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Clostridium difficile infection is the leading cause of healthcare associated 

diarrhoea in Europe and North America
1, 2

. During infection, C. difficile produces 

two key virulence determinants, toxin A and toxin B. Experiments with purified 

toxins have suggested that toxin A alone is able to evoke the symptoms of C. 

difficile infection, but toxin B is unable to do so unless it is mixed with toxin A, or 

there is prior damage to the gut mucosa
3
. However, a recent study suggested that 

toxin B is essential for C. difficile virulence and that a strain producing toxin A 

alone was avirulent
4
. This creates a paradox over the individual importance of 

toxin A and toxin B. Here we show that isogenic mutants of C. difficile producing 

either toxin A or toxin B alone can cause fulminant disease in the hamster model of 

infection. By using a gene knock-out system
5, 6

 to permanently inactivate the toxin 

genes, we found that C. difficile producing either one or both toxins displayed 

cytotoxic activity in vitro, which translated directly into virulence in vivo. 

Furthermore, by constructing the first ever double mutant strain of C. difficile, in 

which both toxin genes were inactivated, we were able to completely attenuate 

virulence. Our findings re-establish the importance of both toxin A and toxin B 

and highlight the need to continue considering both toxins in the development of 

diagnostic tests and effective counter-measures against C. difficile. 



2 

 

 

Toxin A and toxin B both catalyse the glucosylation, and hence inactivation, of 

Rho-GTPases; small regulatory proteins of the eukaryotic actin cell cytoskeleton. This 

leads to disorganisation of the cell cytoskeleton and cell death
7
. The toxin genes, tcdA 

and tcdB, are situated on the C. difficile chromosome in a 19.6 kilobase pathogenicity 

locus (PaLoc), along with the three accessory genes, tcdC, tcdR and tcdE (Fig. 1a). To 

address the individual importance of toxin A and toxin B, we used the ClosTron gene 

knock-out system
6
 to inactivate the toxin genes of C. difficile. This system inactivates 

genes by inserting an intron into the protein-encoding DNA sequence of a gene, thus 

resulting in a truncated and non-functional protein. The intron sequence itself 

encompasses an erythromycin resistance determinant which permits selective isolation 

of mutants. Furthermore, it has been shown experimentally that the insertions are 

completely stable, meaning that inactivation of a gene is permanent
5
. 

Using the ClosTron system, we targeted insertions to tcdA and tcdB at nucleotide 

positions 1584 and 1511, respectively (Fig. 1a). In both cases, this placed the intron 

within DNA sequence encoding the toxin catalytic domain. Three separate isogenic 

mutants of the toxin A-positive, toxin B-positive (A
+
B

+
) C. difficile strain 630Δerm

8
 

were constructed; two 'single-mutants', with toxin profiles A
-
B

+
 and A

+
B

-
, respectively, 

and a 'double-mutant' with toxin profile A
-
B

-
. The A

-
B

-
 double-mutant was made from 

the A
+
B

-
 single-mutant by targeting tcdA with a second intron which carried the 

chloramphenicol / thiamphenicol resistance gene catP instead of the usual erythromycin 

resistance determinant. 

The genotype of each toxin mutant was characterised by PCR and DNA sequence 

analysis to confirm the exact location of each intron insertion made (data not shown). 

Southern blot analysis of EcoRV-digested genomic DNA samples, using an intron-
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specific probe, confirmed that the A
-
B

+
 and A

+
B

-
 mutants each had a single insertion, 

while the A
-
B

-
 mutant had a double insertion (Fig. 1b). It is noteworthy that three bands 

were expected for the A
-
B

-
 double-mutant strain because the catP gene harbours an 

EcoRV site. The phenotype of each strain was confirmed by Western blot analysis. Use 

of a toxin A-specific antibody-probe confirmed that the A
-
B

+
 and A

-
B

-
 mutants no 

longer produced toxin A (Fig. 1c). Likewise, use of a toxin B-specific antibody-probe 

confirmed that the A
+
B

-
 and A

-
B

-
 mutants no longer produced toxin B (Fig. 1d).  

