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Pendulum waves: A lesson in aliasing

James A. Flaten? and Kevin A. Parendo
Division of Science and Mathematics, University of Minnesbtarris, Morris, Minnesota 56267

(Received 12 October 2000; accepted 14 December)2000

A set of uncoupled pendula may be used to exhibit “pendulum waves,” patterns that alternately
look like traveling waves, standing waves, and chaos. The pendulum patterns cycle spectacularly in
a time that is large compared to the oscillation period of the individual pendula. In this article we
derive a continuous function to explain the pendulum patterns using a simple extension to the
equation for traveling waves in one dimension. We show that the cycling of the pendulum patterns
arises from aliasing of this underlying continuous function, a function that does not cycle in time.
© 2001 American Association of Physics Teachers.
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[. INTRODUCTION actly out of phase with its nearest neighbfiFsg. 2(€)], so
) ) ) the phase shift between adjacent pendularisad. At time

In 1991 Richard Berg from the University of Maryland (_1 the pendula are all back in phase agfig. 2(i)], so
described in this journal how to construct a set of uncouplegy,q phase shift between adjacent pendulasisrad juét as

gendulatth?t exhitr)]i_tb‘.‘tpendulum wgvesl.t’;l'r;e p?jtt(tar:ns this . they were all in phase at time=0 [Fig. 2(a)], with zero
emonstration exhibits are very beautiful an e way 'nphase shift between adjacent pendula.

which the patterns cycle is nothing short of stunning. This Interestin
; ) i : gly enough, the pendula set evolves through ex-
demonstration appears The Video Encyclopedia of Physics actly the same patterns from=T/2 to T as it did fromt

Demonstrations and it is also fairly easy to build - ) ,
from scratch. A video clip of our version of this demonstra- —0 (01 only in reverse ordeirompare Figs. ) and 2h),

tion in action, plus animations of some of the functions2(C) and 2g), and 2d) and 2f)]. Starting at timet=0, trav-

discussed in this article, may be viewed at eling wave-like patterns move tovyard the Iong-pendulqm

http://mww.mrs.umn.edefflatenja/pendulumwaves.shtil. end of the apparatus. These traveling patterns reverse direc-
The purpose of this article is to discuss how the wave-likelion att=1I/2, though this is hard to observe because other

patterns formed by the swinging pendula can be described tgistracting patterns are also present near this time. As time

a simple extension to the standard description of transversgpproaches=1I", the traveling patterns reappear, now mov-

traveling waves in one dimension. Not only is the math quiteing toward the short-pendulum end of the apparatus.

elegant in its own right, but it is instructive to realize that the

recurring patterns seen in the pendula actually arise fronill. TRAVELING WAVES (WITH A TWIST )

aliasing of the underlying continuous function, a function

that does not cycle but gets more and more complicated as L€t us deduce the continuous mathematical function
time elapses. y[x,t] described by the pendula when viewed from above or

below, wherey is the displacemeriimeasured perpendicular
to the plane of the apparajuat positionx and timet.* The
IIl. THE DEMONSTRATION patterns look strikingly similar to sinusoidal transverse trav-
eling waves in one dimension, if the slight curvature of the
The apparatus consists of a set of equally spaced unine of pendulum bobs is ignored. Thus we begin with the

coupled pendula of decreasing lengths, shown schematicalfgmiliar equation to describe such waves moving in the mi-
in Fig. 1. The lengths of the pendula are tuned so that in th@usx direction

time, I, the longest pendulum takes to go through some in-
teger number of full cyclesl, the next-longest pendulum y[xt]=Acogkx+ wt+ ¢]. @
goes throughN+1 cycles, the next-longest througt+2  HereA is the amplitudek= (2 rad)/\ is the wave number
cycles, and so on. In our classroom demonstration we arbthat characterizes the wave repetition in spéesing the
trarily selected’=20s,N= 20, and there are 15 pendula in wavelength\), and w= 2 rad/T is the angular frequency
the set. Thus the longest pendulum has a period’/M  that characterizes the wave repetition in tiusing the pe-
=20s/20=1s, the next longest has a period of 20s/21lriod T). If all the pendula are started in phase at the maxi-
=0.952s, and so on. mum amplitude whem= 0, the initial phasep will be 0 and

