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A generalized Ohm’s law is derived for a system composed of a background magnetohydrodynamic

plasma and a lower density relativistic charged-particle distribution. The interpretation of Ohmic electric

fields occurring due to force balance breaks down for such a system and instead an approach based on

Maxwell’s equations along with the particle flux equations is necessary. Three additional terms arise in

Ohm’s law and each is verified numerically.
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Introduction.—The generalized Ohm’s law is important
in plasma theory because it allows us to circumvent
Maxwell’s equations and determine the electric field E in
terms of macroscopic plasma parameters. As such it is
central to theories as varied as magnetohydrodynamics
and laser-plasma transport. Although the generalized
form has been shown to contain at least 13 terms [1],
reduced forms are often used by ignoring relatively small
terms. Those most commonly employed appear in the
example:

E ¼ �V � B� rPe

ene
þ �j; (1)

where B is the magnetic field, V is the bulk plasma
velocity, e is the electron charge, ne is the electron number
density, Pe is the electron thermal pressure, � is the
resistivity, and j is the thermal current density. The first,
second, and third terms on the right-hand side (rhs) of (1)
are often dominant in the areas of ideal MHD, long-pulse
laser-plasma interactions and charged-particle transport in
a dense background plasma (respectively). In this Letter
we address the question of how collisionless, energetic
particles can induce electric fields as they stream through
a background MHD plasma. Beginning with a two-fluid
theory, the background (or cold) electrons satisfy the mo-
mentum equation

@pc

@t
þ r � Pc ¼ �encðEþ vc � BÞ þRc (2)

while the energetic (or fast) particles satisfy

@pf

@t
þ r � Pf ¼ QfnfðEþ vf � BÞ; (3)

where p is the momentum density, P is the pressure tensor,
v is the average velocity, Q is the charge on each particle,
R is the rate of change of momentum density due to
collisions, and we have used subscripts c and f to denote
cold and fast components, respectively. We have ignored
Rf because, while it may be important for fast-particle

transport, in practice this usually occurs when it is simul-
taneously not important in Ohm’s law. The generalized

Ohm’s law (in a single-electron-component plasma) is
often expressed as a simple rearrangement of the cold
electron equation of motion (2) by ignoring the inertial
term (@pc=@t)

E ¼ 1

enc
f�r � Pc þ jc �BþRcg (4)

in which jc ¼ �encvc. The time scale over which the
inertial term can be ignored depends on the system: in a
highly magnetized plasma it is assumed that oscillations at
the electron cyclotron frequency can be ignored because
they cause the inertial term to average to zero, in which
case electrons simply undergo drift; in a collisional plasma,
collisions limit the net force after a few collision times.
Since we are interested in a fast population which is neither
highly collisional nor highly magnetized over time scales
of interest, we cannot neglect the inertial term in (3) in
comparison to the others. Thus it is not possible to simply
sum equations (2) and (3) and ignore both inertial terms on
the basis of time-scale arguments. An alternative strategy
[2] is to continue using Eq. (4)—after all we do not
intuitively expect the presence of the fast component to
alter the physical time scales associated with the cold
background—for example if the background is collisional
in the absence of a fast component then it should remain
collisional in the presence of a fast component; all that is
necessary is to provide a working expression for jc, which
is easily given by current balance jc ¼ �jf. However, this

approach neglects the fact that while the physical time
scales associated with the various terms in the cold back-
ground equation may remain unchanged, the current in-
duced by the fast component must somehow be reflected in
the electric field. As we shall see, these effects should enter
Eq. (4) through the omitted inertial term which may no
longer be negligible because the cold background is forced
to maintain quasineutrality by responding on fast-particle
time scales. The aim of this Letter is to derive an Ohm’s
law valid in the presence of relativistic streaming particles,
taking into account a proper method for removing the
inertial terms (which makes practical use of the equation
possible).
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While not explicitly seeking a generalized Ohm’s law,
Cox and Bennett [3] derived expressions for the electro-
magnetic potentials in fixed frequency regimes for a cold
relativistic beam of fixed profile passing through a back-
ground plasma. The Ohm’s law for an electron-positron
plasma has been derived by Gedalin [4] in limits appro-
priate for pair plasmas. Kandus [5] has derived a general-
relativistic Ohm’s law which retains the inertial terms.
While inertial terms are important for complete generality,
on a practical basis they are highly undesirable because
they require further equations to be specified in order to
solve for them.

