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Pendulum waves: A lesson in aliasing
James A. Flatena) and Kevin A. Parendo
Division of Science and Mathematics, University of Minnesota–Morris, Morris, Minnesota 56267

~Received 12 October 2000; accepted 14 December 2000!

A set of uncoupled pendula may be used to exhibit ‘‘pendulum waves,’’ patterns that alternately
look like traveling waves, standing waves, and chaos. The pendulum patterns cycle spectacularly in
a time that is large compared to the oscillation period of the individual pendula. In this article we
derive a continuous function to explain the pendulum patterns using a simple extension to the
equation for traveling waves in one dimension. We show that the cycling of the pendulum patterns
arises from aliasing of this underlying continuous function, a function that does not cycle in time.
© 2001 American Association of Physics Teachers.
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I. INTRODUCTION

In 1991 Richard Berg from the University of Marylan
described in this journal how to construct a set of uncoup
pendula that exhibit ‘‘pendulum waves.’’1 The patterns this
demonstration exhibits are very beautiful and the way
which the patterns cycle is nothing short of stunning. T
demonstration appears inThe Video Encyclopedia of Physic
Demonstrations2 and it is also fairly easy to build
from scratch. A video clip of our version of this demonstr
tion in action, plus animations of some of the functio
discussed in this article, may be viewed
http://www.mrs.umn.edu/;flatenja/pendulumwaves.shtml.3

The purpose of this article is to discuss how the wave-l
patterns formed by the swinging pendula can be describe
a simple extension to the standard description of transv
traveling waves in one dimension. Not only is the math qu
elegant in its own right, but it is instructive to realize that t
recurring patterns seen in the pendula actually arise f
aliasing of the underlying continuous function, a functi
that does not cycle but gets more and more complicate
time elapses.

II. THE DEMONSTRATION

The apparatus consists of a set of equally spaced
coupled pendula of decreasing lengths, shown schematic
in Fig. 1. The lengths of the pendula are tuned so that in
time, G, the longest pendulum takes to go through some
teger number of full cycles,N, the next-longest pendulum
goes throughN11 cycles, the next-longest throughN12
cycles, and so on. In our classroom demonstration we a
trarily selectedG520 s, N520, and there are 15 pendula
the set. Thus the longest pendulum has a period ofG/N
520 s/2051 s, the next longest has a period of 20 s/
50.952 s, and so on.

If all the pendula in the set are equally displaced fro
equilibrium perpendicular to the plane of the apparatus
then released at timet50, their relative phases will continu
ously drift as they swing because of their different perio
At any moment the phase difference between adjacent
dula is fixed across the entire set, but the value of this ph
shift grows as time goes by. This results in sinusoidal wa
like patterns that move up and down the line of pendula. T
patterns in the pendula at a few specific times are show
Fig. 2. For example, at timet5G/2 every pendulum is ex
778 Am. J. Phys.69 ~7!, July 2001 http://ojps.aip.org/aj
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actly out of phase with its nearest neighbors@Fig. 2~e!#, so
the phase shift between adjacent pendula isp rad. At time
t5G the pendula are all back in phase again@Fig. 2~i!#, so
the phase shift between adjacent pendula is 2p rad, just as
they were all in phase at timet50 @Fig. 2~a!#, with zero
phase shift between adjacent pendula.

Interestingly enough, the pendula set evolves through
actly the same patterns fromt5G/2 to G as it did from t
50 to G, only in reverse order@compare Figs. 2~b! and 2~h!,
2~c! and 2~g!, and 2~d! and 2~f!#. Starting at timet50, trav-
eling wave-like patterns move toward the long-pendulu
end of the apparatus. These traveling patterns reverse d
tion at t5G/2, though this is hard to observe because ot
distracting patterns are also present near this time. As t
approachest5G, the traveling patterns reappear, now mo
ing toward the short-pendulum end of the apparatus.