If all the pendula in the set are equally displaced fromhenceforth it will be omitted.
equilibrium perpendicular to the plane of the apparatus and Typically when Eq.(1) is used\ andT are fixed, s&k and
then released at time=0, their relative phases will continu-  are also constants. However it is clear from Fig. 2 that the
ously drift as they swing because of their different periodswavelength of the pendulum patterns varies with timek o
At any moment the phase difference between adjacent pectuallyk[t]. Similarly, the apparatus is constructed so that
dula is fixed across the entire set, but the value of this phase periods of the pendula vary with their location along the
shift grows as time goes by. This results in sinusoidal wavex axis, sow is really w[ x]. In fact, the time dependence lof
like patterns that move up and down the line of pendula. Thés not imposed independently, but is a physical consequence
patterns in the pendula at a few specific times are shown iof the tuning ofw with x. Thus the fullx andt dependence
Fig. 2. For example, at time=1I'/2 every pendulum is ex- can be described either by
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0 d 2 3d x-axis of x, the constank, is 0. The angular frequency of a
simple pendulum of length (in the small angle approxima-
tion) is

1 w=(g/h"”? @
.lo[x-]° S0 in this case
Oy i T o[x]=(g/[x]) 2, ®)
@" 21 Herel[ x] is the continuous curve along which the pendulum
20 bobs hang below the axis, shown as a dotted curve in Fig.

Fig. 1. Equally spaced pendula hanging from treis. The pendula swing 1. . .
perpendicular to the plane of the page. Numbers on the pendulum bobs are N actuality there are pendula only at discretealues, so
the pendulum index. Values below the numbered pendulum bobs indicate we index the pendula with an integerusingn=0 to label

how many cycles each pendulum completes during the overall pattern cyhe Iongest pendulum hanging frox=0. Since the pendu-

cling et lum spacing isd, the locationx, of the nth pendulum is
simply

y[x,t]=A cog kox+ w[x]t], 2) Xp=nd. (6)
where the constark, is used to describe the shape of the This pendulum must go througit+n full cycles in timeT’,
pattern at=0, or by so its periodT,, is given by

y[x,t]=Acog k[ t]x+ wqt], (3) To=T/(N+n) (7)
where the constanb, is used to describe the time evolution and its corresponding angular frequenaey is
of the pattern ak=0. wp=(27 rad)/T,= (27 rad)(N+n)/T. ®)

For starters, let us pursue the form suggested in(Eq.
Sincey[ x,0] equals the maximum amplitudefor all values  Using Eq.(6) to replacen by x,/d in Eq. (8), this becomes

vix] vix] ylx]

Ipeesendodedsdoed ! . ...J 1 [ [
. s e o
03 05 03
.
0 x 0le . X ] ? 3 * ? o x
-05 -05] ® o -05
' . . o o
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Fig. 2. Displacements of 15 pendula started in phade=& shown at nine instants during the cycling tilleHereN=20,d=1, andA=1. The series of
patterns is symmetric in time with respect to the out-of-phase pattdra laf2.
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wn= (27 rad)(N+(x,/d))/T (9 wo= (27 rad)(N/T"), (15
or, as a continuous function of just as it should be according to E®).

B B Equation(13) may be visualized as follows. The, t term
w[x]—(27rrad)(N+(x/d))/F—(27-rrad)(x+Nd)/(Fd)(10) drives thex=0 point i.e., the bob of the longest pendulum

back and forth with period
Now it is easy to show, using Eqé&) and (10), that the T —T/N 16
lengths of the pendula are described by 0~ ' (16)
_ 2 -2 At any non-negative timé and for positive values of, the
Ix]=g((I'd)/(2m rad)“(x+Nd) ", (11 function y[x,t] is momentarily sinusoidal in space, with
However, keep in mind that the actual apparatus is tuned bwavelength
carefully timing the pendulum periods rather than by care- _ _
fully measuring of the pendulum lengths. A[t]= (27 rag/k[t]=Td/t. (17)
Substituting Eq(10) into Eq. (2) gives this final expres- The wavelength is infinite &t=0, resulting in a flat pattern,
sion fory[x,t], the continuous function underlying the pen- but thereafteh shrinks as the reciprocal of the elapsed time.
dulum patterns,