We are primarily motivated by the large number of
experiments in the field of intense laser-solid interactions
(see, e.g., [6–8]) though our resulting Ohm’s law may have
applications in fast-ignition [9], astrophysics [10], mag-
netic reconnection [11], pulsed-power devices [12] and
fast-particle transport in magnetic-confinement devices
[13]. In each of these topics, the electron or ion distribution
functions frequently contain a fast component which can
be treated as a separate kinetic species propagating through
the bulk ‘‘background’’ plasma.

Our starting point is the Ampère-Maxwell law

@E

@t
¼ c2r� B� j

�0
; (5)

which immediately tells us that (in the absence of a mag-
netic field) the electric field will grow if net currents are not
suppressed—i.e., the electric field acts to suppress a net
current flow (and not necessarily momentum flow). Put
another way, plasma quasineutrality is maintained by en-
suring the electrons and ions copropagate rather than gain
the same momentum. This leads us to write equations for
the evolution of the background and fast-particle current
densities by integrating over the kinetic equations (see [14]
as a guide to this analysis):

@jc
@t

� e

me

r � Pc ¼ e2nc
me

E� e

me

jc �B� �cijc; (6)

@jf
@t

þr � hjfvfi¼
Q2

fnf

mf

E � hCiþQf

mf

hC �jf�Bi; (7)

wheremf is the mass of each fast particle,C � @vf=@Uf is

a symmetric tensor in the fast-particle relativistic three-
velocity U ¼ �fvf, �ci is the cold-electron-ion collision

frequency, the brackets h i denote an average over the fast-
particle distribution function, and we have assumed the
background electrons are nonrelativistic. Note that in the
term �cijc of Eq. (6) (and all following collision terms) the
cold current jc refers to that calculated in the ion rest
frame. Although other collision terms are present (see,
e.g., [15]), we have reduced Rc to the resistivity for
simplicity. Assuming the background ions do not signifi-
cantly contribute to the rate of change of total current
density (due to their relatively large mass), @j=@t ¼
@ðjc þ jfÞ=@t. Using this, Eqs. (5)–(7) can be combined

with Faraday’s law to yield the wave equation

@jc þ jf
@t

¼ �0
@2E

@t2
� �0c

2r� r�E: (8)

Next we make a number of limiting assumptions:

nc � nf
me

mf

Q2
f

e2
jCj; � � 1

!pc

; L � c

!pc

; (9)

where !pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2nc=me�0

p
and � and L are the character-

istic time and length scales associated with the operators
@=@t and r� , respectively. For the case of nonrelativistic
fast electrons, the first approximation above simply corre-
sponds to nf � nc; the second simply states that we are

ignoring effects which occur on time scales comparable to
the cold-plasma period and the third corresponds to ignor-
ing effects which occur on length scales comparable to the
cold-plasma skin depth. Ignoring terms by such order-of-
magnitude arguments is equivalent to Fourier-filtering out
high frequency effects from the linearized form of the
equations. In general the scales � and L should be thought
of as applying to a field which has been temporally and
spatially averaged over scales long enough to satisfy the
assumptions (9) (though this may happen naturally if there
is even a small amount of dissipation in the system). With
these assumptions in mind, the two equations (6) and (7)
can be summed and combined with both (5) and (8) to yield
an expression for the field without inertial terms:

E ¼ 1

enc

�r� B

�0

� jf � ji

�
� Bþ 1

enc
hC � jf � Bi

� 1

enc
r � Pc þ me

e2nc
r � hjfvfi þ �jc: (10)

This expression consists of familiar terms in cold electron
quantities but contains the three new terms in r � hjfvfi,
hC � jf � Bi and jf � B. In the ideal MHD approximation

(which corresponds to ignoring thermal and dissipative
terms as well as the Hall term r� B� B=enc�0 in
Ohm’s law), we have

E ¼ � 1

enc
fjf þ jig � Bþ 1

enc
hC � jf �Bi: (11)