III. TRAVELING WAVES „WITH A TWIST …

Let us deduce the continuous mathematical funct
y@x,t# described by the pendula when viewed from above
below, wherey is the displacement~measured perpendicula
to the plane of the apparatus! at positionx and timet.4 The
patterns look strikingly similar to sinusoidal transverse tra
eling waves in one dimension, if the slight curvature of t
line of pendulum bobs is ignored. Thus we begin with t
familiar equation to describe such waves moving in the m
nusx direction

y@x,t#5A cos@kx1vt1f#. ~1!

HereA is the amplitude,k5(2p rad)/l is the wave number
that characterizes the wave repetition in space~using the
wavelengthl!, and v52p rad/T is the angular frequency
that characterizes the wave repetition in time~using the pe-
riod T!. If all the pendula are started in phase at the ma
mum amplitude whent50, the initial phasef will be 0 and
henceforth it will be omitted.

Typically when Eq.~1! is used,l andT are fixed, sok and
v are also constants. However it is clear from Fig. 2 that
wavelength of the pendulum patterns varies with time, sok is
actuallyk@ t#. Similarly, the apparatus is constructed so th
the periods of the pendula vary with their location along t
x axis, sov is reallyv@x#. In fact, the time dependence ofk
is not imposed independently, but is a physical conseque
of the tuning ofv with x. Thus the fullx and t dependence
can be described either by
778p/ © 2001 American Association of Physics Teachers
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y@x,t#5A cos@k0x1v@x#t#, ~2!

where the constantk0 is used to describe the shape of t
pattern att50, or by

y@x,t#5A cos@k@ t#x1v0t#, ~3!

where the constantv0 is used to describe the time evolutio
of the pattern atx50.

For starters, let us pursue the form suggested in Eq.~2!.
Sincey@x,0# equals the maximum amplitudeA for all values

Fig. 1. Equally spaced pendula hanging from thex axis. The pendula swing
perpendicular to the plane of the page. Numbers on the pendulum bob
the pendulum indexn. Values below the numbered pendulum bobs indic
how many cycles each pendulum completes during the overall pattern
cling time G.
779 Am. J. Phys., Vol. 69, No. 7, July 2001
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of x, the constantk0 is 0. The angular frequencyv of a
simple pendulum of lengthl ~in the small angle approxima
tion! is

v5~g/ l !1/2 ~4!

so in this case

v@x#5~g/ l @x# !1/2. ~5!

Herel @x# is the continuous curve along which the pendulu
bobs hang below thex axis, shown as a dotted curve in Fi
1.

In actuality there are pendula only at discretex values, so
we index the pendula with an integern, usingn50 to label
the longest pendulum hanging fromx50. Since the pendu-
lum spacing isd, the locationxn of the nth pendulum is
simply

xn5nd. ~6!

This pendulum must go throughN1n full cycles in timeG,
so its periodTn is given by

Tn5G/~N1n! ~7!

and its corresponding angular frequencyvn is

vn5~2p rad!/Tn5~2p rad!~N1n!/G. ~8!

Using Eq.~6! to replacen by xn /d in Eq. ~8!, this becomes

are

y-
Fig. 2. Displacements of 15 pendula started in phase att50, shown at nine instants during the cycling timeG. HereN520, d51, andA51. The series of
patterns is symmetric in time with respect to the out-of-phase pattern att5G/2.
779J. A. Flaten and K. A. Parendo
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vn5~2p rad!~N1~xn /d!!/G ~9!

or, as a continuous function ofx,

v@x#5~2p rad!~N1~x/d!!/G5~2p rad!~x1Nd!/~Gd!.
~10!

Now it is easy to show, using Eqs.~5! and ~10!, that the
lengths of the pendula are described by

l @x#5g~~Gd!/~2p rad!!2~x1Nd!22. ~11!

However, keep in mind that the actual apparatus is tuned
carefully timing the pendulum periods rather than by ca
fully measuring of the pendulum lengths.

Substituting Eq.~10! into Eq. ~2! gives this final expres-
sion for y@x,t#, the continuous function underlying the pe
dulum patterns,

y@x,t#5A cos@~~2p rad!~x1Nd!/~Gd!!t#. ~12!

