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ABSTRACT

In this paper we propose a method for computing JPEG quantization matrices for a given mean square error or

PSNR. Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using

a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired

PSNR and/or definition script, reducing cost.

Firstly, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this

model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may

be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints

determined by the JPEG standard and visual criteria.

Secondly, we study the JPEG standard progressive operation mode from a quantization based approach. A

relationship between the measured image quality at a given stage of the coding process and a quantization matrix is

found. Thus, the definition script construction problem can be reduced to a quantization problem.

Simulations show that our method generates better quantization matrices than the classical method based on

scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB.

This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of

stages and removing small stages that do not contribute during the decoding process with a noticeable image quality

improvement.

Keywords: Image Compression, Progressive Image Transmission, JPEG Standard, Quantization Matrices, Defini-

tion Scripts

1. INTRODUCTION

Image compression is a fast-growing area in communications. The main goal of image compression is to reduce storage

and transmission time requirements of on-demand applications such as Internet browsers or image manipulation

programs. Image compression systems can be classified as lossless or lossy, depending on whether or not the original

image can be exactly recovered from the compressed image. Unlike lossless systems, lossy systems exploit the



properties of the human visual system, such as different frequency sensitivity, to obtain higher compression ratios.

Moreover, lossy compression systems allow the user to establish a criterion between compression ratio and image

quality. Here arises an important question: how can the user specify image quality or compression ratio before

compressing such image? In this paper we solve the first problem, allowing the user to specify a desired MSE (or

PSNR) for a given image.

The JPEG standard 1,2 has become the de facto standard for lossy image compression systems, owing to its

properties: efficiency, symmetry and completeness. Both image quality and compression ratio are determined by

the quantization matrices used in the compression process, which are stored within the JPEG file. The JPEG

standard provides a default quantization matrix which produces a medium-to-high image quality and a sufficiently

high compression ratio for most images. The quantization matrix is usually multiplied by a scalar (the quality factor)

to obtain different image qualities and compression ratios. This method is known as the classical scaling method.

Since there is not a clear relationship between the JPEG quality factor and the decompressed image quality,

the user is obliged to try several quality factors until one of them fits his requirements of image quality and/or

compression ratio. This is computationally expensive because the image must be compressed, then decompressed

and, finally, MSE has to be measured in order to know image quality, Instead of this trial and error procedure, we

present a method based on a Laplacian model which allows the user to obtain a quantization matrix for a given MSE

(or PSNR) at a reduced cost when compared to the trial and error procedure.

One of the most powerful capabilities of the JPEG standard is provided through the progressive operation mode,

which is capable of coding an image using several passes, with increasing image quality produced at each pass. An

initial coarse image is decoded in a short time, and then it is refined in each pass until a final image is achieved.

Common applications such as Internet browsers incorporate progressive encoding to reduce the download time of

web pages. The most widespread JPEG software library supporting progressive operation mode is provided by the

Independent JPEG Group3.

Progressive operation mode is controlled through the use of a definition script. A definition script is a list of

bands or scans, where the i-th band contains information about the coefficients and bit planes that will be sent in the

i-th pass. This may be too complicated for non-experienced users, so a default definition script is usually provided

by the applications requiring progressive operation mode. Although this default script may achieve good results for

basic usage of the progressive operation mode, it will probably not satisfy special user requirement. The method

presented in this paper can be employed to construct and evaluate several definition scripts for a given image and a

final image quality or sequence of image qualities.

This paper is organized as follows. Section 2 describes uniform quantization of Laplacian sources. Section

3 describes the JPEG standard progressive operation mode, considering it as a quantization problem. Section

4 establishes a relationship between the quantization error of a Laplacian source and the error measure used to

compute the quality of the compressed image. The matrix construction algorithm is described in Section 5, and

several experiments using the JPEG standard monochrome corpus set are also presented here. Algorithms for

definition script construction and evaluation are described in Section 6 and several examples of definition scripts are

evaluated. Finally, conclusions and suggestions for future research are given in Section 7.



2. UNIFORM QUANTIZATION OF LAPLACIAN SOURCES

Let X be a zero mean Laplacian random variable, and X̃ be the uniformly quantized version of X using a step size

Q. Let X ′ denote the reconstructed version of X using uniform quantization. The mean square error (MSE) due to

uniform quantization is defined as

MSE = E[(X −X ′)2] =

∞∫
−∞

(x− x′)2fX(x) dx (1)

where

fX(x) =
1

σ
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Q
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⌋
, X ′ = QX̃. (2)

Notice that in this case we are not trying to find an optimal quantizer 4,5 but to study the effects of uniform

quantization on a Laplacian source. An analytical expression for uniform quantization error? may be found by

decomposing Eq. (1) in subintervals of size Q specified using the different integer values q that X̃ can take. Then,

MSE(Q, σ) = σ2 − Q
√
2σe

− Q

σ
√

2

1− e−
Q

√
2

σ

. (3)

2.1. Computing Q for a given MSE

Our principal goal is to obtain a method for computing the quantization factor Q needed to achieve a given MSE

for a zero mean Laplacian source with variance σ2. Solving Eq. (3) for Q yields

Q(MSE, σ) = σ
√
2F−1

(
1− MSE

σ2

)
(4)

where F (t) = t/ sinh(t) is a smooth decreasing function in the interval [0,∞). A single zero for F (t) = C can be

easily found using a numerical method such as Newton-Raphson. Usually, no more than a few iterations are needed

to obtain a good solution, except when t is almost zero or t is rather large. In order to avoid this problem we compute

t from x = F (t) as follows

t =


0 if x > 0.999

17.363 if x < 10−6

F−1(x) otherwise.