y[x,t]=Acog ((27 rad)(x+Nd)/(T'd))t]. (12 IV. ALIASING

Notice thaty[ x,t] may be rewritten as Equation(13) looks promising to describe the pendulum
_ patterns fromt=0 to I'/2 [Figs. 2a)—2(e)], up to the out-of-
= + :
yIx,t]=Acog (2m rad (/(I'd)x+ (2 rad (N/I)t], - (13 phase pattern. However beyone I'/2, the wavelength in
the form suggested in E¢Q). In this form it is apparent that y[x,t] continues to get smaller and smaller, whereas the pen-
the wave numbek grows linearly with time according to dulum patterns appear to reverse their evolufiigs. 2e)—

_ 2(i)] and get simpler and broader, until the pendula are all
k[t]= (27 rad(T'd))t 14 . :
[t)=(2m (T'd)) (149 back in phase again wher=T".
and the angular frequenay, to be applied ak=0 (i.e., at Figure 3 shows the resolution of this apparent paradox.
n=0) is After t=T"/2 there are actually more peaks and valleys in
yix] v(x] ylx]
ladoesdooeooten 1 1
] 05 N 0s
0 4 0 h:4 0 X
-05 -05 \ -05
-1 -1 -1
D ° 4 & 8 10 12 14 0 2 4 & 8 10 17 14 0 2 4 & 8 10 17 14
(@ t=0 (b) t=T7/16 (c) t=2I716=T78
¥lx] y(x] yizl
1 /”\ . 1 W £ 1 ﬂ M
05 ) # / \ T 05 / / / 05 |
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|
-1 ' -1 -1
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(D t=7T7/16 (e)t=8T/16=T/2 Ht=9T/16
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Fig. 3. The same pendulum patterns as in Fig. 2, fit by the continuous fundtioh] from Eqg. (13). For times greater that=1'/2, aliasing results in
relatively simple patterns in the pendula despite ever more complexity in the underlying continuous fyfretign
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y[x,t] than there are pendula in the set, so the pendula carctually y[x,t] is not the only continuous function that has
not possibly display all the complexity of the underlying this property, and hence it is not the only candidate that may
function. In fact, by the timeé=T", the functiony[x,t] goes be used to fit the pendula. As discussed in Question 2 below,
through one full wavelength between adjacent penfleig.  y[x,t+mI'] also works, wheren is any integer, as do other
33! variants likey[x,—t]. However it seems most natural that
This is an example of “aliasing,” a term used to describethe function used to fit the pendula be as simple as possible
misleading patterns, such as those beybad'/2, that arise (i.e., flay whent=0 and for timet to run forward, so we
from the periodic sampling of periodic functions. A more continue to use thg[x,t] described in Eq(13) instead of
familiar example of aliasing can sometimes be seen in Movthese unnecessarily complicated alternatives.
ies or on TV when repetitive motion is viewed. Rotating Question 2 Does the functiony[x,t+mI'] at each dis-
objects like wagon wheels or helicopter blades can appear t@retexn (ie., at the location of each pendulumatch the

be spinning too S'OV.V'V’ to be. stopped, or even to be Spinm.ng/alues ofy[x,t]? Heremis any integer. Of course the func-
backward. This optical |IIu3|on. occurs bec;ause of the MiS<i 01 as a whole looks very different every tirfiehas elapsed,
match between the rate at which the motion cycles and th

discrete frame rate of the camera used to film the motion So this is a check of thE periodicity in time of the pendu-
Aliasing typically arises when a continuous signal is ex-Ium patterns(i.e., of the cyclical nature of the aliasing

