A-bimodules Θ : A
∼=→ A∨

between A and its dual Hom(A,F). The following Corollary is implicit
in [26] and was for the first time explicited in [24, Theorem 1.6].
Corollary 19. [26, 24] Let A be a symmetric algebra. Then the Ger-
stenhaber algebra HH∗(A,A) [16] is a Batalin-Vilkovisky algebra.

In [20] or [28, Corollary 3.4] or [5, Section 1.4] or [21, Theorem B] or
[22, Section 11.6] or [18], this Batalin-Vilkovisky algebra structure on
HH∗(A,A) extends to a structure of algebra on the Hochschild cochain
complex C∗(A,A) over various operads or PROPs: the so-called cyclic
Deligne conjecture.

Proof of Theorem 18. Let εA : P := B(A;A;A)
'→ A be the bar res-

olution of A. Denote by m the composite P
εA→
'
A

Θ→
'
A∨. Since m

commutes with the differential, m is a cycle in HomA⊗Aop(P,A
∨). As

we saw in the proof of Proposition 11, the composite HH∗(A,m) ◦
HH∗(A, εA)−1 :

HH∗(A,A)
HH∗(A,εA)←∼= HH∗(A,P )

HH∗(A,m)→∼= HH∗(A,A∨)

coincides with the morphism of left HH∗(A,A)-modules

HHp(A,A)
∼=→ HHp−d(A,A∨), a 7→ a ·m.

By definition of m, this composite is also HH∗(A,Θ).
Denote by by εBA : TsA � F the canonical projection whose kernel

is T+sA. Since εA : B(A;A;A) � A is the composite of A⊗ εBA ⊗ A
and of the multiplication on A

A⊗ TsA⊗ A � A⊗ F⊗ A ∼= A⊗ A � A,

the canonical isomorphisms of complexes

HomA⊗Aop(B(A;A;A), A∨) ∼= C∗(A,A∨) ∼= C∗(A,A)∨
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map m to the linear form on C∗(A,A):

Θ(1)⊗ εBA : A⊗ TsA � F⊗ F ∼= F.

Connes (normalized or not) boundary map B : C∗(A,A) → C∗(A,A)
factorizes through A⊗T+sA. So B∨(Θ(1)⊗εBA) = ±(Θ(1)⊗εBA)◦B =
0. Therefore, we can apply Proposition 12.

Remark: In the case of Corollary 19, m corresponds to a trace Θ(1) ∈
C0(A,A∨). Since H(B∨) : HHp(A,A∨) → HHp−1(A,A∨) decreases
(upper) degrees and HHp(A,A∨) = 0 for p < 0, it is obvious that
H(B∨)(Θ(1)) = 0. �

Working, with rational coefficients, we easily obtain
Corollary 20. [29] The Hochschild cohomology

HH∗(S∗(M ; Q), S∗(M ; Q)) ∼= HH∗−d(S∗(M ; Q), S∗(M ; Q)∨)

is a Batalin-Vilkovisky algebra which extends the Gerstenhaber algebra
from [16].

Tradler and Zeinalian [29] give a proof of this result. Here is a
shorter proof, although we don’t claim that we have obtained the same
Batalin-Vilkovisky algebra.

Proof of Corollary 20. Since we are working over Q, there exists quasi-
isomorphisms of algebras [10, Corollary 10.10]

S∗(M ; Q)
'→ D(M)

'← APL(M)

where APL(M) is a commutative (differential graded) algebra. Since
the Gerstenhaber algebra structure on Hochschild cohomology is pre-
served by quasi-isomorphism of algebras [11, Theorem 3], we obtain an
isomorphism of Gerstenhaber algebras

HH∗(S∗(M ; Q), S∗(M ; Q)) ∼= HH∗(APL(M), APL(M)).

Since H(APL(M)) ∼= H∗(M ; Q), Poincaré duality induces a quasi-
isomorphism of APL(M)-modules

APL(M)
'→ APL(M)∨.