(5)

It is very important to note in Eq. (4) that MSE cannot be greater than σ2 (the maximum variance of the

quantized variable is limited by the variance of the Laplacian source). Thus, F−1(x) has only to be computed for

positive values of x. The fact that 0 ≤MSE ≤ σ2 is a constraint that has to be taken into account when computing

Q for a desired MSE. Additionally, there are more constraints due to the JPEG standard, such as those imposed by

quantization values, as shown in Section 4.3.



3. JPEG STANDARD OPERATION MODES

The JPEG standard1,2 defines four operation modes: lossless, sequential, progressive and hierarchical. The sequential

mode encodes an image in a single pass, while the progressive mode uses several passes, where each successive pass

increases image quality.

In the JPEG standard, the input image is segmented into 8 × 8 blocks, and then each block is transformed

using the discrete cosine transform6 (DCT). The DCT coefficients are independently quantized using integer scalar

quantization. Then, the 64 coefficients are sorted using a zig-zag sequence, which exploits the energy compaction

and decorrelation properties of the DCT. The first coefficient I(0, 0) is called the DC coefficient, and the other 63

coefficients I(u, v), u, v ̸= 0, 0, are called the AC coefficients. Finally, Huffman or arithmetic coding is applied to

pairs of zero run-lengths and magnitudes. Compression is achieved in the last two stages: first, DCT coefficients are

quantized using Eq. (6). This stage causes an irreversible loss, because each quantization interval is reduced to a

single point. Each coefficient is reconstructed by a simple multiplication, as shown in Eq. (7). Second, the quantized

coefficients are efficiently coded using an entropy coder, which handles the runs of zeros produced in the quantization

stage.

IQ(u, v) =

⌊
I(u, v)

Qu,v
+

1

2

⌋
(6)

I ′(u, v) = IQ(u, v)Qu,v. (7)

The order in which these blocks of coefficients are encoded or sent is determined by the operation mode. In

sequential operation mode, all 64 coefficients of a transformed block are operated upon, with blocks following a

raster scan order, into a single band. In progressive operation mode, coefficients are segmented in one or more bit

planes and sent in two or more bands. Progressive operation mode combines two powerful techniques: spectral

selection and successive approximation. Spectral selection involves a sub-sampling in the DCT domain, taking

advantage of DCT properties. Successive approximation consists of reducing coefficient magnitudes using a point

transform which splits a coefficient into several bit planes. When both techniques are combined, one obtains full

progression. Successive approximation cannot be used alone because the DC coefficient must be always sent first in

a separate band. Thus, this paper considers spectral selection and full progression only.

Four fields are used for band description: start of spectral selection band (Ss), end of spectral selection band

(Se), successive approximation bit position high (Ah), and successive approximation bit position low (Al).

3.1. Spectral selection

Spectral selection consists in grouping contiguous coefficients in bands and then transmitting these bands separately.

The indexes of the first and the last coefficients sent in a band are described by Ss and Se, respectively. There

are some restrictions: coefficients within a band must follow the zig-zag sequence (Ss ≤ Se), bands must be non-

overlapping, that is, the same coefficient cannot be sent in two or more bands, and the DC coefficient has to be sent

in a unique first band (Ss = 0⇔ Se = 0). In contrast, bands of AC coefficients can be sent in any order, or they can

not be sent. We will exploit this possibility in our method, trying to reduce image file size while maintaining image



quality, by not sending coefficients that do not increase image quality. Because no bit plane segmentation is done,

Ah and Al are always set to zero.

3.2. Full progression

In this case, each coefficient can be segmented in a sequence of bit planes, using a point transform1. Each bit plane is

defined using Ah and Al. Ah is the point transform used in the preceding scan for the band of coefficients specified by

Ss and Se, and it shall be set to zero for the first scan of each band of coefficients. Al is the current point transform,

and because only one bit may be refined at the current stage, it is always Ah minus one but in the first stage, where

Ah = 0 and Al defines the point transform.