Subsequently, in vitro cell cytotoxicity assays were carried out using HT29 

(human colon carcinoma) cells and Vero (African green monkey kidney) cells. Each of 

these cell lines is susceptible to both toxin A and toxin B, although HT29 cells are more 

sensitive to toxin A and Vero cells are more sensitive to toxin B
9
. The action of toxin A 

and toxin B causes the cells to 'round' (that is, lose morphology) and die; a phenomenon 

which is clearly visible by light microscopy. We incubated cultured cells for 24 h with 

4-fold dilution series of C. difficile culture supernatants. To obtain the most objective 

data set possible, we determined the endpoint titre of each dilution series, rather than 

implementing a subjective cell scoring system. Endpoint titre was defined as the first 

dilution in a series for which HT29 or Vero cell morphology was indistinguishable from 

the negative controls (that is, cells which had been incubated with uninoculated C. 

difficile culture medium).  

As expected, the A
-
B

-
 double toxin mutant did not display any cytotoxic activity 

towards either HT29 or Vero cells (Fig. 2a,b). Compared to the A
+
B

+
 parental strain, the 

A
-
B

+
 mutant displayed reduced toxicity towards HT29 cells, although the difference 

was not statistically significant, and a similar degree of toxicity towards Vero cells (Fig 

2a,b). These findings were anticipated given the respective sensitivities of HT29 cells 

and Vero cells to toxin A and toxin B
9
. However, unexpectedly, when compared to the 

A
+
B

+
 parental strain, the A

+
B

-
 mutant displayed increased toxicity towards HT29 cells, 
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although the difference was not statistically significant, and a similar degree of toxicity 

towards Vero cells (Fig. 2a,b). We reasoned that this may occur due to increased 

expression of toxin A by the A
+
B

-
 mutant; a phenomenon which has been reported 

previously
4
. Indeed, qRT-PCR analysis confirmed that expression of toxin A was an 

average of 3.3-fold greater in the A
+
B

-
 mutant than the A

+
B

+
 parental strain (data not 

shown). We do not know the reason for this. However, considering the respective 

sensitivities of HT29 and Vero cells to toxin A
9
, this finding explains our unexpected 

cytotoxicity results, even accounting for the fact that the A
+
B

-
 mutant does not produce 

any toxin B. 

To confirm that the cytotoxic activity we had observed on HT29 cells and Vero 

cells were indeed attributable to the respective actions of toxin A and toxin B, we 

carried out toxin neutralisation assays. Culture supernatants of each C. difficile toxin 

mutant and the A
+
B

+
 parental strain were incubated with either toxin A-specific or toxin 

B-specific neutralising antibodies, prior to inoculation onto HT29 and Vero cell 

monolayers. Importantly, culture supernatants were diluted equivalently such that, for 

the A
+
B

+
 parental strain, only toxin A activity was detected on HT29 cells and only 

toxin B activity was detected on Vero cells (that is, toxin B activity towards HT29 cells 

was diluted-out completely and toxin A activity towards Vero cells was diluted-out 

completely) (Fig. 2c,d). As expected, the toxin A-specific antibody neutralised all toxic 

activity produced by the A
+
B

-
 mutant and the toxin B-specific antibody neutralized all 

toxic activity produced by the A
-
B

+
 mutant (Fig. 2c,d). Interestingly, the increased 

production of toxin A by the A
+
B

-
 mutant was clearly visible in this assay, as the 

cytotoxic activity of this strain towards Vero cells was not diluted-out completely as it 

was for the A
+
B

+
 parental strain (Fig. 2d).  