In the nonrelativistic limit, hC � jfi ! jf and the above

reduces to the well-known form E ¼ �ui � B, where ui

is the ion fluid velocity and we assume quasineutrality
(Zni ¼ nc); in the ultrarelativistic limit, hC � jfi ! 0 so

instead the above becomesE ¼ �ðji þ jfÞ � B=enc. This

latter expression would lead to a breakdown of the
freezing-in of magnetic flux if jf � ji, in which case the

magnetic flux would be advected at velocity jf=enc, rather

than at ui.
In the remainder of this Letter we will show results of

simulations which verify the existence of the new terms.
The various terms are tested with two different numerical
models—each one appropriate to the nature of the term
being verified.
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Numerical verification of the magnetic-field terms.—In
this section we describe simple simulations which verify
the new terms in

E ¼ �jc þ 1

enc
hC � jf � Bi � 1

enc
jf � B; (12)

viz, those in hC � jf � Bi and jf �B. Since these terms

contain magnetic field but no spatial gradients, we can
choose a homogeneous situation and make use of zero-
dimensional particle simulation. Particle simulation is par-
ticularly well suited to the magnetic-field terms because
there are existing techniques for accurately integrating the
equations of motion for particles subject to a Lorentz force.
While Eqs. (2) and (3) refer to averaged quantities, the
same principles apply, and we solve them along with the
Ampère-Maxwell law in a homogeneous magnetic field by
using the well-known second-order Boris algorithm. The
beam-to-background density ratio is 1=1000 and the fast
particles are chosen to be electrons. We ensure the cold-
plasma period is temporally resolved and assume a fixed
background of ions. The nonrelativistic limit of Eq. (12) is
trivial because it involves only the resistivity term.
Conversely, the ultrarelativistic limit does not contain sig-
nificant contributions from the term in r � hjfvfi. We

therefore show ExðtÞ in the more demanding intermediate
regime for a fast-particle relativistic � ¼ 1:5 (with initial
momentum in the x direction), to illustrate the contribution
from all terms. In Fig. 1, each term is labeled according to
its order of appearance on the rhs of Eq. (12). The fast
particles are initially smoothly accelerated up to their peak
energy and then a magnetic-field is slowly switched on (but
reaches a steady value), as indicated by the labels in the
figure. It is clear that all terms are important. For the curve
labeled Ohm’s law in the figure, we also included a term to

account for the initial applied particle acceleration period
(but this is ignorable once the applied force ceases). Note
that our expression for the field agrees so closely with the
actual field it is difficult to distinguish the two curves in
Fig. 1. For reference, we give the field arising from the
x component of the term hC � jf �Bi in terms of the fast-

particle momentum (qfx;y):

Ex ¼ 1

enc

�
1

�f

�
1� q2fx

ðmcÞ2�2
f

�
jy þ

qfxqfy

ðmcÞ2�3
f

jx

�
Bz: (13)

Intense laser-plasma interactions.—Taking an alterna-
tive limit of Eq. (10) relevant to laser-solid interactions in
the relativistic regime [16], where it is often the case that
Ohm’s law need not contain the pressure term and the
magnetic-field terms are negligible (provided B is of the
order of 102T), we arrive at

E ¼ me

e2nc
r � hjfvfi þ �jc: (14)

Assuming current balance (jc ¼ �jf), the first term on the

rhs of Eq. (14) dominates wherever L=c < �ci, where L is
the characteristic scale length of the fast-particle current
and �ci is the cold-plasma electron-ion collision time. In
intense laser-solid interactions, relativistic electrons are
accelerated into the target in short pulses with a scale
length L � c�0=4, where �0 is the period of the electro-
magnetic wave. In this case the term me=e

2ncr � hjfvfi
dominates if �0 < 4�ci. This occurs in a sufficiently low
density or high temperature plasma, such as that near the
front surface of the interaction. We have plotted the relative
magnitude �ci=ð�0=4Þ in Fig. 2 as a function of background
electron temperature, for various densities (normalized to
nonrelativistic critical density of 1 �m light).
In order to demonstrate the validity of the first term in