Since the algebra APL(M) is commutative, this is in fact a quasi-
isomorphism of APL(M)-bimodules. By applying Theorem 18, we ob-
tain that

HH∗(APL(M), APL(M)) ∼= HH∗−d(APL(M), APL(M)∨)

is a Batalin-Vilkovisky algebra. �
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In [12] and [3, Theorem 5.4], it is shown that the Batalin-Vilkovisky
algebraHp+d(LM ; Q) of Chas and Sullivan is isomorphic to the Batalin-
Vilkovisky algebra on

HH−p(S∗(M ; Q), S∗(M ; Q)) ∼= HH−p−d(APL(M), APL(M)∨).

given by Corollary 20. Note that this Batalin-Vilkovisky algebra on
HH∗(APL(M), APL(M)) depends only of the commutative algebraAPL(M)
and of the fundamental class [M ] ∈ Hd(APL(M)∨) ∼= Hd(M). So this
Batalin-Vilkovisky algebra can be computed using Sullivan models. On
the contrary, the Batalin-Vilkovisky algebra given by our main theorem
(Theorem 22) seems hard to compute. As we would like to emphasize
in this paper, the rational case is much more simple than the case of a
field F of characteristic p different from 0. Nevertheless, we expect that
the Batalin-Vilkovisky algebra given by Corollary 20 coincides with the
Batalin-Vilkovisky algebra given by our main theorem (Theorem 22)
in the case of the field Q.

Recall the following theorem due to Félix, Thomas and Vigué-Poirrier.
Theorem 21. [13, Theorem 13] Let M be a compact connected ori-
ented d-dimensional smooth manifold. Then there is an isomorphism
of lower degree d

D−1 : HHp(S∗(M), S∗(M))
∼=→ HHp−d(S∗(M), S∗(M)∨).

As second application of Propositions 11 and 12, we will recover the
isomorphism of Félix, Thomas and Vigué-Poirrier and prove our main
theorem:

Theorem 22. Let M be a compact connected oriented d-dimensional
smooth manifold. Let [M ] ∈ Hd(M) be its fundamental class. Then

1) For any a ∈ HH∗(S∗(M), S∗(M)), the image of a by D−1 is given
by the action of a on (J ◦H∗(s))([M ]):

D−1(a) = a · (J ◦H∗(s))([M ]).

2) The Gerstenhaber algebra structure on HH∗(S∗(M), S∗(M)) and
Connes coboundary map H(B∨)) on HH∗(S∗(M), S∗(M)∨) defines via
the isomorphism D−1 a structure of Batalin-Vilkovisky algebra.

Here s denotes s : M ↪→ LM the inclusion of the constant loops
into LM . Recall that J : H∗(LM) → HH∗(S∗(M), S∗(M)∨) is the
morphism introduced by Jones in [19]. If M is supposed to be simply
connected, then J is an isomorphism.

Proof of Theorem 21 and of Theorem 22. We first follow basically [13,
Section 7]. Denote by ev : LM � M , l 7→ l(0) the evaluation map.
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The morphism J of Jones fits into the commutative triangle.

H∗(LM)
J //

H∗(ev) %%LLLLLLLLLL
HH∗(S∗(M), S∗(M)∨)

HH∗(η,S∗(M)∨)uullllllllllllll

H∗(M)

Since s is a section of the evaluation map ev, J ◦H∗(s) is a section of
HH∗(η, S∗(M)∨). Therefore HH∗(η, S∗(M)∨) ◦ J ◦H∗(s)([M ]) = [M ].

By Poincaré duality, the composite of the two morphisms of H∗(M)-
module

H∗(M)
∩[M ]→ H∗(M) ∼= H(S∗(M)∨), a 7→ a ∩ [M ] 7→ a.[M ].

is an isomorphism of lower degree d. Therefore by applying Proposi-
tion 11 to [m] := J ◦H∗(s)([M ]), we obtain Theorem 21 and part 1) of
Theorem 22.

Consider M equipped with the trivial S1-action. The section s :
M ↪→ LM is S1-equivariant. Therefore ∆ (H∗(s)([M ])) = 0. Recall
that the Jones morphism J satisfies J ◦ ∆ = H∗(B

∨) ◦ J . Therefore,
since (H∗(B

∨) ◦ J ◦ H∗(s))([M ]) = 0, by applying Proposition 12, we
obtain part 2) of Theorem 22. �

Remark 23. Part 1) of Theorem 22 means exactly that the morphism

D−1 : HHp(S∗(M), S∗(M))
∼=→ HHp−d(S∗(M), S∗(M)∨)

is the unique morphism of HH∗(S∗(M), S∗(M))-modules such that the
composite

J−1 ◦ D−1 : HH−p(S∗(M), S∗(M))
∼=→ Hp+d(LM)

respects the units of the algebras. We conjecture (Conjecture 4) that
J−1 ◦ D−1 respects also the products.