Notice thaty@x,t# may be rewritten as

y@x,t#5A cos@~2p rad!~ t/~Gd!!x1~2p rad!~N/G!t#, ~13!

the form suggested in Eq.~3!. In this form it is apparent tha
the wave numberk grows linearly with time according to

k@ t#5~2p rad/~Gd!!t ~14!

and the angular frequencyv0 to be applied atx50 ~i.e., at
n50! is
780 Am. J. Phys., Vol. 69, No. 7, July 2001
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y
-

v05~2p rad!~N/G!, ~15!

just as it should be according to Eq.~9!.
Equation~13! may be visualized as follows. Thev0 t term

drives thex50 point ~i.e., the bob of the longest pendulum!
back and forth with period

T05G/N. ~16!

At any non-negative timet and for positive values ofx, the
function y@x,t# is momentarily sinusoidal in space, wit
wavelength

l@ t#5~2p rad!/k@ t#5Gd/t. ~17!

The wavelength is infinite att50, resulting in a flat pattern
but thereafterl shrinks as the reciprocal of the elapsed tim

IV. ALIASING

Equation~13! looks promising to describe the pendulu
patterns fromt50 to G/2 @Figs. 2~a!–2~e!#, up to the out-of-
phase pattern. However beyondt5G/2, the wavelength in
y@x,t# continues to get smaller and smaller, whereas the p
dulum patterns appear to reverse their evolution@Figs. 2~e!–
2~i!# and get simpler and broader, until the pendula are
back in phase again whent5G.

Figure 3 shows the resolution of this apparent parad
After t5G/2 there are actually more peaks and valleys
Fig. 3. The same pendulum patterns as in Fig. 2, fit by the continuous functiony@x,t# from Eq. ~13!. For times greater thant5G/2, aliasing results in
relatively simple patterns in the pendula despite ever more complexity in the underlying continuous functiony@x,t#.
780J. A. Flaten and K. A. Parendo
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y@x,t# than there are pendula in the set, so the pendula
not possibly display all the complexity of the underlyin
function. In fact, by the timet5G, the functiony@x,t# goes
through one full wavelength between adjacent pendula@Fig.
3~i!#!

This is an example of ‘‘aliasing,’’ a term used to descri
misleading patterns, such as those beyondt5G/2, that arise
from the periodic sampling of periodic functions. A mo
familiar example of aliasing can sometimes be seen in m
ies or on TV when repetitive motion is viewed. Rotatin
objects like wagon wheels or helicopter blades can appea
be spinning too slowly, to be stopped, or even to be spinn
backward. This optical illusion occurs because of the m
match between the rate at which the motion cycles and
discrete frame rate of the camera used to film the motion

Aliasing typically arises when a continuous signal is e
amined at some discrete sampling rate. A misleading pat
can emerge if the signal changes significantly on a time s
comparable to, or shorter than, the sampling time. The al
ing here is slightly different because there is a discrete s
pling distance rather than a discrete sampling time. The p
dulum bobs can be observed at all times, but they are loc
at discrete points along thex axis. The swinging pendula
cannot possibly provide information about what the unde
ing continuous function is doing at points along thex axis
between pendulum bobs, and aliasing can result.

Once this aliasing is recognized, an alternative derivat
of Eq. ~13! presents itself. One can guess the time dep
dence ofl by realizing that one extra wavelength ofy@x,t#
must fit in distanced ~i.e., must fit between adjacent pendul!
for every repetition timeG. Thus

l@ t5G#5d, l@ t52G#5d/2, l@ t53G#5d/3, . . . ,
~18!

which leads to the immediate conclusion that

l@ t#5dG/t, ~19!

as seen earlier in Eq.~17!. From this result,k@ t# may be
found immediately. Finally,v0 may be deduced using Eq
~9! with n50, leading quite directly to Eq.~13! from the
proposed form ofy@x,t# in Eq. ~3!.

V. CHECKING y†x,t‡ ANALYTICALLY

Graphing is clearly helpful in visualizing the relationsh
between the pendulum patterns and the functiony@x,t#, but
all the salient features of the pendulum motion and the al
ing itself may also be extracted analytically from Eq.~13!.
For example, it is instructive to use Eq.~13! to answer each
of the following questions.