Having fully characterised our C. difficile toxin mutants in vitro, we tested the 

virulence of each in the hamster model of infection. Hamsters were each challenged 
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with 100 spores of a single C. difficile strain, 5 days after an oral dose of clindamycin 

(30 mg/kg). Each toxin mutant and the A
+
B

+
 parental strain were administered to eight 

hamsters in total. All hamsters became colonised by the C. difficile strain administered 

between 1 and 3 days post-challenge, with the exception of one which received the A
+
B

-
 

single toxin mutant (Fig. 3a). Following colonisation, hamsters which received the A
+
B

+
 

parental strain, the A
-
B

+
 mutant or the A

+
B

-
 mutant all developed symptoms of C. 

difficile infection, which resulted in a mean time to death of 1.0 day, 1.3 days and 4.0 

days, respectively (Fig. 3b). In contrast, none of the hamsters colonised by the toxin null 

A
-
B

-
 double mutant developed any symptoms of disease during the 14-day experimental 

period, indicating that this strain is completely attenuated for virulence. Bacteriological 

and PCR analysis of caecum samples taken from each hamster post mortem confirmed 

that the only infecting strain of C. difficile was, indeed, the strain administered in every 

case, thus ruling out any possibility of cross-contamination between cages or 

contamination from the environment (Supplementary Fig. 1).  

In conclusion, it is clear that both toxin A and toxin B play an important role in C. 

difficile infection as we have shown here that a strain which produces either toxin on its 

own or both together is virulent. It is pertinent to question why we found that an A
+
B

-
 

strain of C. difficile is virulent; a result which is in direct contrast with a similar study 

published recently
4
. This discrepancy may arise due to inherent differences between the 

hamsters used in each study. However, perhaps more likely is that there is one or more 

key differences between the strains of C. difficile studied. Although both strains are 

erythromycin-sensitive derivatives of strain 630
10, 11

, they were isolated independently 

through serial sub-culture
8, 12

. Therefore, either strain could have acquired one or more 

secondary mutations, which may affect the action of either one or both of the toxins. 

However, it is notable that our findings align with those of previous studies which have 

suggested a role for both toxin A and toxin B in C. difficile infection
3, 13-15

. Moreover, 

given that the human colon is the principle site of pathology in patients infected with C. 
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difficile, it stands to reason that an A
+
B

-
 strain of C. difficile is virulent in vivo, as it is 

toxin A which displays the greatest cytotoxicity towards laboratory cultured human 

colon cells (that is, HT29 cells). 

It is important to note that inherent variability exists between the toxins of some 

C. difficile strains; particularly in the case of toxin B
16-19

. In practical terms, this means 

that the toxins from different strains can vary in enzymatic activity (that is, different 

GTPase substrates may be glucosylated) and/or host-cell specificity. Consequently, it is 

not appropriate to over-interpret our findings and make general conclusions about the 

toxins produced by all toxigenic strains of C. difficile. Nonetheless, our results clearly 

demonstrate that a strain of C. difficile producing either toxin A or toxin B alone may be 

virulent and thus we have re-established the importance of both toxins in C. difficile 

infection.  

It is interesting to note that a number of clinical cases of C. difficile infection have 

been attributed to naturally occurring A
-
B

+
 strains

20, 21
, but there have been no reports of 

naturally occurring A
+
B

-
 isolates to date. This would suggest that A

+
B

-
 strains do not 

exist, but it may also be an artefact of routine diagnostic testing practices. Either way, 

our results show that A
+
B

-
 strains may be virulent and even if they do not exist in nature 

already, they may yet evolve. Consequently, it is imperative that both toxin A and toxin 

B continue to be considered in routine diagnostic settings and in the development of 

effective countermeasures against C. difficile.  

 

Methods Summary 

Mutants were constructed from the parental strain C.  difficile 630erm
8
 using the 

ClosTron system
5, 6

. The retargeted plasmids pMTL007C-E2::Cdi-tcdA-1584s, 
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pMTL007C-E2::Cdi-tcdB-1511a and for the double pMTL007S-C7::Cdi-tcdA-1584s 

were transferred into C. difficile via conjugation. The single ClosTron mutants were 

isolated on erythromycin plates. The double mutant was isolated on thiamphenicol 

plates. 