4. UNIFORM QUANTIZATION ERROR

Once the image has been compressed and decompressed, quantization error can be measured using the definition of

MSE given in Eq. (8). Given two M ×N -pixel images i and i′,

MSE =
1

MN

M,N∑
m,n=0,0

[i(m,n)− i′(m,n)]
2
. (8)

Since DCT is a unitary transform, MSE can be rewritten as

MSE =
1

64

7,7∑
u,v=0,0

1

B

B−1∑
b=0

[Ib(u, v)− I ′b(u, v)]
2

=
1

64

7,7∑
u,v=0,0

MSEu,v (9)

where B = MN/64 is the number of 8× 8 blocks in which the image is segmented, and Ib is the b-th block in raster

scan. In Eq. (9) we suppose that each coefficient contributes in the same way to totalMSE, that isMSEu,v = MSE.

A weighted MSE can be defined using a weighting factor for each MSEu,v, as shown in Eq. (10). Usually, a weighted

MSE is defined in order to include subjective criteria 7,8, such as the human visual system9,10 (HVS) response

function, which we will denote by Φ. We will further discuss this subject in Section 4.4.

MSE =
1

64

7,7∑
u,v=0,0

Φ(u, v)MSEu,v. (10)

4.1. MSE for DC coefficient

It is easy to see from DCT definition that the DC coefficient is the block average (multiplied by 8). The DC

coefficient can be modeled as a Gaussian mixture, and then the EM algorithm 11 can be used to extract the mixture

components. This approach is computationally very expensive, so instead of looking for a good statistical model for

the DC coefficient, we propose a simple model for MSE as a function of Q0,0. Figure 1 shows the relation between

Q0,0 and the MSE obtained when quantizing the DC coefficient with Q0,0. We propose to use a quadratic model to

fit these data, due to goodness-of-fit and the simplification of the computation of the Q0,0 factor for a given MSE.

Therefore,

MSE0,0(Q0,0) = a0 + a1Q0,0 + a2Q
2
0,0. (11)



Using least squares fitting, the values a0 = 4.302, a1 = 0.065 and a2 = 0.082 are found. Inverting Eq. (11)

is straightforward: we compute Q0,0 as the positive root, and then it is rounded to the nearest integer satisfying

Q0,0 ≥ 1. The minimum achievable MSE yielded by this model is 4.45 (a0 + a1 + a2), which is not zero. This

is consistent with the rounding error given by the JPEG quantization stage, because DCT coefficients are always

quantized to integer values. Therefore,

Q0,0(MSE0,0) = 1 if MSE0,0 ≤ 4.45
−a1+

√
a2
1−4a2(a0−MSE0,0)

2a2
otherwise.

(12)

The quadratic model is better for low values of Q than for large ones. This is interesting because the DC coefficient

is usually quantized by a low value in order to avoid block artifacts caused by a coarse quantization.

4.2. MSE for AC coefficients

Usually, AC coefficients are modeled using a generalized Gaussian model 12, which includes a shape factor r that

allows to generate a complete family of densities. For example, the Laplacian density is obtained with r = 1, and

the Gaussian density, with r = 2. This model is more accurate, but is difficult for studying quantization error and

obtaining a compact equation such as Eq. (3). Therefore, rewriting Eq. (3) we obtain the following model for AC

coefficients,

MSEu,v(Qu,v, σ) = σ2 − Qu,v

√
2σe

−Qu,v

σ
√

2

1− e−
Qu,v

√
2

σ

. (13)

This model assumes that an AC coefficient may be modeled as a zero mean Laplacian source with variance σ2
u,v.

In this case, computing the quantization factor Qu,v from the desired error can be expressed as

Qu,v = clip

(⌊
σu,v

√
2F−1

[
1− MSEu,v

σ2
u,v

]
+

1

2

⌋
, 1,M

)
, (14)

where F is an auxiliary function (to simplify notation), clip(x, a, b) is defined as a threshold clipping to ensure

a ≤ x ≤ b, and M is the maximum quantization value (M = 255 for 8 bit quantization tables).

One problem this model shares with the model for the DC coefficient is that only integer values are valid for

quantization factors. Although this may seem a secondary problem, for small quantization values this constraint

may introduce important errors.

4.3. MSE distribution

To compute Q from a given MSE we have to use Eq. (4), while Eq. (9) is used to distribute total MSE among each

MSEu,v. This cannot be done independently for each coefficient, because there are some restrictions such as the one

imposed by σ2
u,v, that is,

0 ≤MSEu,v ≤ σ2
u,v (15)

and the global condition forced by Eq. (9),

MSE =
1

64

7,7∑
u,v=0,0

MSEu,v. (16)



Moreover, if we are trying to compute a valid JPEG quantization table, each quantization factor has to be an

integer value in the interval [1,M ], so

MSE(1, σu,v) ≤MSEu,v ≤MSE(M,σu,v) (17)

where MSE(1, σu,v) and MSE(M,σu,v) are the minimum and maximum achievable mean square errors due to

quantization constraints and can be easily computed by using Eq. (3). These constraints determine the minimum

and maximum achievable MSE for a given image, and they can be written as

MSE(1, σu,v) ≤MSEu,v ≤ min{Su,v,MSE(M,σu,v)} (18)

where Su,v is a quantization strategy, and it is function of σu,v. It will be discussed in Section 5.