Question 1. Does the functiony@x,t# at each discretexn
~i.e., at the location of each pendulum! oscillate sinusoidally
in time with the appropriate angular frequencyvn? That is,
doesy@xn ,t# equalA cos@vnt#?

Answer 1. Yes! One possible derivation is as follows:

y@xn ,t#5A cos@~2p rad!~ t/~Gd!!xn1~2p rad!~N/G!t#,
~20!

y@nd,t#5A cos@~2p rad!~ t/~Gd!!nd1~2p rad!~N/G!t#,
~21!

y@nd,t#5A cos@~2p rad!~~n1N!/G!t#, ~22!

y@xn ,t#5A cos@vnt#. QED ~23!
781 Am. J. Phys., Vol. 69, No. 7, July 2001
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Actually y@x,t# is not the only continuous function that ha
this property, and hence it is not the only candidate that m
be used to fit the pendula. As discussed in Question 2 be
y@x,t1mG# also works, wherem is any integer, as do othe
variants likey@x,2t#. However it seems most natural th
the function used to fit the pendula be as simple as poss
~i.e., flat! when t50 and for timet to run forward, so we
continue to use they@x,t# described in Eq.~13! instead of
these unnecessarily complicated alternatives.

Question 2. Does the functiony@x,t1mG# at each dis-
cretexn ~i.e., at the location of each pendulum! match the
values ofy@x,t#? Herem is any integer. Of course the func
tion as a whole looks very different every timeG has elapsed,
so this is a check of theG periodicity in time of the pendu-
lum patterns~i.e., of the cyclical nature of the aliasing!.

Answer 2. Yes! Here is one way to argue this result:

y@xn ,t1mG#5A cos@~2p rad!~~ t1mG!/~Gd!!xn

1~2p rad!~N/G!~ t1mG!#, ~24!

y@xn ,t1mG#5A cos@~2p rad!~ t/~Gd!!xn1~2p rad!

3~N/G!t1~2p rad!m~~xn /d!1N!#,

~25!

y@nd,t1mG#5A cos@~2p rad!~ t/~Gd!!nd1~2p rad!

3~N/G!t1~2p rad!m~n1N!#, ~26!

y@xn ,t1mG#5A cos@~2p rad!~ t/~Gd!!xn

1~2p rad!~N/G!t#. ~27!

@That last step works because m(n1N) is an integer, and
the cosine function is periodic with respect to addi
(2p rad) times any integer to its argument.#

y@xn ,t1mG#5y@xn ,t#. QED ~28!

We think of this as the key property of the aliasing. Althou
y@x,t# oscillates in less and less space as time goes by,
patterns exhibited by the pendula recur every timeG has
elapsed.

Question 3. Does the functiony@x,(G/2)1e# at each dis-
crete xn ~i.e., at the location of each pendulum! match
y@x,(G/2)2e#? This checks whether the~aliased! pendulum
patterns are indeed symmetric in time with respect to
out-of-phase pattern att5G/2.

Answer 3. Yes! Consider the following derivation:

y@xn ,~G/2!1e#5A cos@~2p rad!~~~G/2!1e!/~Gd!!xn

1~2p rad!~N/G!~~G/2!1e!#, ~29!

y@xn ,~G/2!1e#5A cos@~2p rad!~~xn /~2d!!1~N/2!!

1~2p rad!~~exn /~Gd!!1~eN/G!!#,

~30!

y@nd,~G/2!1e#5A cos@~2p rad!~~n1N!/2!

1~2p rad!e~n1N!/G#, ~31!

y@xn ,~G/2!1e#5A cos@~2p rad!~~n1N!/2!

1~2p rad!~~n1N!/G!e#, ~32!
781J. A. Flaten and K. A. Parendo
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of
Fig. 4. A plot of y@j,t# from Eq. ~39!, with y@x,t# from Eq. ~13! superimposed in bold, for the first three instants shown in Figs. 2 and 3. The valuesx
from the physical demonstration extend fromj520d to j534d @i.e., fromj5Nd to j5(N1(nmax21)d)#. The relation betweenx andj is given in Eq.~37!
andnmax is the number of pendula in the set.
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Similarly,

y@xn ,~G/2!2e#5A cos@~2p rad!~~n1N!/2!