For cytotoxicity assays, the four strains were grown overnight in 5 ml TY under 

anaerobic conditions as previously described
22

. The cell densities were standardised 

before centrifugation and filtration. Supernatants were diluted in a 4-fold series and 

20μl of dilutions were added onto monolayers of Vero and HT29 cells preincubated in 

96 well plates for 48 h (at 37C, 5% CO2). Cytotoxicity was recorded after 24 h. 

Statistical analysis was performed using one way ANOVA tests. For the neutralization 

assay appropriate dilutions of supernatants were pre-incubated with a suitable 

concentration of anti-TcdA or anti-TcdB serum (polyclonal, tgcBIOMICS) for 1 h at 

37C and then added as previously described to Vero and HT29 cells and evaluated 

after 24 h. Golden Syrian hamsters were dosed with clindamycin (30 mg/kg) 5 days 

prior to being infected orally with 100 spores each. Hamsters were monitored for signs 

of infection (including weight-loss, behavioural changes and wet-tail) and sacrificed 

when the endpoint was met. Faecal pellets were collected daily and plated to confirm 

the presence or absence of C. difficile.  Caecum samples were homogenized, plated and 

C. difficile counts obtained. PCR was performed to determine the C. difficile genotype 

isolated from all samples. Supplementary Information, showing PCR results, is linked 

to the online version of the paper at www.nature.com/nature. 

Full Methods and any associated references are available in the online version of the paper at 

www.nature.com/nature. 

Received 27/04/2010. 

 

http://www.nature.com/nature


8 

 

1. Poutanen, S. M. & Simor, A. E. Clostridium difficile-associated diarrhea 
in adults. Can Med Assoc J 171, 51-8 (2004). 

2. Elliott, B., Chang, B. J., Golledge, C. L. & Riley, T. V. Clostridium difficile-
associated diarrhoea. Intern Med J 37, 561-8 (2007). 

3. Lyerly, D. M., Saum, K. E., MacDonald, D. K. & Wilkins, T. D. Effects of 
Clostridium difficile toxins given intragastrically to animals. Infect Immun 
47, 349-52 (1985). 

4. Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. 
Nature 458, 1176-9 (2009). 

5. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. 
P. The ClosTron: a universal gene knock-out system for the genus 
Clostridium. J Microbiol Methods 70, 452-64 (2007). 

6. Heap, J. T. et al. The ClosTron: Mutagenesis in Clostridium refined and 
streamlined. J Microbiol Methods 80, 49-55 (2010). 

7. Just, I. & Gerhard, R. Large clostridial cytotoxins. Rev Physiol Biochem 
Pharmacol 152, 23-47 (2004). 

8. Hussain, H. A., Roberts, A. P. & Mullany, P. Generation of an 
erythromycin-sensitive derivative of Clostridium difficile strain 630 

(630erm) and demonstration that the conjugative transposon Tn916E 
enters the genome of this strain at multiple sites. J Med Microbiol 54, 
137-41 (2005). 

9. Torres, J., Camorlinga-Ponce, M. & Munoz, O. Sensitivity in culture of 
epithelial cells from rhesus monkey kidney and human colon carcinoma 
to toxins A and B from Clostridium difficile. Toxicon 30, 419-26 (1992). 

10. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium 
difficile has a highly mobile, mosaic genome. Nat Genet 38, 779-86 
(2006). 

11. Hachler, H., Berger-Bachi, B. & Kayser, F. H. Genetic characterization of 
a Clostridium difficile erythromycin-clindamycin resistance determinant 
that is transferable to Staphylococcus aureus. Antimicrob Agents 
Chemother 31, 1039-45 (1987). 

12. O'Connor, J. R. et al. Construction and analysis of chromosomal 
Clostridium difficile mutants. Mol Microbiol 61, 1335-51 (2006). 

13. Kim, P. H., Iaconis, J. P. & Rolfe, R. D. Immunization of adult hamsters 
against Clostridium difficile-associated ileocecitis and transfer of 
protection to infant hamsters. Infect Immun 55, 2984-92 (1987). 

14. Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of 
action and role in disease. Clin Microbiol Rev 18, 247-63 (2005). 