One can think about using linear programming for solving the problem of distributing total MSE among each

MSEu,v, but this method generates matrices which are not good from the observer’s point of view because it does

not include subjective criteria and therefore it does not take advantage of image properties. In Section 5 we will

provide a simple algorithm to distribute total MSE among the MSEu,v satisfying Eq. (18).

4.4. HVS modeling

Equation (10) is the usual way to include information related to the human visual system7,8,9,10 in MSE. The HVS

model is based upon the sensitivity to background illumination level and to spatial frequencies. The aim of including

Φ in Eq. (10) is to produce smooth quantization matrices, where total MSE has been well distributed among the 64

coefficients depending on its perceptual relative importance.

There are two problems related to the HVS model: first, Φ is a one-dimensional function, whereas each DCT

coefficient has two coordinates, so we need a mapping between coordinates and frequencies. This is accomplished by

using the zig-zag sequence defined by the JPEG standard1,2 as ZZ : [0, 63]→ [0, 7]× [0, 7]. Second, Φ is not directly

related to quantization error, but to eye sensitivity. Nevertheless, it is fair to think that quantization error will be

more visible for those frequencies where eye sensitivity is higher. Therefore, each MSEu,v is inversely proportional

to Φ(u, v), that is,

MSEu,v =
MSE

Φ(u, v)
. (19)

We propose a model based on the DePalma and Lowry model 9, but we use a different constants set, as shown

in Eq. (20). The function f maps each coefficient index u, v to a single frequency, as shown in Eq. (21). We use the

zig-zag sequence and a linear transformation in order to adapt it to a desired range, where fmax is the maximum

desired value for f(u, v) (in our experiments, we have used fmax = 20). Our HVS model is

Φ[f(u, v)] = [0.9 + 0.18f(u, v)]e−0.12f(u, v) (20)

where

f(u, v) = fmax
ZZ−1(u, v)

N2 − 1
. (21)

This model generates a smooth curve, whose variation is smaller than the models previously mentioned. In

practice, we are not interested in modeling the real HVS response function, but in distributing a fixed amount



smoothly among 64 variables, without great differences among them. We also constrain Φ as follows∑
u,v

1

Φ[f(u, v)]
= 64. (22)

We will compare the results of our model with two other models. The first one is based on the JPEG default

quantization matrix, which is considered to be a good one for medium-high image quality. Basically, this model

defines Φ as inversely proportional to Q−1
J (u, v), the elements of the JPEG default quantization matrix, where

f(u, v) is again the zig-zag sequence, but no linear transformation is used. The second one is the model defined

by Nill 10, which is adapted for DCT. This model assumes radial isotropy, so f(u, v) =
√
u2 + v2, and a linear

transformation is used to adapt the frequency range, in this case fmax = 40.

4.5. Quantization approach

A progressive transmission scheme may be seen as a sequence of quantization matrices computed from a quantization

matrix that would produce the final desired quality using the JPEG sequential operation mode. Therefore, the

construction of a definition script consists of computing the quantization matrices for each stage and converting

them into band definitions. On the other hand, the evaluation of a definition script consists of computing the

quantization matrix equivalent to each stage, then using the method mentioned above to compute the quality of the

reconstructed image in such stage. This obviates expensive coding, decoding and error measuring processes. Our

goal is to compute the quantization matrix Qi used in each stage i of the desired progressive definition script.

A coefficient is called unnecessary if does not increase image quality when it is sent in a progressive scan. A

reason for a coefficient being unnecessary is to be quantized with a large value so the quantized coefficient is always

zero. In that case, there is no reason to spend any bits in coding such a coefficient, so it should be detected and

removed from any band when possible.

4.5.1. Spectral selection

Spectral selection can be easily studied using a quantization approach. For a given quantization matrix Q, each

matrix Qi is computed as follows. If after band i has been sent, coefficient I(u, v) has not been sent yet, then set

Qi
u,v to infinity. Quantizing a coefficient I(u, v) by infinity means I ′Q(u, v) will be always zero, and will exhibit the

same behavior as if the coefficient had been not sent. Otherwise, we set Qi
u,v = Qu,v.

4.5.2. Full progression

Successive approximation can be seen as a second quantization using a factor that is a power of two, called the

point transform. In order to avoid image artifacts that could introduce a large visible distortion, DC and AC

coefficients use a different point transform. Since the point transform is defined to be an integer division by 2Al, the

inverse point transform is a multiplication by 2Al. This generates a large zero for quantized coefficients, introducing

an unacceptable degradation for the DC coefficient. Therefore, the point transform for the DC coefficient is an

arithmetic right shift of Al bits, which is the same as using a quantization factor of Q0,0 2
Al.