Eq. (14), we have performed direct kinetic simulations of a
laser-plasma interaction in 1D with the simulation code
FIDO. FIDO solves the relativistic Vlasov-Fokker-Planck

equation and Maxwell’s equations together and we fully
resolve the background plasma period. Momentum space is
described on a spherical computational grid, which facil-

FIG. 1 (color online). The electric field as found in simulations
which solve Maxwell’s equations and the particle equations of
motion. The fast particles undergo an initial acceleration period
up to a relativistic � ¼ 1:5, shortly after which a magnetic field
is applied which induces a harmonic electric field. Also shown
are the various contributions to the field from Ohm’s law labeled
according to their order of appearance on the rhs of Eq. (12).

FIG. 2 (color online). The relative magnitude of the two terms
in Eq. (14), equivalent to the ratio �ci=ð�0=4Þ as a function of
background electron temperature, for a range of densities (nor-
malized to the nonrelativistic critical density of 1 �m light).
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itates a rapid electron-ion angular-scattering algorithm and
preserves rotational symmetry of the distribution function
under the action of the v� B force. We prefer a finite-
difference approach to solving the equations over particle
simulation in order to minimize noise and arrive at a
‘‘clean’’ instantaneous longitudinal field Ex. The computa-
tional cost of such simulations is, however, high, due to the
Courant stability condition in momentum space (since we
resolve an initial 1 keV background distribution as well as
multi-MeV fast electrons within the same distribution).
Shown in Fig. 3 is the longitudinal electric field during a
simulation in which a laser, at intensity 5� 1019 W cm�2

and wavelength 1 �m, is incident from the left-hand
boundary. The solidAl plasma initially has a relatively
sharp density scale length (5% of the laser wavelength)
and the laser intensity is increased linearly in time over the
first four laser cycles and is thereafter constant. Pulses of
relativistic electrons are produced by the well-known j�
Bmechanism [17], which stream into the target and induce
an electric field in order to maintain quasineutrality. Also
shown is the field given by Ohm’s law [Eq. (14)] and its
contributions from the first (‘‘current-flux tensor’’) and
second (‘‘collisional’’) terms. Our example clearly demon-
strates that the current-flux tensor associated with the
relativistic electron bunches gives rise to an electric field
which exceeds the resistively induced field by over an
order of magnitude. These fields will lead to enhanced
background heating (via j � E) and in two dimensions
magnetic field generation which tends to increase fast-
electron collimation. They are particularly important in
long scale-length plasma, such as that created at the front
of solid targets by the laser prepulse.

On the subject of solid targets, it should be noted that
this work is only directly applicable to metal targets. In the
case of dielectrics the need for ionization of the back-
ground material substantially changes the situation [18],
and an ionization current should be added to the rhs of

Eq. (6). For the case of electron beams in foam or gas
targets [19], we stress that the conditions (9) must apply, in
particular, the beam density must be much lower than the
background density. When this is not the case, the resis-
tivity must be modified because the isotropic component of
the background distribution function becomes strongly
non-Maxwellian [20].
Finally, we show how the bulk background flow is

modified due to the presence of fast particles. By defining
the background plasma momentum density as pp ¼ pi þ
pc and again using the assumptions (9) with Ampère’s law,
we arrive at

@pp

@t
þ r � ðPi þ PcÞ ¼

�r�B

�0

� jf

�
� B; (15)

which is just the standard MHD equation of motion (i.e., in
the absence of a fast component) augmented by the reac-
tive force �jf �B, as inferred by Bell [10].

In summary, we have derived a generalized Ohm’s law
[Eq. (10)] for the electric field in a background MHD
plasma in the presence of relativistic charged particles by
ensuring quasineutrality via the Ampère-Maxwell law. The
limits of validity of the model are outlined in Eqs. (9). The
fast particles give rise to three new field-generation terms,
each of which has been verified by numerical simulation.
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FIG. 3 (color online). The longitudinal electric field set up as a
result of fast-electron pulses streaming from left to right, inside a
solid-Al plasma. Also shown is the field given by the Ohm’s law
Eq. (14) and its contributions from the first (current-flux tensor)
and second (collisional) terms. The data are shown at t ¼ 30 fs.
Note that the spatial range begins inside the dense target.
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