15. Du, T. & Alfa, M. J. Translocation of Clostridium difficile toxin B across 
polarized Caco-2 cell monolayers is enhanced by toxin A. Can J Infect 
Dis 15, 83-8 (2004). 

16. Chaves-Olarte, E. et al. R-Ras glucosylation and transient RhoA 
activation determine the cytopathic effect produced by toxin B variants 
from toxin A-negative strains of Clostridium difficile. J Biol Chem 278, 
7956-63 (2003). 

17. Torres, J. F. Purification and characterisation of toxin B from a strain of 
Clostridium difficile that does not produce toxin A. J Med Microbiol 35, 
40-4 (1991). 



9 

 

18. Alfa, M. J. et al. Characterization of a toxin A-negative, toxin B-positive 
strain of Clostridium difficile responsible for a nosocomial outbreak of 
Clostridium difficile-associated diarrhea. J Clin Microbiol 38, 2706-14 
(2000). 

19. Stabler, R. A., Dawson, L. F., Phua, L. T. & Wren, B. W. Comparative 
analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-
encoding gene (tcdB) sequences. J Med Microbiol 57, 771-5 (2008). 

20. Drudy, D., Fanning, S. & Kyne, L. Toxin A-negative, toxin B-positive 
Clostridium difficile. Int J Infect Dis 11, 5-10 (2007). 

21. Drudy, D., Harnedy, N., Fanning, S., Hannan, M. & Kyne, L. Emergence 
and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive 
Clostridium difficile. Infect Control Hosp Epidemiol 28, 932-40 (2007). 

22. Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular 
system for Clostridium shuttle plasmids. J Microbiol Methods 78, 79-85 
(2009). 

 
 

 

Supplementary Information accompanies the paper on www.nature.com/nature. 

Acknowledgements S.K., S.C., A.C. and N.M. acknowledge the financial support of the  UK Medical 

Research Council, UK (G0601176). Support for M.K. was provided by the European Union (HEALTH-

F3-2008-223585) and for J.H. by the BBSRC (BB/F003390/1).  We thank C. von-Eichel Streiber for 

supplying the neutralizing antibody serums and Y. Mahida for the Vero cells.  We are also grateful to A. 

Olling and R. Gerhard for methodological advice on Western blots. 

Author Contributions The study was conceived by N.M. and designed by S.K., S.C. and  J.H. 

Construction of mutants and in vitro characterisation was carried out by S.K. In vivo work was carried out 

by S.C., M.K. and A.C. Analysis of data was carried out by S.K. and M.K. with assistance from S.C. and 

J.H. The manuscript was written by S.K. and S.C. with critical input from all other authors. Funding for 

the study was sourced by N.M. and A.C. 

Author Information Correspondence should be addressed to N.M. (nigel.minton@nottingham.ac.uk) 

 

 

mailto:nigel.minton@nottingham.ac.uk


10 

 

 

Figure 1. Characterization of C. difficile toxin mutants. a, The pathogenicity 

locus PaLoc of C. difficile 630 showing the intron insertion sites for the toxin 

mutants. b, Southern blot using an intron specific probe. The control plasmid 

(pMTL007C-E2) and the genomic DNA of the four strains was digested with 

EcoRV, which resulted in a band of ca. 9 kb for the plasmid, 10 kb for the tcdB-

mutation (in A+B- and A-B-), just over 3 kb for the tcdA-single mutant (A-B+) and 

1.8 and 1.2 kb for the tcdA-mutation in the double mutant, due to an additional 

EcoRV site in the catP gene. c, Western blot probing culture supernatants with 

anti-TcdA-antibody (tgcBIOMICS). d, Western blot probing culture supernatants 

with anti-TcdB-antibody (tgcBIOMICS). 