To simulate this large zero for the AC coefficients, we should use a quantization factor of Qu,v(2
Al+1−1), but also

Qu,v2
Al. Eq. (13) assumes a constant quantization step Q for a given source, so it is no longer valid for computing



its quantization error. Repeating the uniform quantization error analysis for a Laplacian source followed by a point

transform of Al bits, we obtain

MSEAC(Qu,v, σu,v, Al) =

σ2
u,v −

2Al[(2Al − 1)Qu,v +
√
2σu,v]e

Qu,v

σu,v
√

2

e
2AlQu,v

√
2

σu,v − 1

, (23)

and its corresponding inversion,

Qu,v =

clip

(⌊
σu,v

√
2F̃−1

[
1− MSEu,v

σ2
u,v

, Al

]
+

1

2

⌋
, 1,M

)
,

(24)

where F̃ is an auxiliary function similar to F in Eq. (14), but including information about Al.

5. QUANTIZATION MATRIX CONSTRUCTION ALGORITHM

Usually, it is better for the user to specify a value for desired PSNR instead of MSE, because it is the most common

measure in literature. Computing MSE from a given PSNR is straightforward, that is,

MSE =
L2

10
PSNR

10

, (25)

where L is the maximum (or peak) pixel value. For 8-bpp images, L = 255.

Basically, the algorithm for computing a quantization matrix Q for a given image and a desired MSE (or PSNR)

consists of three steps: first, compute the statistical descriptors for the transformed image to be compressed. Second,

distribute the desired total MSE among each MSEu,v. Third, compute each Qu,v using the appropriate model.

The first step can be done while image is being transformed during the first stage of the JPEG standard using

the DCT. Although the DCT is not really part of the algorithm, it is shown in order to clarify that we are using the

transformed coefficients statistical descriptors.

The second step is the most important: MSE has to be distributed among each MSEu,v depending on Φ[f(u, v)],

but the constraints imposed by Eq. (18) have to be satisfied. We call a coefficient saturated when it does not satisfy

the right-hand inequality in Eq. (18). In our experiments, Su,v = σ2
u,v, which implies that a saturated coefficient will

be always quantized to zero, but a more complex strategy quantization could be used in order to avoid this effect.

First, this step solves all saturated coefficients, assigning the maximum possible MSEu,v, and then distributing the

remaining MSEu,v among all the other coefficients that have not been assigned yet. This is done coefficient by

coefficient, starting by the most likely coefficient to be saturated, that is, the last coefficient in the zig-zag sequence.

When no more saturated coefficients are found, they are assigned to its computed MSEu,v as well.

Finally, the third step uses Eqs. (12) and (4) to compute the Qu,v quantization factors, which must be rounded

to the nearest integer. The complete description of the algorithm is shown below.



Algorithm PSNR2Q

compute the 8× 8 DCT for each block

compute σu,v and maxMSEu,v using Eq. (18)

compute MSEobj using Eq. (25)

pns← 64; MSEdist ← 64MSEobj ; s← 64;

saturated(u, v)← false ∀u, v
do

i← pns; flag ← false

do

u, v ← ZZ(i) // ZZ is the zig-zag sequence

if ¬saturated(u, v)
MSEu,v ← (MSEdist/s)/Φ[f(u, v)]

if MSEu,v > maxMSEu,v

MSEu,v ← maxMSEu,v;

saturated(u, v)← true; flag ← true;

MSEdist ←MSEdist −MSEu,v;

s← s− 1
Φ[f(u,v)]

if i = pns

pns← pns− 1;

fi

fi

fi

if ¬flag
i← i− 1;

fi

od until flag ∨ (i < 1)

od until (i < 1)

compute Qu,v using Eqs. (12) and (4)

5.1. Algorithm cost

The algorithm presented above is image dependent, that is, it uses the transformed coefficients variances to compute

their quantization values. These variances can be computed at the same time as the DCT, increasing the number of

operations in only one addition and one multiplication for every AC coefficient in each block. For normal images,

the zig-zag sequence yields a good ordering for coefficient variances2, so MSE distribution can be considered almost

a linear operation, hence only 64 iterations are needed. Finally, the quantization values are computed. This involves

a numerical inversion, but due to the F (t) properties mentioned is Section 2.1, a few iterations (usually less than

five) are needed. The method could be speeded-up using interpolation or tabulated values.

This is clearly superior to the scaling method, where the user has to compress the image, then decompress it,



and measure the PSNR. The process has to be repeated until the desired PSNR is achieved, which can be difficult

due to the lack of relationship between the quality factor and PSNR.

5.2. Simulations

Although we can use Eq. (18) to compute the range of valid PSNR for a given image, this range usually exceeds

typical user requirements. Instead of this, we will use the usual range employed in the JPEG standard, which is

determined by the quality factor.

5.2.1. JPEG quality factor

Images are compressed with a quantization matrix computed as a scaled version of the JPEG standard default

quantization matrix, depending on a quality factor, which can be in range 0–100 (where 0 means a complete black

image and 100 means a nearly-lossless image). Nevertheless, the range 25–95 is more appropriate, because a quality

factor below 25 generates very low quality images, while a quality factor above 95 generates very large images with

no appreciable quality gain. This is the method used by the most widespread JPEG software library, available from

the Independent JPEG Group 3 (IJG).