) ’ . : . Answer 2 Yes! Here is one way to argue this result:
amined at some discrete sampling rate. A misleading pattern
can emerge if the signal changes significantly on a time scale y[x,,t+mI']=Acog (2= rad)((t+mI')/(I'd))x,
comparable to, or shorter than, the sampling time. The alias-
ing here is slightly different because there is a discrete sam- +(2mrad(N/T')(t+ml) ], (24)
pling distance rather than a discrete sampling time. The pen- _
dulum bobs can be observed at all times, but they are located YDxn t+mI]=Acod (2 rad (t/(T'd))x, + (2 rad)
at discrete points along the axis. The swinging pendula X(N/T)t+ (27 radm((x,/d)+N)],
cannot possibly provide information about what the underly-

ing continuous function is doing at points along thexis 29
between pendulum bobs, and aliasing can result. y[nd,t+mI']=Acog (2 rad)(t/(I'd))nd+ (2 rad)
Once this aliasing is recognized, an alternative derivation
of Eq. (13) presents itself. One can guess the time depen- X(N/T)t+(2mradm(n+N)], (26
dence of\ by realizing that one extra wavelength yjix,t] t+mC1=A 2 t/(I'd
must fit in distancel (i.e., must fit between adjacent pendula YDXn tml'] cog (2m rad (t/(I'd))xy
for every repetition timd". Thus +(2mrad)(N/I')t]. (27)
NMt=T]=d, A[t=2I']=d/2, \[t=3I']=d/3,..., [That last step works becausgmt N) is an integer, and
(18 the cosine function is periodic with respect to adding
which leads to the immediate conclusion that (27 rad) times any integer to its argument
Nt]=dI'/t, (19 Y[ Xn t+ml']=y[x,,t]. QED (29

as seen earlier in Eq17). From this resultk[t] may be We think of this as the key property of the aliasing. Although
found immediately. Finallyw, may be deduced using Eq. Y[X,t] oscillates in less and less space as time goes by, the
(9) with n=0, leading quite directly to Eq(13) from the  patterns exhibited by the pendula recur every tilénas
proposed form of/[x,t] in Eq. (3). elapsed.
Question 3 Does the functiory[x,(I'/2) + €] at each dis-
crete x,, (i.e., at the location of each pendulurmatch
V. CHECKING y[x,t] ANALYTICALLY y[x,(I'/2)— €]? This checks whether thaliased pendulum
Graphing is clearly helpful in visualizing the relationship Patterns are indeed symmetric in time with respect to the
between the pendulum patterns and the funcgiprt], but ~ Out-of-phase pattern at=I'/2. , o
all the salient features of the pendulum motion and the alias- Answer 3 Yes! Consider the following derivation:
ing itself may also be extracted analytically from Ed3).
For example, it is instructive to use E(.3) to answer each Y[Xn,(I'/2) + €]=Acod (27 rad) (((I'/2) + €)/(I'd) ) X,
of the following questions.
Question 1 Does the functiory[x,t] at each discrete,, +(2mrad(NT)((T72)+e)l, (29

(i.e., at the location of each pendulywscillate sinusoidally _
in time with the appropriate angular frequeney? That is, y[xn,(T'/2) + e]=Acog (2 rad ((x/(2d)) + (N/2))

doesy[ x,,t] equalA cog w,t]? + (27 rad)((ex,/(I'd))+ (eN/T))],
Answer 1 Yes! One possible derivation is as follows:

(30)
Y[ Xn,t]=Acog (27 rad(t/(I'd))x,+ (27 rad)(N/T")t],

(20 y[nd,(T'/2)+ e]=Acog (27 rad)((n+N)/2)
y[nd,t]=Acos{(ZWrad)(t/(Fd))nde(Zwraa)(N/F)t](,Zl) +(2mrad e(n+N)/T], (31)
y[nd,t]=Acog (27 rad)((n+N)/T")t], (22 Y[ Xn,(T'/2)+ €e]=Acog (27 rad)((n+N)/2)
y[X,,t]=Acogw,t]. QED (23 +(2mrad)((n+N)/T") €], (32
781 Am. J. Phys., Vol. 69, No. 7, July 2001 J. A. Flaten and K. A. Parendo 781
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Fig. 4. A plot of y[ £,t] from Eq. (39), with y[x,t] from Eqg.(13) superimposed in bold, for the first three instants shown in Figs. 2 and 3. The valxes of
from the physical demonstration extend fr@ms 20d to é=34d [i.e., from&=Nd to £= (N+ (nna—1)d)]. The relation betweer and ¢ is given in Eq.(37)
andn,,, is the number of pendula in the set.