2~2p rad!~~n1N!/G!e#. ~33!

Now (n1N)/2 is either an integer or a half integer, so

cos@~2p rad!~n1N!/2#56p. ~34!

That is to say, this argument corresponds to a peak o
valley in the cosine curve. In Eqs. (32) and (33), the cos
function is called with arguments that are equidistant abo
and below(2p rad)(n1N)/2. Since the cosine function i
symmetric about both its peaks and its valleys, one may c
clude that

cos@~~2p rad!~~n1N!/2!!1anything#

5cos@~~2p rad!~~n1N!/2!!2that same thing#. ~35!

Thus we have

y@xn ,~G/2!1e#5y@xn ,~G/2!2e#. QED ~36!

This means that the pendulum patterns get more and m
complicated untilt5G/2, then the pendula go through e
actly the same series of patterns backwards until they ar
back in phase. This property is neat, and perhaps not u
pected, but we consider it of somewhat less importance t
the cycling of the patterns discussed in Question 2.

VI. ANOTHER ORIGIN

The mathematical description of this physical system
somewhat simpler if the origin is shifted to the left by defi
ing

j5x1Nd. ~37!

In terms of this new axis variable, the lengths of the pend
l @j# are simply proportional toj22 @see Eq.~11!# and the
periods of the pendula become

T@j#5Gd/j. ~38!

Thus Eq. ~12! describing the underlying function can b
written as

y@j,t#5A cos@~2p rad!~j/~Gd!!t#. ~39!
782 Am. J. Phys., Vol. 69, No. 7, July 2001
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This shift of origin physically corresponds to addin
longer and longer pendula to the left end of the set. Dur
the cycling time,G, these pendula would go throughN21
cycles, N22 cycles, and so on. Actually building thes
longer pendula quickly becomes impractical for a classro
demonstration ifG is as large as 20 s. Even with a smallerG
thej50 pendulum can never be constructed because it m
be infinitely long, so as to go through 0 oscillations in tim
G!

Several graphs of the functiony@j,t# appear in Fig. 4. At
every momenty@j,t# is a sinusoidal function ofj, with a
fixed value ofA at the j50 end. The wavelength of this
sinusoid diminishes as 1/t, in accordance with Eq.~17!, so
y@j,t# looks something like a contracting accordion as tim
goes by. The functiony@x,t# describing the physical set o
pendula is just a subset ofy@j,t# extending fromj5Nd to
j5(N1(nmax21))d, wherenmax is the number of pendula in
the set. To illustrate howy@x,t# is just a portion of the more
extensivey@j,t#, the two functions are superimposed in Fi
4, with y@x,t# shown in bold.

VII. SUMMARY

The cyclic patterns exhibited by the pendula in this de
onstration never fail to delight and intrigue audiences of
ages and backgrounds. Describing the continuous mathe
ics behind these patterns is a nifty exercise in mathema
modeling that is just one small step beyond the stand
description of traveling waves in one dimension taught
introductory physics classes. The fact that the cyclic nat
of the patterns arises from aliasing is also a valuable les
and serves to make the mathematics even more interest

a!Electronic mail: flatenja@mrs.umn.edu
1Richard E. Berg, ‘‘Pendulum waves: A demonstration of wave mot
using pendula,’’ Am. J. Phys.59 ~2!, 186–187~1991!.

2Demo 08-25 ‘‘Pendulum Waves,’’The Video Encyclopedia of Physic
Demonstrations~The Education Group & Associates, Los Angeles, 199!.

3This web site is compatible with Netscape Communicator 4.7 and Inte
Explorer 4.5. It is best viewed using a window between 800 and 1
pixels wide.

4One may think ofy as an angle instead of a distance, but in the small-an
approximation the perpendicular displacement is proportional to the an
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