In our experiments we have used the JPEG standard monochrome corpus set. All the images are 720×576 pixels,

8-bpp. This corpus set can be found at http://ipl.rpi.edu. When the same quantization table is used for all

the images, both PSNR and image size differ so much, because there are fundamental statistical differences between

the images. For example, the image called balloons is a very smooth image, with almost all energy concentrated

in the DCT coefficients occupying the lowest index positions, whereas the image called barbara2 has the opposite

behavior. For example, for a quality factor of 25, image balloons yields a compressed image size of 13493 bytes and

a PSNR of 38.47 dB, while image barbara2 yields 30449 bytes and 29.94 dB, respectively. For a quality factor of 95,

figures are 85625 bytes and 48.12 dB for balloons and 174245 bytes and 43.52 dB for barbara2. This confirms the

unpredictability of both image size and PSNR for a given quality factor, and it justifies the research for a relationship

between PSNR and the JPEG quantization matrix used.

5.2.2. Model accuracy

The first experiment tests the Laplacian model accuracy, as shown in Table 1. It can be seen that the Laplacian

model yields accurate results, with an error smaller than 1 dB for low PSNR values and even better for higher PSNR

values. Furthermore, the Laplacian model yields better quantization matrices than the classical scaling method due

to a better MSE distribution. This first experiment has been done using image barbara2, but similar results are

obtained when other images from the standard corpus set are used.

5.2.3. Subjective criteria

Quantization matrices computed in the preceding experiment yield a good approximation for the desired PSNR, and

a higher PSNR for the same image size than the classical scaling method. However, they cannot be considered good

matrices from the observer’s perception point of view. This is due to the regular distribution of MSE among the

different MSEu,v when Φ[f(u, v)] = 1.



The second experiment shows the algorithm results when different HVS response functions are used for computing

the quantization matrix for a desired PSNR. The image is again barbara2, and the results are shown in Figure 2. It

can be seen that there is no noticeable efficiency loss when the proposed HVS model is used (except maybe for higher

PSNR), while the other HVS models yield worse results. Similar results are also obtained for the other images.

As in the previous experiment, quantization matrices computed with our method yield a better PSNR for the

same image size than the classical scaling method. These matrices are also good from the observer’s point of view,

because the total error has been smoothly distributed among the 64 coefficients using an HVS model, and the most

important coefficients (in a distortion perception sense) are quantized using smaller values than those coefficients

which correspond to frequencies where eye is less sensitive.

6. SCRIPT CONSTRUCTION AND EVALUATION

Our method exploits the quantization approach of the JPEG standard progressive operation mode and some well

known facts about subjective perception. First, we will describe a definition script evaluation algorithm, which allows

the user to test several definition scripts. Then, we will describe a definition script construction algorithm, giving a

simple method for spectral selection technique, including the typical problems that arise in practice.

6.1. Script evaluation

Script evaluation consists of computing the equivalent quantization matrix for each stage of a progressive transmis-

sion defined by a given definition script, then using the models previously defined to compute the predicted error.

Therefore, the user can try several definition scripts before coding an image without having to encode and decode

the image using the JPEG standard to test validity.

The following algorithm describes the definition script evaluation process:

Evaluation Algorithm

compute the 8× 8 DCT for each block

compute σu,v ∀u, v ̸= 0, 0

compute Q for the desired final image quality

Q̃ := {∞}
for i := 0 to k // for each band in the def. script

for j := Ss to Se // for each coefficient in band

Q̃ZZ(j) := PT (QZZ(j)) // update Q̃

end

print PSNR(Q̃) // compute PSNR

end

The auxiliary function PT applies the corresponding point transform to a coefficient depending on its position

in the zig-zag sequence ZZ and the value of Al, as defined in Section 4.5. MSE (and therefore PSNR) are computed

using Eqs. (11), (13), (23) and (9).



6.1.1. Example

The evaluation algorithm may be used to compare several definition scripts, in order that the best one (in a practical

sense) for a given image can be chosen, without having to encode and decode the image using the JPEG standard

progressive operation mode, reducing definition script evaluation cost.

For example, when full progression is used, choices are sending all bit planes consecutively for a given coefficient or

band of coefficients (successive approximation alone), or sending all coefficients for a given bit plane (full progression).

It is known1 that full progression yields the best results, as shown in Figure 3, where image barbara2 is segmented

using two different definition scripts. Both definition scripts send the same amount of image energy, (quantified as

the DC coefficient and the first 9 AC coefficients), which are sent separately, one coefficient per band. Coefficients are

split using two bit planes (Al = 2), so there is a total of 30 bands. Both definition scripts are not real in a practical

sense, but they are useful for showing progressive operation mode properties. It can be seen that full progression

is clearly superior to successive approximation, giving the idea that it is better to send more point transformed

coefficients than fewer full resolution coefficients.

Notice that evaluation algorithm accuracy is not always very good. This is caused in part by Laplacian assumption

for AC coefficients (ignoring the shape factor) and by JPEG constraints on quantization values, which must be

integers. Nevertheless, predicted PSNR still follows the same behavior than measured PSNR, so the algorithm may

be used as a useful tool for definition script evaluation and comparison.