 

Figure 2. In vitro cytotoxicity. a and b, Supernatants of the parental strain 

A+B+ and the three mutants A-B+, A+B- and A-B- were used in cell culture assays 

to measure cytotoxicity. HT29 cells (a) and Vero cells (b) were cultured to a flat 

monolayer before adding C. difficile supernatants in 4-fold dilutions series. After 

a 24 h incubation toxin endpoint titres were determined. Data represent the 

mean  s.d.; n = 3. c and d, Toxin neutralization assays. Appropriate dilutions of 

supernatants were pre-incubated with a suitable concentration of anti-TcdA or 

anti-TcdB serum for 1 h at 37C and then added to HT29 cells (c) and Vero 

cells (d) which were evaluated after 24 h. Scale bar represents 2 mm. 

 

Figure 3. Virulence of C. difficile strains in hamsters. Groups of 8 hamsters 

were challenged with C. difficile 630 Δerm (A+B+), or one of the toxin mutant 

strains, A+B-, A-B+ or A-B-. a, Colonisation of Golden Syrian hamsters by each 
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strain is presented as time from inoculation to colonisation in days. n = 8. b, 

Time from colonisation to death. The duration of the experiment was set at 14 

days. n = 8. 

 

 

Methods 

Strains and growth conditions. Strains used in this study were E. coli TOP10 

(Invitrogen) as a cloning host, E. coli CA434
23

 as a conjugal donor and C. difficile 

630erm
8
 and mutants. All strains were stored at -80C stocks upon arrival and 

maintained as frozen stocks ever since.  E. coli cultures were grown on Luria Bertani 

medium, aerobically, 37C and shaking if liquid unless stated otherwise. C. difficile 

cultures were grown in BHIS
24

 or TY
25

, anaerobically, 37C in an anaerobic 

workstation (Don Whitley, UK). Antibiotics were used at the following concentrations 

where appropriate: Chloramphenicol (25 g/ml or 12.5 g/ml), thiamphenicol (15 

g/ml), spectinomycin (250 g/ml or 750 g/ml), erythromycin (2.5 g/ml), D-

cycloserine (250 g/ml) and cefoxitin (8 g/ml).  

Molecular biology techniques. Qiagen mini prep kits were used to purify plasmids. 

Genomic DNA was obtained by phenol-chloroform extraction. Digests, PCRs and DNA 

purification were all done according to general protocols
26

. DNA sequencing was 

performed by Geneservice, UK. 

Construction and characterization of mutants. The C. difficile single mutant strains 

A
-
B

+
 and A

+
B

-
 were made using ClosTron technology as described previously

5, 6
. The 

A
-
B

-
 double mutant strain was made from the A

+
B

-
 mutant using a catP-based ClosTron 

using the 'pseudo-suicide' vector principle as described elsewhere
25

. The following 
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retargeted plasmids pMTL007C-E2::Cdi-tcdA-1584s, pMTL007C-E2::Cdi-tcdB-1511a 

and for the double pMTL007S-C7::Cdi-tcdA-1584s were used. To verify the correct 

insertions, primers used for tcdA were: Cdi-tcdA-F2 (5´-

TCAATTGACAGAACAAGAAATAAATAGTCTATGGAGC-3´) and EBS universal
5
, 

and  Cdi-tcdA-R2 (5´-TACCCCATTGTCTTCAGAAAGAGATCCACC-3´) and 

ErmRAM-R (5´-ACGCGTGCGACTCATAGAATTATTTCCTCCCG-3´); and for tcdB 

were: Cdi-tcdB-F1 (5´-TGATAGTATAATGGCTGAAGCTAATGCAGATAATGG-

3´) and ErmRAM-R, and Cdi-tcdB-R1 (5´-

CTTGCATCGTCAAATGACCATAAGCTAGCC-3´) and EBS universal. 

Southern blotting. Mutants were verified by Southern blot using an intron specific 

probe. 2 μg genomic DNA were digested with EcoRV (NEB) overnight. The blot was 

carried out using a DIG high prime labelling and detection kit (Roche) according to the 

manufacturer’s instructions.  