Similarly, This shift of origin physically corresponds to adding

_ longer and longer pendula to the left end of the set. During

yDXn,(I/2) = e]=Acog (2m rad (n+N)/2) the cycling time,I’, these pendula would go througih— 1

— (27 rad((n+N)/T")€]. (33 cycles, N—2 cycles, and so on. Actually building these
longer pendula quickly becomes impractical for a classroom
demonstration if" is as large as 20 s. Even with a smaller
cog (27 rad)(n+N)/2]=* . (34 the £&=0 pendulum can never be constructed because it must
e infinitely long, so as to go through 0 oscillations in time

Now (n+N)/2 is either an integer or a half integer, so

That is to say, this argument corresponds to a peak or f
valley in the cosine curve. In Egs. (32) and (33), the cosine . -
funct)i/on is called with argumenﬁs th(at ;re eq(uidi)stant above Several graphs of the functiofi £,t] appear in Fig. 4. At
and below(2 rad)(n+N)/2. Since the cosine function is €V€ry momeny[&,t] is a sinusoidal function of, with a
symmetric about both its peaks and its valleys, one may corix€d value ofA at the (=0 end. The wavelength of this
clude that sinusoid diminishes as tl/in accordance with Eq17), so

. y[ &,t] looks something like a contracting accordion as time
cog (27 rad)((n+N)/2))+anything goes by. The functioy[x,t] describing the physical set of
=cog((2mrad)((n+N)/2))—that same thing (35  pendula is just a subset gf ¢,t] extending fromé=Nd to
&= (N+ (nmax—1))d, wheren,.is the number of pendula in
the set. To illustrate how[ x,t] is just a portion of the more
Y[Xn, (I'/2) + e]=y[xn,(I'/2)—€].  QED (36)  extensivey[ £,t], the two functions are superimposed in Fig.

This means that the pendulum patterns get more and mor® With y[X,t] shown in bold.

complicated untilt=T"/2, then the pendula go through ex-

actly the same series of patterns backwards until they are all||. SUMMARY

back in phase. This property is neat, and perhaps not unex- ) o o
pected, but we consider it of somewhat less importance than The cyclic patterns exhibited by the pendula in this dem-

Thus we have

the cycling of the patterns discussed in Question 2. onstration never fail to delight and intrigue audiences of all
ages and backgrounds. Describing the continuous mathemat-
V1. ANOTHER ORIGIN ics behind these patterns is a nifty exercise in mathematical

modeling that is just one small step beyond the standard

The mathematical description of this physical system isdescription of traveling waves in one dimension taught in
somewhat simpler if the origin is shifted to the left by defin- introductory physics classes. The fact that the cyclic nature
ing of the patterns arises from aliasing is also a valuable lesson,
£=x+Nd. 37) and serves to make the mathematics even more interesting.

In terms of this new axis variable, the lengths of the pendula®Electronic mail: flatenja@mrs.umn.edu

; ; -2 !Richard E. Berg, “Pendulum waves: A demonstration of wave motion
|[§] zre Sflmply pr(()jp?rtlkt)nnal t¢™" [see Eq.(11)] and the using pendula,” Am. J. Phy$9 (2), 186—187(1991).
periods o € pendula become ’Demo 08-25 “Pendulum Waves,The Video Encyclopedia of Physics

T =Td/ 38 DemonstrationgThe Education Group & Associates, Los Angeles, 1992
[£] £ 3  2F Hor icatior _

This web site is compatible with Netscape Communicator 4.7 and Internet
Thus Eg.(12) describing the underlying function can be Explorer 4.5. It is best viewed using a window between 800 and 1200

written as pixels wide.
“One may think of as an angle instead of a distance, but in the small-angle
y[&,t]=Acog (27 rad) (&/(I'd))t]. (39 approximation the perpendicular displacement is proportional to the angle.
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