6.2. Script construction

Suppose the user wants to encode a given image using the progressive operation mode to a desired final quality Ek

using k + 1 bands (we use k + 1 for notation purposes). We require Ei < Ei+1 in order that null bands may be

avoided. Bands can be described using the desired quality for the reconstructed image after each stage is decoded,

for example. Another variable could be the number of bits spent in each band, but the JPEG progressive operation

mode is too complicated to achieve this goal.

Basically, a given image is segmented in 8 × 8 blocks and then each block is transformed using the DCT. Both

steps are part of all JPEG standard lossy operation modes, so we are not increasing JPEG computational cost

here. While the DCT is being computed for each block, we also compute the AC coefficients variances needed by

our method. Then, using these variances and the sequence of image qualities {Ei}, we compute the quantization

matrices needed to simulate the progressive scheme and the corresponding descriptions in the definition script. We

also compute the maximum and minimum achievable qualities using Q = 1 and Q = ∞ (actually Q = 255 for 8

bit quantization tables) respectively. The reason is to ensure user requirements are feasible for the given image and

qualities sequence, that is, PSNRMIN ≤ Ei ≤ PSNRMAX ∀ i = {0, . . . , k}.

6.3. Spectral selection

In this case the initial quality E0 is only determined by the DC coefficient computed for Ek, the final quality, because

the DC coefficient must be sent separately in a first band, using the same quantization value computed for the last



quality Ek. Basically, the idea is to compute Qk given Ek, and then start with Q0, constructed as

Q0
u,v =

 Qk
0,0 u = 0, v = 0 (first scan)

∞ otherwise.
(26)

Each stage i consists in copying the previous quantization matrix, that is, Qi = Qi−1, then adding as many

quantization factors from Qk as needed to achieve the desired quality Ei using the zig-zag sequence. Therefore, the

quantization matrix Qi at each stage may be computed as

Qi
u,v =

 Qk
u,v u, v are sent in scan i

Qi−1
u,v otherwise.

(27)

In order to improve algorithm efficiency, we detect and avoid unnecessary coefficients at the beginning of each

band of coefficients. We could also detect unnecessary coefficients within a band and then split such band in two

bands, but this will increase the number of bands, which might be not desirable because we want to maintain the

sequence of image qualities defined by the user.

The following algorithm describes the definition script construction process:

Construction Algorithm for Spectral Selection

compute the 8× 8 DCT for each block

compute σu,v ∀u, v ̸= 0, 0

compute PSNRmin and PSNRmax

compute Qk and Q0

generate (0,0,0,0) // (Ss,Se,Ah,Al) for DC coeff.

last := zz := 1

for i := 1 to k

if PSNRmin ≤ Ei ≤ PSNRmax // valid stages

Qi := Qi−1

while zz is unnecessary do

last := zz := zz + 1

od

do

Qi
ZZ(zz) := Qk

ZZ(zz)

compute E for Qi

zz := zz + 1

od until E ≥ (Ei − ϵ)

generate (last,zz − 1,0,0) // (Ss,Se,Ah,Al)

last := zz

fi

end



This algorithm generates a valid definition script using spectral selection for a given image and a valid sequence

of image qualities. Method precision can be adjusted using ϵ, which may be set to ϵ = 0.25, for example, in order to

assume a small error produced by matrix computation.

This algorithm takes advantage of spectral selection technique properties previously mentioned: first, coefficients

are sorted using the zig-zag sequence, where coefficients retaining more block energy are sent in first position, so it

is useless to change band order. Second, unnecessary coefficients at the beginning of each band are not sent, saving

some bits in the coding process without reducing image quality. Finally, not all coefficients are sent, but only those

required to achieve the desired final image quality. The main idea is that the zig-zag sequence sorts coefficients

almost optimally (in a practical sense) for a progressive transmission.

6.3.1. Example

We will use the algorithm described above to generate a simple definition script. Our goal is to illustrate the typical

problems that appear when nothing is known about the image before the coding process starts.

In this example, we would like to compress a given image using five stages, with a sequence of image qualities

of 25, 30, 35, 40 and 45 dB respectively. This sequence of image qualities may seem arbitrary, but it will be useful

to show progressive operation mode problems. We will use two different images of the JPEG standard monochrome

corpus set to show the differences between the generated definition scripts.

For image balloons, it is impossible to obtain an initial quality of 25 dB, as shown in Table 2, because sending only

the DC coefficient in the first band (as the JPEG standard requires) already produces an image with higher quality.

We will try to solve this problem using full progression and segmenting the DC coefficient in several bit planes later

in this paper. On the other hand, the other image qualities are correctly achieved. Nevertheless, model precision

is limited because the final image quality (45 dB) is high for this image. In contrast, most quantization factors are

small, so rounding errors caused by integer quantization values and other JPEG constraints on quantization factors

are more noticeable. For example, the DC coefficient should be quantized using a quantization factor smaller than

one, which is impossible.