Western blotting. Supernatants from 96 h cultures, grown anaerobically in TY, were 

concentrated 8-fold by chloroform-methanol-precipitation. Proteins were standardized 

and run on Tricine gels 10-20% (Invitrogen) and transferred onto nitrocellulose 

membrane. The membranes were blocked with milk powder and then incubated with 

mouse monoclonal anti-TcdA antibody TTC8 and mouse monoclonal anti-TcdB 

antibody 2CV (tgcBIOMICS) respectively, followed by protein A-HRP (Sigma). The 

ECL Western blot detection kit from Amersham was used according to the 

manufacturer’s instructions. 

Cell toxicity assays. The four strains were grown overnight in 5 ml TY under anaerobic 

conditions as previously described
22

, then the cell density was standardised, the cells 

centrifuged and supernatants filtered. Supernatants were diluted in a 4-fold series and 20 

μl of dilutions were added onto monolayers of Vero and HT29 cells preincubated in 96 

well plates for 48 h (at 37C, 5% CO2). Cytotoxicity was recorded after 24 h. For the 
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neutralization assay appropriate dilutions of supernatants were pre-incubated with a 

suitable concentration of anti-TcdA or anti-TcdB serum (polyclonal, tgcBIOMICS) for 

1 h at 37C. These were then added to Vero and HT29 cells which were evaluated after 

24 h.  

Vero and HT29 cells were grown in DMEM or McCoy's 5A, respectively, with 10% v/v 

foetal calf serum and 1% v/v penicillin-streptomycin at 37C, 5% CO2 until confluent. 

Cells were detached using trypsin, and seeded into 96 well plates at a density of ca. 2 × 

10
5
 cells/ml. All assays were carried out in triplicate. GraphPad Prism was used for 

statistical analysis. Significant differences were assessed using one way ANOVA tests. 

qRT-PCR. The qRT-PCR was carried out as described elsewhere
4
.  

Hamster infection model. We used a block design with final group sizes of 8 animals. 

Female Golden Syrian hamsters (100 – 130 g) were housed singly in individually 

ventilated cages. Each hamster was dosed with clindamycin (30 mg/kg) 5 days prior to 

being infected orally with 100 spores each. Hamsters were monitored for signs of 

infection and sacrificed when the endpoint was met. The hamsters were handled 

individually in a microbiological safety cabinet. In line with UK Home Office 

requirements to reduce animal suffering, an alternative to death was used as the end 

point. Animals were monitored 3-4 times per day following infection and were assessed 

for several parameters including presence and severity of diarrhoea, weight-loss, level 

of activity, starey coat, sunken eyes, hunched posture and response to stimulus.  A 

scoring system based on severity of changes observed (ranging from 0-3 for each 

parameter) was used to quantify changes in the condition of the animals which were 

euthanised when a pre-determined cumulative value was reached.  

Faecal pellets were collected daily and plated to determine the presence of C. difficile. 

Caecum samples from each hamster were homogenized, plated and C. difficile counts 
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obtained. PCR was performed to determine the genotype of each strain recovered from 

hamsters. Faecal and caecum samples were plated on Fructose agar (Clostridium 

difficile agar base, Oxoid) with cycloserine cefoxitin, taurocholate, tetracycline and 

amphotericin to select for Clostridium difficile. The following primer sets were used to 

authenticate the various strain genotypes: oligonucleotides 3800 and 10050
8
 to confirm 

the cells were derived from C. difficile 630erm, oligonucleotide primers Cdi-tcdA-F2 

(5´-TCAATTGACAGAACAAGAAATAAATAGTCTATGGAGC-3´) and Cdi-tcdA-

R2 (5´-TACCCCATTGTCTTCAGAAAGAGATCCACC-3´) to distinguish between 

the toxin A insertional mutants and wildtype, and the primers Cdi-tcdB-F1 (5´-

TGATAGTATAATGGCTGAAGCTAATGCAGATAATGG-3´) and Cdi-tcdB-R1 (5´-

CTTGCATCGTCAAATGACCATAAGCTAGCC-3´) to distinguish between the toxin 

B insertional mutation and wildtype. A figure showing annealing of the primers and gel 

pictures can be found in supplementary information, which is linked to the online 

version of the paper at www.nature.com/nature. 
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