In [2] together with David Chataur, we give a third application of
Propositions 11 and 12:

Theorem 24. [2, Theorem 24] Let G be a connected compact Lie group
of dimension d. Denote by S∗(G) the algebra of singular chains of G.
Consider Connes coboundary map H(B∨) on the Hochschild cohomol-
ogy of S∗(G) with coefficients in its dual, HH∗(S∗(G);S∗(G)). Then
there is an isomorphism of graded vector spaces of upper degree d

D−1 : HHp(S∗(G);S∗(G))
∼=→ HHp+d(S∗(G);S∗(G))

such that the Gerstenhaber algebra HH∗(S∗(G);S∗(G)) equipped with
the operator ∆ = D ◦H(B∨) ◦ D−1 is a Batalin-Vilkovisky algebra.
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6. cyclic homology

In this section, we prove

Theorem 25. Let M be a compact oriented smooth d-dimensional
manifold. Then the negative cyclic cohomology on the singular cochains
of M , HC∗−(S∗(M)), is a graded Lie algebra of lower degree 2− d.

If M is simply-connected, Jones [19] proved that there is an isomor-
phism

HS1

∗ (LM)
∼=→ HC∗−(S∗(M)).

In [1], Chas and Sullivan defined a Lie bracket, called the string bracket

{ , } : HS1

p (LM)⊗HS1

q (LM)→ HS1

p+q+2−d(LM)

Of course, we expect the two a priori different brackets to be related:

Conjecture 26. The Jones isomorphism

HS1

∗ (LM)
∼=→ HC∗−(S∗(M))

is an isomorphism of graded Lie algebras between Chas-Sullivan string
bracket and the Lie bracket defined in Theorem 25.

Theorem 25 follows directly from Theorem 22 and from the following
proposition. In [24, Corollary 1.7 and Section 7], we proved that if A is
a symmetric algebra then its negative cyclic cohomology HC∗−(A) is a
graded Lie algebra of lower degree 2. In fact, we proved more generally

Proposition 27. If the Hochschild cohomology of a (differential graded)
algebra A, HH∗(A,A∨), equipped with H∗(B

∨), has a Batalin-Vilkovisky
algebra structure of degree −d then its negative cyclic cohomology HC∗−(A)
is a graded Lie algebra of lower degree 2-d.

Proof. Apply [24, Proposition 7.1] to the mixed complex C∗(A,A∨)
(desuspended d-times in order to take into account the degree d shift).
By definition, HC∗−(A) is the differential torsion product

TorH∗(S
1)(C∗(A,A∨),F). �

Another interesting particular case of [24, Proposition 7.1] is the
following proposition.

Proposition 28. If the Hochschild homology of an algebra A, HH∗(A,A),
equipped with Connes boundary map B, has a Batalin-Vilkovisky alge-
bra structure then its cyclic homology HC∗(A) is a graded Lie algebra
of lower degree 2.
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Proof. Apply [24, Proposition 7.1] to the mixed complex C∗(A,A). By
definition, HC∗(A) is the differential torsion product

TorH∗(S
1)(C∗(A,A),F). �

Remark that in fact, these graded Lie algebra structures extend to
Lie∞-algebra structures like the Chas-Sullivan string bracket [1, The-
orem 6.2 and Corollary 6.3].

Chas-Sullivan string bracket is defined using Gysin long exact se-
quence. The bracket given by Theorem 25 is defined similarly using
Connes long exact sequence. Jones [19] proved that Gysin and Connes
long exact sequences are isomorphic. Therefore Conjecture 4 implies
Conjecture 26, since as we explained in the introduction, Conjecture 4
implies that the Jones isomorphism

J : Hp+d(LM)
∼=→ HH−p−d(S∗(M), S∗(M)∨)

is an isomorphism of Batalin-Vilkovisky algebras.
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