Notice that in this case all 64 coefficients are sent, so the final image needs only 44636 bytes, instead of 47877

bytes needed for the equivalent image encoded using the sequential operation mode with Hufmann table optimization

(progressive operation mode also forces optimization). This is one of the most remarkable properties of the JPEG

standard progressive operation mode, as it does not increase file size when compared to sequential operation mode

when the number of bands is relatively small.

Repeating the same experiment using image barbara2 yields very different results, as shown in Table 3. The

reason is that this image has a lot of detail and most of image energy is concentrated in high frequencies, unlike

image balloons which is very smooth, where image energy is concentrated in coefficients occupying low frequencies.

The first stage has a PSNR lower than the first specified quality, E0. Therefore, there is an extra stage needed

to achieve 25 dB so a total of six bands instead of five are generated. Small PSNR differences are also caused by

the impossibility of using non-integer quantization values. Regarding final image size, notice that in this definition

script all 64 coefficients are sent, but there is still a small decrease in file size, as sequential operation mode would

need 156838 bytes. Both examples show that it is very interesting to compute PSNRmin, PSNRmax and the real



E0, in order that the user might redefine the sequence of image qualities according to image statistics and thus to

obtain better results.

7. CONCLUSIONS

In this paper we have presented a method for computing JPEG quantization matrices for a given PSNR. Computed

matrices are not optimal in a rate distortion theory sense, but they are better than the matrices computed using

the classical scaling method, at a reduced cost. Moreover, computed matrices generate compressed images that are

visually comparable to those generated by the classical scaling method, with no visual artifacts. The method is

useful because it solves a common problem of JPEG users, that is, the trial and error procedure as the unique tool

for computing quantization matrices.

Computed matrices can also be a good initial solution for an iterative algorithm such as the one proposed by

Fung and Parker 13. Moreover, we also propose to substitute the MSE measure for Eqs. (3) and (11), so the whole

process could be speeded-up with almost no loss of effectiveness. Although the method described in this paper is for

monochrome images, it can also be used for color images when they use a image color model which can be split into

luminance and chrominance channels 14, such as the Y CbCr color model used in the JPEG standard. The method

has to be applied to each channel separately.

We have also described a method for JPEG progressive operation mode script construction and evaluation, using a

quantization based approach. The JPEG standard progressive operation mode may be seen as a second quantization

applied to DCT coefficients that have been already quantized. This allows us to establish a relationship between

each scan of a definition script and its equivalent quantization matrix.

Our method allows the user to compute a valid definition script for a given image and a sequence of image qualities.

Generated scripts take advantage of DCT and zig-zag sequence properties, avoiding unnecessary coefficients that do

not increase image quality. Due to the JPEG standard progressive operation mode properties, compressed images

are usually smaller than if they were compressed using the sequential operation mode. Although the accuracy of

evaluation and construction algorithms is limited, they are perfectly valid in a practical sense, because predicted

PSNR follows the real PSNR behavior. Our method reduces the cost of constructing and evaluating definitions

scripts because it allows the user to avoid the classical trial and error procedure.

Further research in this topic should include a study of the JPEG coding method based on quantized coefficient

entropy, in order to have an optimal method in the sense of rate distortion theory. More complex quantization

strategies are also needed to avoid complete quantization of high frequency band coefficients. Extension to color

images is also an interesting subject, and it should include the search of error measures in DCT transformed color

spaces and visual criteria for band construction and evaluation.
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TABLES

Table 1. Predicted and real model accuracies (PSNR in dB.)

pred. real pred. real pred. real

29 30.06 36 36.84 43 43.41

30 31.08 37 37.78 44 43.74

31 32.04 38 38.75 45 45.13

32 33.10 39 39.61 46 46.40

33 34.05 40 40.45 47 47.06

34 35.02 41 41.37 48 47.06

35 35.91 42 42.32 49 49.51

Table 2. Construction algorithm results for image balloons.

computed real image

k Ss Se Ah Al PSNR PSNR size

0 0 0 0 0 27.59 29.67 7234

1 1 1 0 0 30.51 31.64 11020

2 2 5 0 0 35.88 35.88 21622

3 6 12 0 0 40.24 40.26 31385

4 13 38 0 0 45.00 45.32 44636

Table 3. Construction algorithm results for image barbara2.

computed real file

k Ss Se Ah Al PSNR PSNR size

0 0 0 0 0 21.66 22.08 7611

1 1 6 0 0 25.06 25.06 31146

2 7 22 0 0 29.92 29.92 73603

3 23 39 0 0 35.02 35.01 109443

4 40 52 0 0 40.31 40.71 134371

5 53 63 0 0 44.00 44.94 152031
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Figure 1. DC quantization error.
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Figure 2. PSNR / image size for different Φ.
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Figure 3. Example of evaluation algorithm results for image barbara2 using two definition scripts which send the

same amount of image energy, showing importance of bit plane ordering.


